Rapid Progress in TTS over the last few years
Overview

1. Text to Spectrogram Models
2. Spectrogram to Audio Models (Vocoders)
3. Speaker and Style Embeddings
4. End to End Models
5. Generative Spoken Language Modeling
Neural TTS Paradigm

“Hello” -> Spectrogram Prediction -> Waveform Synthesis
Neural TTS Paradigm

“Hello” → Frontend → HH|AH0|L|OW1 → Spectrogram Prediction → Waveform Synthesis

Text Normalization + Phonemization
Why Neural TTS?

- Upper bound on quality is higher
- Works with a wider variety of datasets
- Much more easily extended for speaker/style customization
- Many fewer components to train than traditional TTS
Why Neural TTS? (continued)

- Accessible!
- Single speaker datasets are 1-10Gb e.g. [LJSpeech](https://catalog.ldc.upenn.edu/LDC2018T48)
- You can get decent results in a night on a solid GPU with most models
Why Use Intermediate Spectrograms?

- Prosodic/phonemic aspects of speech can be modelled without phase information
- Allows focus on human speech frequency bands with mel filters
- STFT chunks speech into frames of a useful duration for phoneme and prosody modeling
- Fast to generate thanks to FFT
- Separate model can be used to fill in the phase
Text to Spectrogram Models
Neural TTS Paradigm

“Hello” → Spectrogram Prediction → Waveform Synthesis → Waveform
Sequence to Sequence Problem

“h” “e” “l” “l” “o”
Tacotron

- Encoder decoder model with attention
- Predicts mel spectrograms from character inputs
- “Information bottleneck” in pre-net crucial for regularization

Wang et al 2017
\[
\{h_j\}_{j=1}^L = \text{Encoder}(\{x_j\}_{j=1}^L) \\
\quad s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \\
\quad \alpha_i = \text{Attention}(s_i, \ldots) \\
\quad c_i = \sum_j \alpha_{i,j} h_j \\
\quad d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \\
\quad y_i = f_o(d_i)
\]
\[\{ h_j \}_{j=1}^L = \text{Encoder}(\{ x_j \}_{j=1}^L) \]

Optionally takes previous alignment, encoder states

\[\alpha_i = \text{Attention}(s_i, \ldots) \]

\[c_i = \sum_j \alpha_{i,j} h_j \]

Can be 1-5 mel frames (reduction factor)

\[s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \]

\[d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]
\[i = 0 \]

\[\{ h_j \}_{j=1}^L = \text{Encoder}(\{ x_j \}_{j=1}^L) \]

\[\alpha_i = \text{Attention}(s_i, \ldots) \]

\[c_i = \sum_j \alpha_{i,j} h_j \]

\[y_{i-1} \rightarrow \text{Pre-Net} \rightarrow \text{RNNatt} \rightarrow \text{Attention} \rightarrow \text{RNNdec} \rightarrow \text{Post-Net} \rightarrow y_i \]

\[s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \]

\[d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]
\[i = 1 \]

\[\{ h_j \}_{j=1}^L = \text{Encoder}(\{ x_j \}_{j=1}^L) \]

\[\alpha_i = \text{Attention}(s_i, \ldots) \]

\[c_i = \sum_j \alpha_{i,j} h_j \]

\[s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \]

\[d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]
\[i = 2 \]

\[\{ h_j \}_{j=1}^L = \text{Encoder}(\{ x_j \}_{j=1}^L) \]

\[\alpha_i = \text{Attention}(s_i, \ldots) \]

\[c_i = \sum_j \alpha_{i,j} h_j \]

\[s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \]

\[d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]
i = 3

\[\{h_j\}_{j=1}^{L} = \text{Encoder}(\{x_j\}_{j=1}^{L}) \]

\[\alpha_i = \text{Attention}(s_i, \ldots) \]

\[c_i = \sum_j \alpha_{i,j} h_j \]

\[y_{i-1} \rightarrow \text{Pre-Net} \rightarrow \text{RNNatt} \rightarrow \text{Attention} \rightarrow \text{RNNdec} \rightarrow \text{Post-Net} \rightarrow y_i \]

\[s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \]

\[d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]
\(i = 4 \)

\[
\{h_j\}_{j=1}^{L} = \text{Encoder}\left(\{x_j\}_{j=1}^{L}\right)
\]

\[
\alpha_i = \text{Attention}(s_i, \ldots)
\]

\[
c_i = \sum_j \alpha_{i,j} h_j
\]

\[
y_{i-1} \rightarrow \text{Pre-Net} \rightarrow \text{RNNatt} \rightarrow \text{Attention} \rightarrow \text{RNNdec} \rightarrow \text{Post-Net} \rightarrow y_i
\]

\[
s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1})
\]

\[
d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i)
\]
Learning an Alignment
Attention can be fickle

Wang et al. 2017
Many Forms of Attention

- Content Based (Bahdanau)
- Location Sensitive
- Location Relative (GMM, DCA)
Content Based Attention

\[e_{i,j} = v^T \tanh(Ws_i + Vh_j) \]

\[\alpha_i = \text{softmax}(e_i) \]

Bahdanau et al. 2014
Location Sensitive Attention

\[f_{i,j} = F \ast \alpha_{i-1} \]

\[e_{i,j} = v^T \tanh(Ws_i + Vh_j + Uf_{i,j}) \]

\[\alpha_i = \text{softmax}(e_i) \]

Shen et al. 2018
Location Sensitive Attention

- Allows the model to explicitly use previous alignments for computing the next attention state
- Achieves much stronger alignments in practice than plain Bahdanau attention
- Enough model flexibility to learn a high quality text to spectrogram mapping
Dynamic Convolutional Attention

\[f_{i,j} = F \ast \alpha_{i-1} \]

\[G(s_i) = v_g^T \tanh(W_g s_i + b_g) \]

\[g_{i,j} = G(s_i) \ast \alpha_{i-1} \]

\[p_i = \log(P \ast \alpha_{i-1}) \]

\[e_{i,j} = v^T \tanh(U f_{i,j} + T g_{i,j}) + p_{i,j} \]

Battenberg et al. 2019
\[p_i = \log(P \times \alpha_{i-1}) \]
Dynamic Convolutional Attention

- Dynamic filters on previous alignment instead of directly using the encoder outputs and query
- Add a prior bias which softly encourages monotonicity
- Learns even more consistent alignments than location sensitive attention
- Better generalization to long utterances
- Tends to reach an alignment faster
Tips for training attention TTS models

- Alignments are everything, a good alignment in training almost certainly means good generalization
- Make sure your examples are well trimmed, consider normalizing volume and removing especially noisy samples
- Use a location based attention. LSA is simple and works well. DCA/GMM can be even better
- Make sure your log mel spectrograms are well normalized
- Fine tuning from existing models can be useful for small/noisy datasets
- Reduction factor is your friend if you’re struggling to get an alignment
Attention model drawbacks

- Autoregressive => Slow
- Occasionally prone to skipping, repeating etc even with LSA, DCA
An Alternative: Explicit Duration Modelling

Ren et al 2019
FastSpeech 1/2

- Similar to earlier DNN TTS systems
- Explicitly predict phoneme durations, f0 and pitch
- Durations for training come from an autoregressive model (e.g. tacotron) or from traditional HMM forced alignments
- To match the input and output lengths, repeat input states according to phoneme durations
- Use a transformer to predict in parallel rather than frame by frame

Ren et al 2019, Ren et al. 2020
FastSpeech Architecture

Encoder and Decoder are both fully parallel transformer blocks

(FFT = Feed Forward Transformer not Fast Fourier Transform)

Upsample by repeating encoder states by the predicted duration in frames

Ren et al 2019
FastSpeech 2 Variance Predictors

At training time use the ground truth duration, energy, f0 and pitch for synthesis and train predictors with MSE.

Variance Predictor Structure:

- Linear Layer
- LN + Dropout
- Conv1D + ReLU
- LN + Dropout
- Conv1D + ReLU

Ren et al. 2020
Attention vs Duration based models

Attention-based
- No alignments needed
- Adaptable to diverse, noisy datasets
- Capable of more natural prosody

Duration-based
- Fast parallel inference
- Less chance of alignment problems
- Easier to train (Once you have alignments)
- More robust to silence in training data
A Compromise: FastSpeech with soft attention

- Add a soft attention module to FastSpeech style TTS
- Compute a softmax across all pairs of text and spectrogram frames
- Use forward sum algorithm to compute the optimal alignment
- Can reuse CTC loss from ASR
- Examples: JETS
An Alternative: Flow-based Models

- Flow-based models combine transformer backbones with learned duration/attention
- All the benefits of FastSpeech – fast parallel inference, high quality
- All the benefits of Tacotron – no alignments needed, more flexible
- Examples included Glow-TTS, VITS, NaturalSpeech
- We’ll discuss these in depth at the end of the lecture
Vocoders
Neural TTS Paradigm

“Hello” → Spectrogram Prediction → Waveform Synthesis
Spectrogram to Waveform Conversion
Phase Prediction

- We have a magnitude log mel spectrogram from Tacotron/FastSpeech etc.
- We need to fill in the phase to get clear audio
Griffin-Lim

- Pure signal processing approach to phase reconstruction
- No learned parameters
- Iteratively reconstructs phase information from just the magnitude spectrogram
- Used in the original Tacotron paper

Griffin, Lim 1983
How Griffin-Lim Works

- The STFT transform is not perfectly invertible
- Many magnitude/phase pairs which cannot be produced from 1D audio
- Start with a random prediction for the phase
- Iteratively apply istft and stft to generate more “consistent” spectrograms which could have been generated by a time-series signal
- These sound much clearer than random/zero phase in practice
import numpy as np
import librosa

def griffinlim(magnitude_spec, num_iters=50):
 angles = np.exp(2j * np.pi * np.random.rand(*magnitude_spec.shape))

 for i in range(num_iters):
 spectrogram = magnitude_spec.astype(np.complex) * angles
 inverse = librosa.istft(spectrogram)
 rebuilt = librosa.stft(inverse)
 angles = np.exp(1j * np.angle(rebuilt))

 spectrogram = magnitude_spec.astype(np.complex) * angles
 inverse = librosa.istft(spectrogram)

 return inverse
Griffin-Lim Limitations

- Since it has no parameters, Griffin-Lim can only provide a coarse reconstruction of the phase
- Neural models trained on spectrogram/audio pairs are needed for higher quality outputs
Neural Networks on Raw Audio

- Extremely long time series in the output
- Endless training data
- A test piece for modern generative models
WaveNet

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
WaveNet

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
WaveNet

- Generative model of audio
- Autoregressive: generates one sample of audio at a time
- Many layers of dilated convolutions for a high receptive field
- Very high output quality
- Extremely Slow
- Can be conditioned on linguistic features or spectrograms to generate speech for specific utterances

Oord et al. 2016
WaveRNN

- Hyper-optimize a simple, autoregressive GRU model instead of WaveNet
- Up to 96% (!) weight sparsification and subsampling
- Runs ~4x real time even on smartphone CPUs
- Diverse applications in audio (see LPCNet, Lyra codec / WaveNetEQ packet loss smoothing)

Kalchbrenner et al. 2018
Parallelizing WaveNet

WaveNet

Slow Autoregressive High Quality

???

Fast Parallel High Quality
Parallelizing WaveNet
Inverse Autoregressive Flows

- Sample the number of audio samples we want to generate from a unit Gaussian distribution
- Transform those samples by a mean and variance predicted by a neural net
- This produces the full waveform in parallel
- Each step is as follows:

\[
x_t = z_t \cdot s(z_{<t}, \theta) + \mu(z_{<t}, \theta)
\]

where \(s \) and \(\mu \) are produced by running a WaveNet on \(z \)
x_t

$z_t \sim N(0, 1)$
Inverse Autoregressive Flows

- Fast, parallel sampling
- Closed form for gradient update requires an autoregressive calculation
- This makes directly training the flow intractable
- In a sense, the inverse of WaveNet
Parallel WaveNet: Student and Teacher

- Use a trained normal WaveNet model as a “teacher” for an IAF
- Minimize the KL divergence between the output distribution of the IAF and teacher wavenet
- This can be done in parallel, so training is fast
- Once trained, the student IAF can then perform inference in parallel on its own
Parallel WaveNet

WaveNet Teacher

Teacher Output
\[P(x_i | x_{<i}) \]

Generated Samples
\[x_i = g(z_i | z_{<i}) \]

WaveNet Student

Student Output
\[P(x_i | z_{<i}) \]

Input noise
\[z_i \]

Oord et al. 2017
Parallel WaveNet Issues

- Have to train two separate models
- Even with Clarinet, training the student distribution to match the teacher is extremely finicky
- Perceptual losses required which are hand tuned
- In practice, very hard to replicate the quality of the original WaveNet
Parallelizing WaveNet

WaveNet
- Parallel Training
- Sequential Inference

IAF
- Sequential Training
- Parallel Inference
Parallelizing WaveNet

WaveNet
- Parallel Training
 - Sequential Inference

IAF
- Sequential Training
 - Parallel Inference

???
- Parallel Training
 - Parallel Inference
$x_t = z_t \cdot s(z_{<t}, \theta) + \mu(z_{<t}, \theta)$

$z_t \sim N(0, 1)$
\[x_t = z_t \cdot s(z_{<t}, \theta) + \mu(z_{<t}, \theta) \]

\[z_t \sim N(0, 1) \]

\(X_t \)

Autoregressive WaveNet => intractable log likelihood

Flow Training ⇔ WaveNet Inference => SLOW
What if this was invertible?

X_t

$z_t \sim N(0, 1)$
Inference: Sample z and transform to x

Training: Transform x to z and enforce a normal distribution on z

$z_t \sim N(0, 1)$

What if this was invertible?
Glow

- Invertible flow based model
- Originally applied to image generation by OpenAI
- Quickly repurposed for audio generation with WaveGlow

Kingma, Dhariwal 2018, Prenger et al. 2018
In the forward pass, x_a is unchanged and used to transform x_b into x_b^*.
In the backwards pass, WN produces the same scale and bias for the affine transformation since x_a is the same. This means we can just invert the affine transformation to transform x_{b^*} to x_b.
Affine Coupling Layers

\[
x_a, x_b = \text{split}(x)
\]

\[
(\log s, t) = WN(x_a, \text{mel-spectrogram})
\]

\[
x'_b = s \odot x_b + t
\]

\[
f^{-1}_{\text{coupling}}(x) = \text{concat}(x_a, x'_b)
\]

Prenger et al. 2018
Mixing Channels

- Affine Coupling Layers can only transform half the input at a time
- Need a way to mix the channels between coupling layers
Invertible 1x1 Convolution

- 1x1 Convolution with a square kernel
- Initialize the kernel to be an invertible, orthonormal matrix
- Add a term to the loss to ensure it stays invertible in training
- For the backwards pass we just invert the kernel
- Now the channels are mixed between coupling layers
WaveGlow Architecture

Prenger et al. 2018
WaveGlow Loss Function

\[
\log p_\theta(x) = -\frac{z(x)^T z(x)}{2\sigma^2} + \sum_{j=0}^{\#\text{coupling}} \log s_j(x, \text{mel-spectrogram}) + \sum_{k=0}^{\#\text{conv}} \log \det |W_k|
\]

Fit \(z \) to a unit Gaussian Distribution

Change of variables from coupling

Ensure 1x1 conv kernels remain invertible

Prenger et al. 2018
WaveGlow

- Directly maximising likelihood makes training much more stable
- Eliminates the needs for perceptual losses
- Only have to train one model
- Quality equal to WaveNet
- Synthesize audio in parallel
Parallelizing WaveNet

WaveNet
- Parallel Training
- Sequential Inference

IAF
- Sequential Training
- Parallel Inference

WaveGlow
- Parallel Training
- Parallel Inference
Can we go faster?

- WaveGlow requires a powerful GPU for fast inference
- WaveRNN requires heavy optimization to run real time on CPUs
- Is there an alternative?
GAN-based Vocoders

- Generative adversarial networks applied to audio generation
- Simultaneously train two networks: a generator and a discriminator
- Generator produces audio from the spectrograms to be as close as possible to the ground truth audio
- Discriminator trained to distinguish generator outputs from real audio
- Examples include MelGAN, Parallel WaveGAN, HiFiGAN
LSGAN Architecture

Discriminator Loss
\[\mathcal{L}_{Adv}(D; G) = \mathbb{E}_{(x,s)} \left[(D(x) - 1)^2 + (D(G(s)))^2 \right] \]

Generator Loss
\[\mathcal{L}_{Adv}(G; D) = \mathbb{E}_s \left[(D(G(s)) - 1)^2 \right] \]

Mao et al. 2016
Additional Losses for Audio GANs

- Direct reconstruction loss on mel spectrograms

\[
\mathcal{L}_{Mel}(G) = \mathbb{E}_{(x,s)} \left[\| \phi(x) - \phi(G(s)) \|_1 \right]
\]

- Discriminator feature map L1 loss

\[
\mathcal{L}_{FM}(G; D) = \mathbb{E}_{(x,s)} \left[\sum_{i=1}^{T} \frac{1}{N_i} \| D^i(x) - D^i(G(s)) \|_1 \right]
\]

Kumar et al. 2019, Kong et al. 2020
Multi-scale/multi-period Discriminators

- Multiple discriminators at different scales/periods are helpful
- Capture long term dependencies

Kong et al. 2020, Kumar et al 2019
GANs

- Very fast parallel GPU and CPU synthesis
- Quality approaching or matching WaveNet/WaveGlow/WaveRNN
- Require carefully designed additional losses to perform well
- Good open source implementations
Summary

- GAN based vocoders have the best quality/latency trade offs currently
- **HiFiGAN** is a great choice – high performance and high quality
Speaker and Style Embeddings
Expanding the “text” in TTS

- TTS is fundamentally a one-to-many mapping
- The same text has infinitely many voicings
- Controllable speaker and prosody is very useful in dialog systems and elsewhere
Speaker/Style with One Hot Labels

- Enumerate your speakers and/or styles and label the training data with them.
- During training, learn an embedding for each speaker/style by passing a one-hot encoding to the encoder.
- At inference, pass in the corresponding speaker/style embedding.
- Simple and easy to train but constrained by the breadth of your labels.
Speaker ID

37

Prosodic Style

3

Learned One-hot Embedding

CNN/RNN

“g” “r” “a” “c” “e”

RNN RNN RNN RNN
Learned Speaker Embeddings

- Train with large datasets of speaker-labelled audio
- Feed frozen embeddings to TTS model at training and inference time
- If the training dataset is sufficiently diverse, zero shot synthesis is possible for new speakers with a single utterance

Audio Samples

Jia et al. 2018
Fig. 1. System overview. Different colors indicate utterances/embeddings from different speakers.

Fig. 2. GE2E loss pushes the embedding towards the centroid of the true speaker, and away from the centroid of the most similar different speaker.
Speaker Spectrogram

CNN/RNN (frozen)

CNN/RNN

“g” “r” “a” “c” “e”

RNN RNN RNN RNN
Learned Style Embeddings

- Instead of explicitly labelling style, can we get the model to learn structure in the audio data organically?
- Feed in the mel spectrogram as an input to a style module at training time
- Compress with conv/lstm to prevent trivial reconstruction
- At inference time feed in a reference mel spectrogram or sample from the latent space
- Can be achieved with token embeddings or a VAE
- Known as a “reference encoder” in the literature
Figure 1. Model diagram. During training, the log-mel spectrogram of the training target is fed to the reference encoder followed by a style token layer. The resulting style embedding is used to condition the Tacotron text encoder states. During inference, we can feed an arbitrary reference signal to synthesize text with its speaking style. Alternatively, we can remove the reference encoder and directly control synthesis using the learned interpretable tokens.
VAE Tacotron

- Use variational auto encoder for style latent space
- Latent space then encouraged to follow a gaussian distribution
- Sample prosodies from latent space at inference time
- GMVAE Tacotron uses a hierarchical mixture of gaussians so each component learns a different prosodic component of the data
- Fine-grained VAEs learn the variability in the model’s prosody. This can be useful when generating data for semi-supervised ASR

Hsu et al. 2018, Sun et al. 2020
The diagram illustrates a neural network architecture involving CNN/RNN and VAE Latent Space. The VAE Latent Space is fed into the CNN/RNN, which then processes the data. The output of this processing is then fed into a chain of RNNs, labeled as RNN, RNN, RNN, and RNN. The notation $z_t \sim N(0, 1)$ indicates that the latent variable z_t is drawn from a normal distribution with mean 0 and standard deviation 1. The diagram also shows the input characters "g", "r", "a", "c", and "e".
Sample

$z_t \sim N(0, 1)$

VAE Latent Space

CNN/RNN

“g” “r” “a” “c” “e”

Inference

RNN
RNN
RNN
RNN
End to End Models
The Ideal TTS Model

- Expressive, flexible duration modeling like Tacotron
- Fast parallel inference like FastSpeech
- Reference encoder to account for one-to-many mapping
- Trained end to end – no separate vocoder
Glow-TTS

- Use a flow model for posterior from mel spectrograms to text
- Use a transformer text encoder to parametrize the prior
- Train using maximum likelihood to match prior and posterior distributions
- Since we have maximum likelihood, use dynamic programming to find the most likely alignment during training
- For inference, train a separate duration predictor to match the most likely alignment
Glow-TTS

(a) An abstract diagram of the training procedure. (b) An abstract diagram of the inference procedure.

Kim et al. 2020
Glow-TTS – Monotonic Alignment Search

(a) An example of monotonic alignments

(b) Calculating the maximum log-likelihood Q.

(c) Backtracking the most probable alignment A^*.

Figure 2: Illustrations of the monotonic alignment search.

Kim et al. 2020
Glow-TTS Shortcomings

- Not trained end to end – still uses a mel spectrogram output
- No reference encoder – less prosodic variation/controllability
- Direct duration prediction – less natural prosody
VITS

- Glow-TTS style flow model with monotonic alignment search
- Reference encoder with VAE latent space
- Flow model to produce varied duration modeling
- HiFiGAN inspired waveform decoder
- Fully end to end training

Kim et al. 2021
VITS

(a) Training procedure

(b) Inference procedure

Kim et al. 2021
VITS Loss

\[L_{vae} = L_{recon} + L_{kl} + L_{dur} + L_{adv}(G) + L_{fm}(G) \]
VITS

- Combines the best features of flows, VAEs and GANs
- End to end training
- No alignments required
- Controllable prosody through VAE
- Fast parallel inference: 67 RTF on 1 V100
- Very high MOS scores
NaturalSpeech

- Similar structure to VITS with prior/posterior flow model
- Adds phoneme pretraining, differential duration modeling and a memory VAE
- Matches MOS of human speaker on LJSpeech dataset

Samples

Tan et al. 2022
Generative Spoken Language Modeling
The Future of TTS

- On high quality datasets, TTS has reached parity with humans in MOS
- These systems operate on a single utterance at a time
- Systems that handle long form context and dynamically adjust their tone are the future
Generative Spoken Language Modeling

- Obtain discrete audio codes from Wav2Vec-2, HUBERT etc.
- Train a GPT style transformer LM on the codes
- Train a speech synthesis model to convert codes to speech
- Can simulate turn-taking and backchannels when training on two channels

Samples
Conclusion
Ethical TTS

- Modern TTS is a powerful tool
- People have and will continue to be fooled by great TTS
- Only synthesize someone’s voice with permission
- Disclose that your dialog system is a bot
Thank You!

Email: alex@gridspace.com