Representing long texts for NLU

CS224U Spring 2019

Learning representations so far

- At the word or sentence level
- Word similarity: (word1, word2) → distance
- Sentiment: sentence → {positive, neutral, negative}
- **NLI**: (word1, word2) \rightarrow {entails, not entails}
 - Recall combining multiple words with vector_combo_func

Learning representations so far

- Fixed-dimensional representations useful for lots of downstream tasks
- Once we have an embedding, we can perform classification, clustering, etc.

Goal

How can we apply NLU methods to long texts? (Think news articles, scientific papers, books, transcripts, etc.)

Sample tasks

- Document classification
- Document similarity/clustering
- Reading comprehension (e.g. NewsQA)
- Summarization

Methods

Vector representations of words

- We've seen lots of methods for this
 - One-hot, PPMI, LSA, word2vec, GloVe, BERT
- How can we get from word vectors to paragraph/document vectors?

Good baseline methods

- Bag of word vectors (sum, mean, max-pool)
 - O What are some drawbacks?

Good baseline methods

- Bag of word vectors (sum, mean, max-pool)
 - Loses sentence structure
- Combine using structure of parse trees [1]

Good baseline methods

- Bag of word vectors (sum, mean, max-pool)
 - Loses sentence structure
- Combine using structure of parse trees [1]
 - Relies on accurate parsing, does not work as well beyond single sentences

RNNs as document encoders

- Train an RNN as an autoencoder, or for your downstream task
- Use the output at the last timestep as a document embedding
- Length limitations: loses context information after many timesteps

Doc2vec [2]

Continuous Bag of Words algorithm (word2vec [3])

^[2] Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." *International conference on machine learning*. 2014. [3] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013

Doc2vec [2]

Paragraph Vector - Distributed Memory

[2] Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014.

Doc2vec [2]

- Simultaneously learn a word vector for every word and document vector for every document
- Unsupervised training
- To get the vector for a new document, fix word matrix W, augment document matrix D, and train for few epochs
 - Careful: can yield different vectors for the same input!

Resources

- Doc2vec
 - The <u>gensim</u> package provides an easy-to-use API
- General document embedding
 - The <u>flair</u> library allows for using and combining various embedding types (so far only supports pooling and RNN document embedders)

TODO: LM deep learning

- Transformer
- BERT -- call out limitations
- ELMo
- Etc
- Other encoder-decoder type approaches

Sentence encoders (to include?)

- Skip-thought (sentences)
- InferSent
- Google Universal Sentence Encoder (USE)