Lecture 11: Recent end-to-end ASR approaches. Building responsible systems.
Outline

- Advanced end-to-end ASR models
 - RNN-Transducer loss
 - On-device Google voice search with RNN-T models
 - Convolution-augmented transformer
- Building responsible ML systems
Reminders

- Project proposals due tonight by 11:59pm
 - Assume your proposal is overall good. Start work!
 - Look for specific feedback/suggestions via Gradescope.

- This Thursday 5/5 our first guest lecture!
 - Arlo Faria. Years of experience building ASR systems in research and industry settings
 - Attend live or synchronously via Zoom.
 - 1% of your final grade for the course for just showing up!
 - If you can’t attend synchronously, ask a question in advance on Ed
RNN-Transducer loss

- Directly optimizes target word sequence as correct label
 - Graphemes (letters) or word parts (10k-50k) used in practice
- Learned combination of acoustic + language model pieces
- Conditions on sequence output so far \(y_{t-1} \)
- Misnomer: Does not require RNNs!

RNN-T loss: (Graves, 2012) Figure: Rao, Sak, & Prabhavalkar, 2017
RNN-Transducer loss computation

- Causal inference structure. Works for online decoding
- Predictor inputs are only non-blank tokens (y)
- Do not increment t when non-blank token is output

Figures from Loren Lugosch
RNN-Transducer loss computation

- Many alignments consistent with true transcript
- Dynamic programming like CTC. No repeated output collapse

Figures from Loren Lugosch
RNN-Transducer loss

- Maximize $P(y|x)$ by summing over all consistent alignments
 - Multiple alignments due to *blank*.
 - No repeated output collapsing

$$P(y|x) = \sum_{z \in Z(y,T)} P(z|x)$$

- Single alignment:

$$P(z|x) = \prod_{i} P(z_i|x, t_i, \text{Labels}(z_{1:(i-1)}))$$
Google on-device ASR enabled by RNN-T

- It works! All neural, large vocabulary, high quality ASR running just on a phone (no cloud server required)

(Google blog post, 2019) (He, Sainath, et al. arXiv, 2018)
Google on-device ASR enabled by RNN-T: Enabling innovations

- What innovations made it possible to go from 2GB models and cloud computation to compact, on-device models?

- Decoding: Beam search with a single NN instead of weighted finite state transducer decoding machinery

- NN parameter quantization.
 - 4x model size compression. 4x runtime speed improvement

- LM contextual biasing. User-specialized LM to upweight common requests / inputs

- Scaling up training with parallel RNN-T.

- Improved text normalization + sub-word output units

(Google blog post, 2019) (He, Sainath, et al. arXiv, 2018)
Conformer: Convolution-augmented Transformer for Speech Recognition

- Sequence-to-sequence transformer with multi-headed self attention.
- Transformer encoder combines attention (global context) with convolution (local invariance)
- RNN-T loss architecture

Figure 1: Conformer encoder model architecture. Conformer comprises of two macaron-like feed-forward layers with half-step residual connections sandwiching the multi-headed self-attention and convolution modules. This is followed by a post layer norm.

(Gulati et al., 2020)
Conformer: Convolutional transformer encoder

- Sequence-to-sequence transformer with multi-headed self attention. Directly optimizes target word sequence
- Combines attention (global context) with convolution (local invariance)

Figure 1: Conformer encoder model architecture. Conformer comprises of two macaron-like feed-forward layers with half-step residual connections sandwiching the multi-headed self-attention and convolution modules. This is followed by a post layernorm.

Figure 2: Convolution module. The convolution module contains a pointwise convolution with an expansion factor of 2 projecting the number of channels with a GLU activation layer, followed by a 1-D Depthwise convolution. The 1-D depthwise conv is followed by a Batchnorm and then a swish activation layer.

Figure 3: Multi-Headed self-attention module. We use multi-headed self-attention with relative positional embedding in a pre-norm residual unit.

Figure 4: Feed forward module. The first linear layer uses an expansion factor of 4 and the second linear layer projects it back to the model dimension. We use swish activation and a pre-norm residual units in feed forward module.

(Gulati et al., 2020)
Conformer: Putting it all together

1 hidden layer LSTM (RNN)

3 hidden layer LSTM (RNN). Pre-trained as language model

(Gulati et al., 2020)
Conformer: Convolution-augmented Transformer for Speech Recognition

Table 2: Comparison of Conformer with recent published models. Our model shows improvements consistently over various model parameter size constraints. At 10.3M parameters, our model is 0.7% better on testother when compared to contemporary work, ContextNet(S) [10]. At 30.7M model parameters our model already significantly outperforms the previous published state of the art results of Transformer Transducer [7] with 139M parameters.

<table>
<thead>
<tr>
<th>Method</th>
<th>#Params (M)</th>
<th>WER Without LM</th>
<th>WER With LM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>testclean</td>
<td>testother</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[33]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuartzNet</td>
<td>19</td>
<td>3.90</td>
<td>11.28</td>
</tr>
<tr>
<td>[9]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>270</td>
<td>2.89</td>
<td>6.98</td>
</tr>
<tr>
<td>[34]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>-</td>
<td>2.2</td>
<td>5.6</td>
</tr>
<tr>
<td>[19]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td>360</td>
<td>2.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Transducer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>139</td>
<td>2.4</td>
<td>5.6</td>
</tr>
<tr>
<td>[7]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContextNet(S)</td>
<td>10.8</td>
<td>2.9</td>
<td>7.0</td>
</tr>
<tr>
<td>[10]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContextNet(M)</td>
<td>31.4</td>
<td>2.4</td>
<td>5.4</td>
</tr>
<tr>
<td>[10]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContextNet(L)</td>
<td>112.7</td>
<td>2.1</td>
<td>4.6</td>
</tr>
<tr>
<td>[10]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformer (Ours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformer(S)</td>
<td>10.3</td>
<td>2.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Conformer(M)</td>
<td>30.7</td>
<td>2.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Conformer(L)</td>
<td>118.8</td>
<td>2.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>

(Gulati et al., 2020)
Dual Mode ASR: Joint encoder + training for streaming & full context models

Figure 1: A simplified illustration of the similarity and difference between Streaming ASR and Full-context ASR networks. Modern end-to-end streaming and full-context ASR models share most of the neural architectures and training recipes in common, with the most significant difference in the ASR encoder (highlighted). Streaming ASR encoders are auto-regressive models, with each prediction of the current timestep conditioned on previous ones (no future context). We show examples of feed-forward layer, convolution layer and self-attention layer in the encoder of streaming and full-context ASR respectively. With Dual-mode ASR, we unify them without parameters overhead.

(Yu et al., 2021)
Dual Mode ASR: Joint encoder + training for streaming & full context models

Figure 3: Dual-mode self-attention layer.

Dual-mode Temporal-wise Convolution (kernel size: 3 or 5)

Dual-mode Temporal-wise Average Pooling (left-context pool vs. full-context pool)

(Yu et al., 2021)
Dual Mode ASR: Joint encoder + training for streaming & full context models

Table 3: Summary of our results on Librispeech dataset (Panayotov et al., 2015). We report WER on TestClean and TestOther (noisy) set. Compared with standalone ContextNet and Conformer models, Dual-mode ASR models have both higher accuracy in average and better streaming latency.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mode</th>
<th># Params (M)</th>
<th>Test Clean/Other WER(%)</th>
<th>Latency@50 (ms)</th>
<th>Latency@90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM-LAS</td>
<td>Full-context</td>
<td>360</td>
<td>2.6 / 6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuartzNet-CTC</td>
<td>Full-context</td>
<td>19</td>
<td>3.9 / 11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Full-context</td>
<td>29</td>
<td>3.1 / 7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Full-context</td>
<td>139</td>
<td>2.4 / 5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContextNet</td>
<td>Full-context</td>
<td>31.4</td>
<td>2.4 / 5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformer</td>
<td>Full-context</td>
<td>30.7</td>
<td>2.3 / 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Streaming</td>
<td>18.9</td>
<td>5.0 / 11.6</td>
<td>80</td>
<td>190</td>
</tr>
<tr>
<td>ContextNet</td>
<td>Streaming</td>
<td>31.4</td>
<td>4.5 / 10.0</td>
<td>70</td>
<td>270</td>
</tr>
<tr>
<td>Conformer</td>
<td>Streaming</td>
<td>30.7</td>
<td>4.6 / 9.9</td>
<td>140</td>
<td>280</td>
</tr>
<tr>
<td>ContextNet Look-ahead</td>
<td>Streaming</td>
<td>31.4</td>
<td>4.1 / 9.0</td>
<td>150</td>
<td>420</td>
</tr>
<tr>
<td>Dual-mode Transformer</td>
<td>Full-context</td>
<td>29</td>
<td>3.1 / 7.9</td>
<td>4.4 (-0.6) / 11.5 (-0.1)</td>
<td>-50 (-130)</td>
</tr>
<tr>
<td>Dual-mode ContextNet</td>
<td>Full-context</td>
<td>31.8</td>
<td>2.3 / 5.3</td>
<td>3.9 (-0.6) / 8.5 (-1.5)</td>
<td>40 (-30)</td>
</tr>
<tr>
<td>Dual-mode Conformer</td>
<td>Full-context</td>
<td>30.7</td>
<td>2.5 / 5.9</td>
<td>3.7 (-0.9) / 9.2 (-0.7)</td>
<td>10 (-130)</td>
</tr>
</tbody>
</table>

Table 4: Ablation studies of weight sharing, joint training and inplace distillation. We report WER on TestOther (noisy) set (Panayotov et al., 2015) using ContextNet with same training settings.

<table>
<thead>
<tr>
<th>Weight Sharing</th>
<th>Joint Training</th>
<th>Inplace Distillation</th>
<th>TestOther WER(%)</th>
<th>Latency@50 (ms)</th>
<th>Latency@90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>8.5</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>10.2 (+1.7)</td>
<td>120 (+80)</td>
<td>310 (+150)</td>
</tr>
<tr>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>10.6 (+2.1)</td>
<td>90 (+50)</td>
<td>290 (+130)</td>
</tr>
<tr>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
<td>9.9 (+1.4)</td>
<td>50 (+10)</td>
<td>210 (+50)</td>
</tr>
</tbody>
</table>
Outline

- Advanced end-to-end ASR models
 - RNN-Transducer loss
 - On-device Google voice search with RNN-T models
 - Convolution-augmented transformer
- Building responsible ML systems
Negative impacts of ML systems

- Broad categorization for this discussion:
 - Harmful system: negative impact on people or the world
 - Biased system: performs differently, or not at all, for some subpopulation of inputs
ML group bias in ASR: Racial disparities

(Koenecke et al., 2020)
ML group bias in ASR: Racial disparities

- 23% of audio snippets from black speakers have WER > 0.5. Compared to 1.6% of audio snippets from white speakers.

(Koenecke et al., 2020)
ML group bias in ASR: Racial disparities

- Causes? Differences attributed to acoustic model quality (rather than language model)
- Training data distribution bias?
- Pronunciation lexicon assumptions a potential factor

(Koenecke et al. 2020)

Table 2.
Error rates on a matched subset of identical short phrases spoken by white and black individuals in our sample

<table>
<thead>
<tr>
<th></th>
<th>Average WER for black speakers</th>
<th>Average WER for white speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>0.28</td>
<td>0.12</td>
</tr>
<tr>
<td>IBM</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>Google</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>Amazon</td>
<td>0.18</td>
<td>0.08</td>
</tr>
<tr>
<td>Microsoft</td>
<td>0.13</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Negative impacts of ML systems

- What causes negative impacts of ML?
 (think beyond just spoken language systems here)
Negative impacts of ML systems: Common causes

- System design issues
- Insufficiently trained / low performing ML models
- Distribution shift and mis-application
System design issues

- Problem formulation / ML task should be ethical
- Depends little on particulars of an ML model
- Example:
 - Predict future criminality from face image
 - In speech, emotion recognition is sometimes controversial
 - Difficult to categorize the true range of emotions, and how individuals express them in speech
 - Need to be careful of how recognized emotions are used in a broader system.
Insufficiently trained systems

- ML is never perfect. Potential negative impacts of mistakes
 - Lower quality experience for some inputs/users
- Often ML mistakes are not uniform random
 - Performance issues might disproportionately affect certain subgroups of input examples
 - Spoken language inputs are often correlated with demographic or medical factors affecting a person’s voice
System design + data distributions

• Define and announce the expectations for a system
• Fundamentally comes back to (1) training data distribution and (2) generalization performance of models
 • Ensure training data is representative
 • Develop “unit test” evaluation sets to ensure sub-group performance is adequate
• Current research on detecting and fixing group bias
Distribution shift and misapplication of models

- We assume test/production data and training data are IID
 - training set is representative of all future inputs
- Distribution shift: When test/production distribution is different or drifts from IID relative to training data
- Misapplication: Using a model on a production/test distribution for which it was not trained / evaluated
Model bias and multiple languages

- Models can have assumptions that work well in some, but not all languages
 - E.g. Turkish has complex morphology (many possible words) and loose word ordering (n-gram models perform poorly)
 - Performance is worse in systematic ways.
 - Possible to adapt systems. Important to test for this when working with multi-lingual systems
 - Deep learning approaches can encode fewer assumptions
- Low resource languages might create problems for deep learning approaches. Often large training sets required.
Data collection

• Be aware of local laws if collecting audio data
 • *California's wiretapping law is a "two-party consent" law. California makes it a crime to record or eavesdrop on any confidential communication, including a private conversation or telephone call, without the consent of all parties to the conversation.* (source)

• Generally data should be collected for a purpose

• Participants should be aware of any secondary uses of the data
 • GDPR makes this secondary use requirement more explicit
Summary: Building responsible ML

- Focus: Build quality ML models that do what they claim!
- Thoughtful system design
- Test for and document subgroup performance issues
- Data provenance, transparency (and privacy) is central

- Realize that YOU may be the only informed person in critical decisions about where/how to apply ML
Appendix