Lecture 6: Deep Learning for TTS
Rapid Progress in TTS Over the Last Few Years

- WaveNet
- Tacotron
- DeepVoice
- GST Tacotron
- WaveGlow
- FastSpeech
- FastSpeech2
- Wave-Tacotron
- MelGAN
- Tacotron2
- WaveGlow
- MelGAN
- Wave-Tacotron
- Natural Speech
- HiFiGAN
- VITS
- dGLSM
- VALL-E
- BASE TTS
- TorToise
- Bark
- BASE TTS

Year:
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
Outline

- Text to Spectrogram Models
- Speaker and Style Embeddings
- Spectrogram to Audio Models (Vocoders)
Neural TTS Paradigm

"Hello" → Spectrogram Prediction → Waveform Synthesis
Neural TTS Paradigm

“Hello” → Frontend → HH|AH0|L|OW1 → Spectrogram Prediction → Waveform Synthesis

Text Normalization + Phonemization
Why Neural TTS?

- Upper bound on quality is higher
- Works with a wider variety of datasets
- Much more easily extended for speaker/style customization
- Many fewer components to train than traditional TTS
- Single speaker datasets are 1-10Gb e.g. LJSpeech
- You can get decent results in a night on a solid GPU with most models
Why Use Intermediate Spectrograms?

- Prosodic/phonemic aspects of speech can be modelled without phase information
- Allows focus on human speech frequency bands with mel filters
- STFT chunks speech into frames of a useful duration for phoneme and prosody modeling
- Fast to generate thanks to FFT
- Separate model can be used to fill in the phase
Text to Spectrogram Models
Neural TTS Paradigm

"Hello" → Spectrogram Prediction → Waveform Synthesis
Sequence to Sequence Problem

“h”

“e”

“l”

“l”

“o”
Tacotron

- Encoder decoder model with attention
- Predicts mel spectrograms from character inputs
- “Information bottleneck” in pre-net crucial for regularization

![Diagram of Tacotron architecture]

- CBHG
- Pre-net
- Character embeddings
- Attention
- Decoder RNN
- Griffin-Lim reconstruction
Maps characters into a continuous vector

Character → One-hot vectors → Embedding layer → Embedding vectors → Bottleneck layer & dropout
CBHG Encoder

This is a special multi-layer RNN that includes a convolutional layer.

Mixes information 2 ways:

1. With neighboring characters via conv1d
2. Throughout entire sequence with GRU
Tacotron Decoder

\[
\{h_j\}_{j=1}^L = \text{Encoder}(\{x_j\}_{j=1}^L)
\]

\[
s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1})
\]

\[
\alpha_i = \text{Attention}(s_i, \ldots)
\]

\[
c_i = \sum_j \alpha_{i,j} h_j
\]

\[
d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i)
\]

\[
y_i = f_0(d_i)
\]

Attention is applied to all decoder steps

Wang et al 2017
\{ h_j \}_{j=1}^L = \text{Encoder} (\{x_j \}_{j=1}^L)

\alpha_i = \text{Attention} (s_i, \ldots)
\quad c_i = \sum_j \alpha_{i,j} h_j

s_i = \text{RNN}_{\text{Att}} (s_{i-1}, c_{i-1}, y_{i-1})
\quad d_i = \text{RNN}_{\text{Dec}} (d_{i-1}, c_i, s_i)

Can be 1-5 mel frames (reduction factor)

Optionally takes previous alignment, encoder states
\[
\{ h_j \}_{j=1}^{L} = \text{Encoder} (\{ x_j \}_{j=1}^{L})
\]

\[
y_{i-1} \rightarrow \text{Pre-Net} \rightarrow \text{RNNatt} \rightarrow \text{Attention} \rightarrow \text{RNNdec} \rightarrow \text{Post-net} \rightarrow y_i
\]

\[
s_i = \text{RNN}_{\text{Att}} (s_{i-1}, c_{i-1}, y_{i-1})
\]

\[
d_i = \text{RNN}_{\text{Dec}} (d_{i-1}, c_i, s_i)
\]

\[
\alpha_i = \text{Attention} (s_i, ...)
\]

\[
c_i = \sum_j \alpha_{i,j} h_j
\]
j = 1

\[
\{ h_j \}_{j=1}^{L} = \text{Encoder} (\{x_j\}_{j=1}^{L})
\]

\[
\alpha_i = \text{Attention} (s_i, \ldots)
\]

\[
c_i = \sum_j \alpha_{i,j} h_j
\]

\[
y_{i-1} \xrightarrow{\text{Pre-Net}} s_{i-1} \xrightarrow{\text{RNNatt}} c_{i-1} \xrightarrow{\text{Attention}} c_i \xrightarrow{\text{RNNdec}} d_{i-1} \xrightarrow{\text{Post-net}} y_i
\]

\[
s_i = \text{RNN}_{\text{Att}} (s_{i-1}, c_{i-1}, y_{i-1})
\]

\[
d_i = \text{RNN}_{\text{Dec}} (d_{i-1}, c_i, s_i)
\]
\[\{ h_j \}_{j=1}^L = \text{Encoder} (\{x_j\}_{j=1}^L) \]

\[
\begin{align*}
\alpha_i &= \text{Attention} (s_i, \ldots) \\
c_i &= \sum_j \alpha_{i,j} h_j
\end{align*}
\]

\[
\begin{align*}
s_i &= \text{RNN}_{\text{Att}} (s_{i-1}, c_{i-1}, y_{i-1}) \\
d_i &= \text{RNN}_{\text{Dec}} (d_{i-1}, c_i, s_i)
\end{align*}
\]
\[\{ h_j \}_{j=1}^L = \text{Encoder}(\{x_j\}_{j=1}^L) \]

\[y_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]

\[d_i = \text{RNN}_{\text{Dec}}(d_{i-1}, c_i, s_i) \]

\[s_i = \text{RNN}_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1}) \]

\[\alpha_i = \text{Attention}(s_i, \ldots) \]

\[c_i = \sum_j \alpha_{i,j} h_j \]
$j = 4$

$\{ h_j \}_{j=1}^{L} = \text{Encoder}(\{x_j\}_{j=1}^{L})$

y_{i-1}

Pre-Net

y_i

$\text{Encoder}(\{x_j\}_{j=1}^{L})$

Attention

$\alpha_i = \text{Attention}(s_i, ...)$

$c_i = \sum_j \alpha_{i,j} h_j$

RNNatt

$s_i = RNN_{\text{Att}}(s_{i-1}, c_{i-1}, y_{i-1})$

RNNdec

$d_i = RNN_{\text{Dec}}(d_{i-1}, c_i, s_i)$

Post-net
Attention Reveals Alignment

Wang et al 2017
Tacotron samples
Many Forms of Attention

- Content Based (Bahdanau)
- Location Sensitive
- Location Relative (GMM, DCA)

Wang et al. 2017
https://theaisummer.com/attention
Deep dive: FastSpeech 1 & 2
Motivation

Disadvantages of auto-regressive generation:

- **Slow**: It is by definition step by step. Spectrogram sequences can be 1000s of steps long.
- **Error prone**: If an error happens on step 5, then it affects steps 6 to 1000.
Motivation

What if we could do this?

- **Fast**: everything happens at once.
- **Less error prone**: no forward propagation.
Feed forward Transformers

Borrow recent NLP breakthroughs for non-autoregressive modeling: transformers.

- Same architecture as LLMs e.g. GPT-4, Llama, etc.
- Stacked attention layers to mix information in the input phonemes
- Each phoneme input is mapped to a predicted mel-spectrogram

... (repeat) ...
Self attention

A self attention layer mixes information between a sequence of embeddings.

Multi-headed attention

Goal is to provide diversity in what is being focused on

\[
z_i = \sum_j w_{ij} x_j
\]

\[
\text{compute } w_{ij} = q_i x^T k_j
\]

This is just content based (Bahdanau) attention

Repeat self attention separately for K heads

Each of these obtained by out of a linear layer

Input vectors
Length Regulator

One of the properties of a transformer is that a sequence of N input tokens produces N output tokens.

But this doesn’t work for us! Spectrogram sequences are often much longer than phoneme sequences.

The trick is that we will **duplicate** the phonemes based on their duration. This way, a longer lasting phoneme will produce a longer sequence of spectrograms.

![Diagram of the length regulator process]

- **Raw input sequence**
- **Assume we know the durations for each phoneme**
- **Duplicated input sequence**
Duration Predictor

To do the length correction, we need to know the duration from phonemes alone.

How do we do this?

Train a separate model jointly to predict the length of the mel-spectrograms for each phoneme.

predicted duration

minimize MSE loss

duration label

linear layer

1D convolution + norm

How do we get the duration label?

HACK: take a pretrained autoregressive TTS model, and estimate duration using attention from phonemes to spectrograms. Use that as label for this model.
FastSpeech

Put together all the components and stack transformer layers.
Fastspeech2 samples
Wait… One-to-Many?

There are lots of ways to say the same phonemes, depending on the speed, pitch, energy of the speaker. All of these possible answers are “right”, and having multiple right answers is bad for training.

Which one should the transformer model generate?
Hack: Pretrained TTS Model

Like getting durations, we again rely on a pretrained autoregressive TTS model. Mel spectrograms are generated from the autoregressive model and use as ground truth for training FastSpeech.

Why does this solve the one-to-many problem?

We basically ask the model to favor whatever spectrogram the autoregressive model chose. This is equivalent to *knowledge distillation*.
FastSpeech2

FastSpeech used a few hacks that rely on a pretrained autoregressive model. FastSpeech2 makes a few small changes to replace that dependency and some extra bells and whistles.
Variance Adaptors

Decide “variance information”

- Duration
- Pitch
- Energy

using the phoneme so that the one-to-many problem becomes one-to-one.

For each of three, we train a separate small model to predict them from the phoneme sequence. The labels are extracted using deterministic tools.

- **Duration** Use the Montreal forced alignment tool rather than a pretrained autoregressive model.
- **Energy** Treat L_2 norm of amplitude of the STFT of the frame as label.
- **Pitch** Use continuous wavelet transforms (CWT) to produce pitch spectrograms.
FastSpeech2

Add extra variance information to the phoneme embeddings by concatenating them.

- No more reliance on a pretrained model.
- Extracts auxiliary labels from phoneme itself.

Diagram:

- **Variance adaptor (this will duplicate by duration)**
- **N x Transformer Blocks**
- **Embedding model**
- **Linear layer to map to spectrogram size**

- **Spectrogram sequences**
- **Positional embeddings**

- Colors:
 - Blue = predicted pitch
 - Green = predicted energy
Attention vs Duration Based Models

Attention-based
- No alignments needed
- Adaptable to diverse, noisy datasets
- Capable of more natural prosody

Duration-based
- Fast parallel inference
- Less chance of alignment problems
- Easier to train
- More robust to silence in training data
A Compromise: FastSpeech with Soft Attention

- Add a soft attention module to FastSpeech style TTS
- Compute a softmax across all pairs of text and spectrogram frames
- Use forward sum algorithm to compute the optimal alignment
- Can reuse CTC loss from ASR
- Examples: JETS
An Alternative: Flow-based Models

- Flow-based models combine transformer backbones with learned duration/attention
- All the benefits of FastSpeech – fast parallel inference, high quality
- All the benefits of Tacotron – no alignments needed, more flexible
- Examples included Glow-TTS, VITS, NaturalSpeech
Speaker and Style Embeddings
Multispeaker TTS

Low dimensional projections of speaker embeddings

Edit Synthesizer architecture to take as input a “speaker embedding”.

The speaker embedding is trained to maximize cosine similarity of embeddings of utterances from the same speaker.

[Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](#)
Multispeaker TTS

The same sentence produces different spectrograms based on the reference utterance.

Shape of the generated spectrograms are similar but some are stretched out more, representing slower speakers.
Vocoders
Neural TTS Paradigm

“Hello” → Spectrogram Prediction → Waveform Synthesis
Spectrogram to Waveform Conversion
Phase Prediction

- We have a magnitude log mel spectrogram from Tacotron/FastSpeech etc.
- We need to fill in the phase to get clear audio, the spectrogram does not represent phase
Griffin-Lim Wave Reconstruction

- Pure signal processing approach to phase reconstruction
- No learned parameters
- Iteratively reconstructs phase information from just the magnitude spectrogram
- Used in the original Tacotron paper

How it works:
- Start with a random prediction for the phase
- Iteratively apply istft and stft to generate more “consistent” spectrograms

These sound much clearer than random/zero phase in practice

Limitations:
- Since it has no parameters, Griffin-Lim can only provide a coarse reconstruction of the phase
- Neural models trained on spectrogram/audio pairs are needed for higher quality outputs
WaveNet

- One of the initial modern deep learning methods for neural net waveform synth
- Generating 16k audio samples per second is a challenge – specialized architectures often used

Figure 3: Visualization of a stack of *dilated* causal convolutional layers.
WaveNet

Figure 3: Visualization of a stack of *dilated* causal convolutional layers.
HiFiGAN

- GAN based vocoders have some of the best quality/latency trade offs currently
 - Active development in this area as hardware and compute-efficient neural architectures improve
 - Ideally vocoders can run much faster than realtime, and on-device

Figure 1: The generator upsamples mel-spectrograms up to $|k_u|$ times to match the temporal resolution of raw waveforms. A MRF module adds features from $|k_r|$ residual blocks of different kernel sizes and dilation rates. Lastly, the n-th residual block with kernel size $k_r[n]$ and dilation rates $D_r[n]$ in a MRF module is depicted.
Ethical TTS

- Modern TTS is a powerful tool
- People have and will continue to be fooled by great TTS
- Only synthesize someone’s voice with permission
- Disclose that your dialog system is a bot
Appendix
End-to-end: VITS
VITS

- Glow-TTS style flow model with monotonic alignment search
- Reference encoder with VAE latent space
- Flow model to produce varied duration modeling
- HifiGAN inspired waveform decoder
- Fully end to end training

Kim et al. 2021
VITS

Training

Inference

KL Divergence between prior from text and posterior from waveform

Kim et al. 2021
VITS Loss

\[L_{vae} = L_{recon} + L_{kl} + L_{dur} + L_{adv}(G) + L_{fm}(G) \]

Kim et al. 2021
Motivation

Parallel TTS systems are two-staged: (1) first learn to generate spectrograms, and then (2) generate waveforms.

There should be a technique leveraging recent generative techniques to be end-to-end.

The VITS model. Next we will discuss each component in this system.
A variational autoencoder is a latent variable model of the form
\[p_\theta(x,z) = p_\theta(x|z)p(z) \]

where \(x \) is our observed data (phoneme), and \(z \) is a high dimensional latent variable. Pick \(\theta \) to maximize \(\log p_\theta(x) \), called “evidence”.

This is hard but we can derive a lower bound. We introduce a inference network \(q_\phi(z|x) \), mapping \(x \) to a Gaussian. Then:

\[
\log p_\theta(x) = \log \int_z p_\theta(x,z) \, dz = \log \int_z p_\theta(x|z)p(z) \, dz \\
= \log \int_z p_\theta(x|z)p(z) \frac{q_\phi(z|x)}{q_\phi(z|x)} \, dz \\
= \log \mathbb{E}_{q(z|x)} \left[\frac{p_\theta(x|z)p(z)}{q_\phi(z|x)} \right] \\
\geq \mathbb{E}_{q(z|x)} \left[\log p(x | z) + \log p(z) - \log q_\phi(z|x) \right] \quad \text{(Jensen’s Inequality)} \\
= \mathbb{E}_{q(z|x)} \left[\log p(x | z) \right] - \text{KL}[q_\phi(z|x), p(z)]
\]

This is called the “evidence lower bound” or ELBO. We want to maximize it w.r.t parameters \(\theta \) and \(\phi \). \(q_\phi(z|x) \) and \(p_\theta(x,z) \) are parameterized by neural networks.
Background: CVAEs

We want to condition the latent variable on another variable c

A conditional variational autoencoder looks similar but with an additional variable:

$$ p_\theta(x,z|c) = p_\theta(x|z)p(z|c) $$

where $p_\theta(x,z,c) = p_\theta(x|z)$. In this case, the ELBO becomes:

$$ \log p_\theta(x|c) \geq E_{q(z|x)}[\log p(x|z)] - KL[q_\phi(z|x), p(z|c)] $$

Again, we want to maximize it w.r.t parameters θ and ϕ. $q_\phi(z|x)$ and $p_\theta(x|z)$ are neural networks.

We may sometimes parameterize $p_\theta(z|c)$ as a third neural network.
VITS: Model

In the VITS context

\(x = \text{waveform} \)

\(x_{\text{mel}} = \text{mel spectrogram} \)

\(z = \text{high dimensional vector} \)

Take the ELBO one term at a time.

1. **Reconstruction loss, or** \(\mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] \)

\begin{align*}
1. \quad & \text{Fix an audio sample } x \text{ from dataset. Compute } x_{\text{mel}} \text{ from } x. \\
2. \quad & \text{Sample } z' \sim q_{\phi}(z|x). \text{ Sample } x' \sim p_{\theta}(x|z'). \text{ Compute } x'_{\text{mel}} \text{ from } x'. \\
3. \quad & \text{Compute } \| x_{\text{mel}} - x'_{\text{mel}} \|_1. \text{ This is proportional to } \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right].
\end{align*}
In the VITS context

\(x = \) waveform

\(x_{\text{mel}} = \) mel spectrogram

\(z = \) high dimensional vector

\(c = \{ c_{\text{text}}, A \} \)

\(c_{\text{text}} = \) phonemes from text

\(A = \) alignment matrix

(shape: \(|c_{\text{text}}| \times |z|\))

Take the ELBO one term at a time.

1. **Reconstruction loss**, or \(E_{q(z|x)}[\log p(x|z)] \)

 1. Fix an audio sample \(x \) from dataset. Compute \(x_{\text{mel}} \) from \(x \)
 2. Sample \(z' \sim q_\phi(z|x) \). Sample \(x' \sim p_\theta(x|z') \). Compute \(x'_{\text{mel}} \) from \(x' \)
 3. Compute \(||x_{\text{mel}} - x'_{\text{mel}}||_1 \). This is proportional to \(E_{q(z|x)}[\log p_\theta(x|z)] \)

2. **KL divergence**, or \(E_{q(z|x)}[\log q_\phi(z|x) - \log p_\theta(z|c)] \)

 1. Fix an audio sample \(x \) from dataset. Fetch context \(c \) for \(x \).
 2. Sample \(z' \sim q_\phi(z|x) \)
 3. Evaluate \(\log q_\phi(z|x) \) and \(\log p_\theta(z|c_{\text{text}}, A) \)
VITS: Model

The VITS graphical model:

- **x** = waveform
- **x**_{mel} = mel spectrogram
- **z** = high dimensional vector
- **c** = \{ **c_{text}, A \}**
- **c_{text}** = phonemes fron text
- **A** = alignment matrix (shape: |**c_{text}| x |z|)

Take the ELBO one term at a time.

1. **Reconstruction loss**, or \(E_{q(z|x)}[\log p(x|z)] \)
 1. Fix an audio sample **x** from dataset. Compute **x**_{mel} from **x**
 2. Sample **z'** \~ q_\phi(\mathbf{z}|\mathbf{x}). Sample **x'** \~ p_\theta(\mathbf{x} | \mathbf{z'})
 3. Compute \(||\mathbf{x}_{mel} - \mathbf{x'}_{mel}||_1 \). This is proportional to \(E_{q(z|x)}[\log p_\theta(\mathbf{x}|\mathbf{z})] \)

2. **KL divergence**, or \(E_{q(z|x)}[\log q_\phi(\mathbf{z}|\mathbf{x}) - \log p_\theta(\mathbf{z}|c)] \)
 1. Fix an audio sample **x** from dataset. Fetch context **c** for **x**.
 2. Sample **z'** \~ q_\phi(\mathbf{z}|\mathbf{x}) (Use same sample as in Step 1).
 3. Evaluate \(\log q_\phi(\mathbf{z}|\mathbf{x}) \) and \(\log p_\theta(\mathbf{z}|c_{text}, A) \)

3. Add the two.
Background: Invertible Flows

A method to build a complex distribution from a simple one using invertible functions.

Define an invertible function f. Assume a simple distribution $p(z)$. Given a sample $z \sim p(z)$. Now, compute $z' = f(z)$.

Normalizing flows guarantee that distribution

$$\log p(z') = \log p(z) - \log |\det \partial f/\partial z|$$

In other words, there’s a closed form expression for the resulting distribution! You can then stack multiple flows together.

If $z_K = f_K \ldots f_1(z_0)$ and $z_0 \sim p(z_0)$. Then

$$\log p_K(z_K) = \log q_0(z_0) - \sum_k (\log |\det f_k/\partial z_{k-1}|)$$

We often parameterize the function f_θ with a neural network.
In VITS, the prior $p_\theta(z|c)$ is parameterized to be more expressive. This is done using normalizing flows.

Start with a simple distribution $p_0(z|c)$ as a Gaussian distribution

$$N(\mu_\theta(c), \sigma(c))$$

where the mean/stdev are outputs from a neural network. If we want a more expressive distribution, we can define an invertible mapping f_θ where $f_\theta(z) \sim p_\theta(z|c)$. Then, by rules of normalizing flows

$$p_\theta(f_\theta(z)|c) = p_0(z|c) \cdot |\text{det} \frac{\partial f_\theta(z)}{\partial z}|$$

Using a strong prior turns out to be important for sample quality.

Table 2. MOS comparison in the ablation studies.

<table>
<thead>
<tr>
<th>Model</th>
<th>MOS (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Truth</td>
<td>4.50 (±0.06)</td>
</tr>
<tr>
<td>Baseline</td>
<td>4.50 (±0.06)</td>
</tr>
<tr>
<td>without Normalizing Flow</td>
<td>2.98 (±0.08)</td>
</tr>
<tr>
<td>with Mel-spectrogram</td>
<td>4.31 (±0.08)</td>
</tr>
</tbody>
</table>
Background: GANs

In image generation, adversarial losses typically improve sample quality.

Define a discriminator D and a generator G as two neural networks. The generator maps a latent variable z to a waveform x. The discriminator classifies an input x as real or generated.

The loss function is:

$$\min_\theta \max_\phi E_x \left[\log D_\phi(x) \right] + E_z \left[\log(1 - D(G_\theta(z))) \right]$$

This is a minimax game.

- A perfect discriminator would separate generated examples from real ones in the dataset.
- A perfect generator would produce samples indistinguishable by the discriminator.

Over time, both push each other to be better. You end up with a powerful generator.
VITS: Adversarial training

- Let the decoder $p_\theta(x|z)$ be the generator G.
- Introduce a discriminator D.
- Optimize a variation of the GAN objective

 $\mathbf{x} = \text{waveform, } \mathbf{z} = \text{latent}$

 $$L_{\text{adv}} = E_{(x,z)} \left[(D_\varphi(x)-1)^2 + (D(G(z)))^2 \right] + E_z \left[(D(G(z))-1)^2 \right]$$

- Add an additional feature matching loss

 $$L_{\text{fm}} = E_{(y,z)} \left[\sum_i 1/N_i \| D^i(x) - D^i(G(z)) \|_1 \right]$$

$T = \# \text{ of layers in discriminator}$

$D^i = \text{feature map of } i\text{-th layer with } N_i \text{ features}$

This is like a reconstruction loss for intermediate layers
In the VITS model, we assume access to an alignment matrix \(A \) (shape: \(|c_{text}| \times |z|\)).

How do we get this?

Alignment is between input text and target speech audio. We want to find the best matrix \(A \) such that we

\[
\text{max}_A \text{ ELBO} = \text{max}_A \log p_\theta(x_{\text{mel}}|z) + \log p(z|c_{text}, A) - \log q(z|x) \\
= \text{max}_A \log p_\theta(z|c_{text}, A) \\
= \log N(f_\theta(x) | \mu_\theta(c_{text}, A), \sigma_\theta(c_{text}, A))
\]

This is a search problem over all possible alignments. We don’t have any labels for this so it’s generally hard,

- To make this problem simpler, limit candidate alignments to be monotonic and non-skipping.
- This makes it possible to do dynamic programming to find the best alignment.
VITS: Duration Prediction

Use alignment to compute duration prediction.

Add some randomness to make it sound realistic.

Simple approach

Given an alignment A, duration for the i-th token $d_i = \sum_j A_{ij}$. Can compute all durations summing across columns in A.

But, this doesn’t capture variability of speaking rates. For more realistic rhythm, VITS adds a model to introduce stochasticity.

VITS approach

Generative model to output duration $d \sim p_\theta(d|c_{\text{text}})$ from the input text. Use variational dequantization since d is discrete. Optimize a lower bound on $\log p_\theta(d|c_{\text{text}})$.
VITS: Objective

VITS objective = (1) VAE reconstruction loss +
(2) VAE KL divergence +
(3) Duration prediction loss +
(4) Adversarial loss +
(5) Feature matching loss

VITS Architectures

- WaveNet residual blocks for encoder $q_\phi(z|x)$
- c_{text} is ingested using a hidden layer from a transformer
- Normalizing flow f_θ is a stack of affine coupling layers where the Jacobian determinant is 1.
- Decoder $p_\theta(x|z)$ is a HiFi-GAN. The discriminator is also the one used in HiFi-GAN.
- The duration predictor is a network of stacked residual blocks and convolutional layers.
VITS: Summary

- Combines the best features of flows, VAEs and GANs
- End to end training
- No alignments required
- Controllable prosody through VAE
- Fast parallel inference: 67 RTF on 1 V100
- Very high MOS scores
NaturalSpeech

- Similar structure to VITS with prior/posterior flow model
- Adds phoneme pretraining, differential duration modeling and a memory VAE
- Matches MOS of human speaker on LJSpeech dataset
- [Samples](#)
Recent Methods
Tortoise

Better speech synthesis through scaling
Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers
Bark

https://github.com/suno-ai/bark
More Examples of Neural Networks on Raw Audio

- Generative model of audio
- Autoregressive: generates one sample of audio at a time
- Many layers of dilated convolutions for a high receptive field
- Very high output quality
- Extremely Slow
- Can be conditioned on linguistic features or spectrograms to generate speech for specific utterances

Oord et al. 2016
WaveRNN

- Hyper-optimize a simple, autoregressive GRU model instead of WaveNet
- Up to 96% (!) weight sparsification and subsampling
- Runs ~4x real time even on smartphone CPUs
- Diverse applications in audio (see LPCNet, Lyra codec / WaveNetEQ packet loss smoothing)

Kalchbrenner et al. 2018
WaveRNN

- Hyper-optimize a simple, autoregressive GRU model instead of WaveNet
- Up to 96% (!) weight sparsification and subsampling
- Runs ~4x real time even on smartphone CPUs
- Diverse applications in audio (see LPCNet, Lyra codec / WaveNetEQ packet loss smoothing)
Parallelizing WaveNet

WaveNet

Slow
Autoregressive
High Quality

???

Fast
Parallel
High Quality
Parallelizing WaveNet

WaveNet

Slow
Autoregressive
High Quality

Sequential
Training Parallel
Inference

???
Inverse Autoregressive Flows

- Sample the number of audio samples we want to generate from a unit gaussian distribution
- Transform those samples by a mean and variance predicted by a neural net
- This produces the full waveform in parallel
- Each step is as follows:

\[x_t = z_t \cdot s(z_{<t}, \theta) + \mu(z_{<t}, \theta) \]

where \(s \) and \(\mu \) are produced by running a WaveNet on \(z \).
Inverse Autoregressive Flows

\[x_t \]

\[z_t \sim N(0, 1) \]
Inverse Autoregressive Flows

- Fast, parallel sampling
- Closed form for gradient update requires an autoregressive calculation
- This makes directly training the flow intractable
- In a sense, the inverse of WaveNet
Parallel WaveNet: Student and Teacher

- Use a trained normal WaveNet model as a “teacher” for an IAF
- Minimize the KL divergence between the output distribution of the IAF and teacher wavenet
- This can be done in parallel, so training is fast
- Once trained, the student IAF can then perform inference in parallel on its own
Parallel WaveNet: Student and Teacher

WaveNet Teacher

Linguistic features

Teacher Output

\[P(x_i | x_{<i}) \]

Generated Samples

\[x_i = g(z_i | z_{<i}) \]

Student Output

\[P(x_i | z_{<i}) \]

WaveNet Student

Linguistic features

Input noise

\[z_i \]

Oord et al. 2016
Parallel WaveNet Issues

- Have to train two separate models
- Even with Clarinet, training the student distribution to match the teacher is extremely finicky
- Perceptual losses required which are hand tuned
- In practice, very hard to replicate the quality of the original WaveNet
Parallelizing WaveNet

WaveNet

Slow
Autoregressive
High Quality

IAF

Parallel Training
Inference
Parallelizing WaveNet

- WaveNet: Slow Autoregressive, High Quality
- IAF: Parallel Training Inference
- ???: Parallel Training Parallel Inference
Inverse Autoregressive Flows

X_t

$z_t \sim N(0, 1)$
Inverse Autoregressive Flows

Autoregressive WaveNet => intractable log likelihood

Flow Training ⇔ WaveNet Inference => SLOW

\[z_t \sim N(0, 1) \]
Inverse Autoregressive Flows

What if this was invertible?

\[x_t \]

\[z_t \sim N(0, 1) \]
Inverse Autoregressive Flows

What if this was invertible?

Training: transform x to z and enforce a normal distribution on z

$z_t \sim N(0, 1)$

Inference: sample z and transform to x
Glow

- Invertible flow based model
- Originally applied to image generation by OpenAI
- Quickly repurposed for audio generation with WaveGlow

Kingma, Dhariwal 2018, Prenger et al. 2018
Affine Coupling Layer - Forward

In the forward pass, \(x_a \) is unchanged and used to transform \(x_b \) into \(\hat{x}_b \).
In the backwards pass, WN produces the same scale and bias for the affine transformation since x_a is the same. This means we can just invert the affine transformation to transform x_{b^*} to x_b.
Affine Coupling Layers

\[
x_a, x_b = \text{split}(x)
\]

\[
(\log s, t) = \text{WN}(x_a, \text{mel-spectrogram})
\]

\[
x_b' = s \odot x_b + t
\]

\[
f^{-1}_{\text{coupling}}(x) = \text{concat}(x_a, x_b')
\]
Mixing Channels

- Affine Coupling Layers can only transform half the input at a time
- Need a way to mix the channels between coupling layers
Invertible 1x1 Convolution

- 1x1 Convolution with a square kernel
- Initialize the kernel to be an invertible, orthonormal matrix
- Add a term to the loss to ensure it stays invertible in training
- For the backwards pass we just invert the kernel
- Now the channels are mixed between coupling layers
WaveGlow Architecture

Prenger et al. 2018
WaveGlow Loss Function

\[
\log p_{\theta}(x) = - \frac{z(x)^T z(x)}{2\sigma^2}
\]

Fit \(z \) to a unit Gaussian Distribution

Change of variables from coupling

\[
\#\text{coupling} \sum_{j=0}^{\#\text{coupling}} \log s_j(x, \text{mel-spectrogram})
\]

Ensure 1x1 conv kernels remain invertible

\[
\#\text{conv} \sum_{k=0}^{\#\text{conv}} \log \det |W_k|
\]

Prenger et al., 2018
WaveGlow

- Directly maximising likelihood makes training much more stable
- Eliminates the needs for perceptual losses
- Only have to train one model
- Quality equal to WaveNet
- Synthesize audio in parallel
Parallelizing WaveNet

WaveNet
Slow Autoregressive High Quality

IAF
Parallel Training Inference

WaveGlow
Parallel Training Parallel Inference
Can we Go faster?

- WaveGlow requires a powerful GPU for fast inference
- WaveRNN requires heavy optimization to run real time on CPUs
- Is there an alternative?
GAN-based Vocoders

- Generative adversarial networks applied to audio generation
- Simultaneously train two networks: a generator and a discriminator
- Generator produces audio from the spectrograms to be as close as possible to the ground truth audio
- Discriminator trained to distinguish generator outputs from real audio
- Examples include MelGAN, Parallel WaveGAN, HiFiGAN
LSGAN Architecture

Discriminator Loss
\[\mathcal{L}_{Adv}(D; G) = \mathbb{E}_{(x, s)} \left[(D(x) - 1)^2 + (D(G(s)))^2 \right] \]

Generator Loss
\[\mathcal{L}_{Adv}(G; D) = \mathbb{E}_s \left[(D(G(s)) - 1)^2 \right] \]

Mao et al. 2016
Additional Losses for Audio GANs

- Direct reconstruction loss on mel spectrograms

\[
\mathcal{L}_{Mel}(G) = \mathbb{E}_{(x,s)} \left[\| \phi(x) - \phi(G(s)) \|_1 \right]
\]

- Discriminator feature map L1 loss

\[
\mathcal{L}_{FM}(G; D) = \mathbb{E}_{(x,s)} \left[\sum_{i=1}^{T} \frac{1}{N_i} \| D^i(x) - D^i(G(s)) \|_1 \right]
\]

Kumar et al. 2019, Kong et al. 2020
Multi-scale/multi-period Discriminators

- Multiple discriminators at different scales/periods are helpful
- Capture long term dependencies

Kumar et al. 2019, Kong et al. 2020
GANs

- Very fast parallel GPU and CPU synthesis
- Quality approaching or matching WaveNet/WaveGlow/WaveRNN
- Require carefully designed additional losses to perform well
- Good open source implementations
Summary

- GAN based vocoders have the best quality/latency trade offs currently
- **HiFiGAN** is a great choice – high performance and high quality
End to End Glow TTS Model
The Ideal TTS Model

- Expressive, flexible duration modeling like Tacotron
- Fast parallel inference like FastSpeech
- Reference encoder to account for one-to-many mapping
- Trained end to end – no separate vocoder
Glow-TTS

- Use a flow model for posterior from mel spectrograms to text
- Use a transformer text encoder to parametrize the prior
- Train using maximum likelihood to match prior and posterior distributions
- Since we have maximum likelihood, use dynamic programming to find the most likely alignment during training
- For inference, train a separate duration predictor to match the most likely alignment
Glow-TTS

(a) An abstract diagram of the training procedure.

(b) An abstract diagram of the inference procedure.

Kim et al. 2020
Glow-TTS – Monotonic Alignment Search

(a) An example of monotonic alignments
(b) Calculating the maximum log-likelihood Q.
(c) Backtracking the most probable alignment A^*.

Figure: Illustration of monotonic alignment.
Kim et al. 2020
Glow-TTS Shortcomings

- Not trained end to end – still uses a mel spectrogram output
- No reference encoder – less prosodic variation/controllability
- Direct duration prediction – less natural prosody
TacoTron Attention Variations
Content Based Attention

\[
e_{i,j} = v^T \tanh(W s_i + V h_j)
\]

\[
\alpha_i = \text{softmax}(e_i)
\]
Location Sensitive Attention

\[f_{i,j} = F \ast \alpha_{i-1} \]

\[e_{i,j} = v^T \tanh(W s_i + V h_j + U f_{i,j}) \]

\[\alpha_i = \text{softmax}(e_i) \]

Shen et al. 2018
Location Sensitive Attention

- Allows the model to explicitly use previous alignments for computing the next attention state
- Achieves much stronger alignments in practice than plain Bahdanau attention
- Enough model flexibility to learn a high quality text to spectrogram mapping
Dynamic Convolutional Attention

\[f_{i,j} = F \ast \alpha_{i-1} \]

\[G(s_i) = v^T_g \tanh(W_g s_i + b_g) \]

\[g_{i,j} = G(s_i) \ast \alpha_{i-1} \]

\[p_i = \log(P \ast \alpha_{i-1}) \]

\[e_{i,j} = v^T \tanh(U f_{i,j} + T g_{i,j}) + p_{i,j} \]

Dynamic filters computed from attention state

Prior bias to encourage monotonicity

Battenberg et al. 2019
Dynamic Convolutional Attention

Initial Alignment Via Repeated Application of Prior Filter

\[p_i = \log(P \ast \alpha_{i-1}) \]

Battenberg et al. 2019
Dynamic Convolutional Attention

- Dynamic filters on previous alignment instead of directly using the encoder outputs and query
- Add a prior bias which softly encourages monotonicity
- Learns even more consistent alignments than location sensitive attention
- Better generalization to long utterances
- Tends to reach an alignment faster
Tips for Training Attention TTS Models

- Alignments are everything, a good alignment in training almost certainly means good generalization
- Make sure your examples are well trimmed, consider normalizing volume and removing especially noisy samples
- Use a location based attention. LSA is simple and works well. DCA/GMM can be even better
- Make sure your log mel spectrograms are well normalized
- Fine tuning from existing models can be useful for small/noisy datasets
- Reduction factor is your friend if you’re struggling to get an alignment
Attention Model Drawbacks

- Autoregressive => Slow
- Occasionally prone to skipping, repeating etc even with LSA, DCA
An Alternative: Explicit Duration Modelling

Ren et al 2019
FastSpeech 1/2

- Similar to earlier DNN TTS systems
- Explicitly predict phoneme durations, f0 and pitch
- Durations for training come from an autoregressive model (e.g. tacotron) or from traditional HMM forced alignments
- To match the input and output lengths, repeat input states according to phoneme durations
- Use a transformer to predict in parallel rather than frame by frame

Ren et al. 2019, Ren et al. 2020
FastSpeech 2 Variance Predictors

At training time use the ground truth duration, energy, f0 and pitch for synthesis and train predictors with MSE.

(Variance Predictor Structure:)

(FFT = Feed Forward Transformer not Fast Fourier Transform)

Ren et al. 2020
Generative Spoken Language Modeling
The Future of TTS

- On high quality datasets, TTS has reached parity with humans in MOS
- These systems operate on a single utterance at a time
- Systems that handle long form context and dynamically adjust their tone are the future
Generative Spoken Language Modeling

- Obtain discrete audio codes from Wav2Vec-2, HUBERT etc.
- Train a GPT style transformer LM on the codes
- Train a speech synthesis model to convert codes to speech
- Can simulate turn-taking and backchannels when training on two channels
- Samples
Generative Spoken Language Modeling

Nguyen et al 2022
More on style and speaker embeddings
Expanding the “text” in TTS

- TTS is fundamentally a one-to-many mapping
- The same text has infinitely many voicings
- Controllable speaker and prosody is very useful in dialog systems and elsewhere
Speaker/Style with One Hot Labels

- Enumerate your speakers and/or styles and label the training data with them.
- During training, learn an embedding for each speaker/style by passing a one hot encoding to the encoder.
- At inference, pass in the corresponding speaker/style embedding.
- Simple and easy to train but constrained by the breadth of your labels.
Sequence to Sequence Problem

Speaker ID

Prosodic Style

37

3

Learned
One-hot Embedding

CNN/RNN

“g” “r” “a” “c” “e”

RNN

RNN

RNN

RNN

Speaker ID

Prosodic Style

37

3

Learned
One-hot Embedding

CNN/RNN

“g” “r” “a” “c” “e”

RNN

RNN

RNN

RNN

CS 224S / LINGUIST 285
Spoken Language Processing
Lecture 6: Deep Learning for TTS
Learned Speaker Embeddings

- Train with large datasets of speaker-labelled audio
- Feed frozen embeddings to TTS model at training and inference time
- If the training dataset is sufficiently diverse, zero shot synthesis is possible for new speakers with a single utterance
- Audio Samples
Learned Speaker Embeddings
Learned Speaker Embeddings

Figure 1: System overview. Different colors indicate utterances / embeddings from different speakers.

Figure 2: GEE loss pushes the embedding towards the centroid of the true speaker, and away from the centroid of the most similar different speaker. Wang et al 2017
Learned Speaker Embeddings

Speaker Spectrogram

CNN/RNN (frozen)

CNN/RNN

“g” “r” “a” “c” “e”

RNN

RNN

RNN

RNN
Learned Style Embeddings

- Instead of explicitly labelling style, can we get the model to learn structure in the audio data organically?
- Feed in the mel spectrogram as an input to a style module at training time
- Compress with conv/lstm to prevent trivial reconstruction
- At inference time feed in a reference mel spectrogram or sample from the latent space
- Can be achieved with token embeddings or a VAE
- Known as a “reference encoder” in the literature
Figure: Model diagram. During training, the log-mel spectrogram of the training target is fed to the reference encoder followed by a style token layer. The resulting style embedding is used to condition the Tacotron text encoder states. During inference, we can feed an arbitrary reference signal to synthesize text with its speaking style. Alternatively, we can remove the reference encoder and directly control synthesis using the learned interpretable tokens.

Wang et al 2017 | Samples
VAE Tacotron

- Use variational auto encoder for style latent space
- Latent space then encouraged to follow a gaussian distribution
- Sample prosodies from latent space at inference time
- GMVAE Tacotron uses a hierarchical mixture of gaussians so each component learns a different prosodic component of the data
- Fine-grained VAEs learn the variability in the model's prosody. This can be useful when generating data for semi-supervised ASR

Hsu et al. 2018, Sun et al. 2020
Training

\[z_t \sim \mathcal{N}(0,1) \]

CNN/RNN

VAE Latent Space

CNN/RNN

“g” “r” “a” “c” “e”

RNN

RNN

RNN

RNN
Inference

VAE Latent Space

Sample

$z_t \sim \mathcal{N}(0,1)$

CNN/RNN

“g” “r” “a” “c” “e”

RNN RNN RNN RNN