
Representing long texts 
for NLU
CS224U Spring 2019



● At the word or sentence level
● Word similarity: (word1, word2) → distance
● Sentiment: sentence → {positive, neutral, negative}
● NLI: (word1, word2) → {entails, not entails}

○ Recall combining multiple words with 
vector_combo_func

Learning representations so far



● Fixed-dimensional representations useful for lots of 
downstream tasks

● Once we have an embedding, we can perform 
classification, clustering, etc.

Learning representations so far



Goal
How can we apply NLU methods 
to long texts? (Think news 
articles, scientific papers, books, 
transcripts, etc.)



● Document classification
● Document similarity/clustering
● Reading comprehension (e.g. NewsQA)
● Summarization

Sample tasks



Methods



Vector representations of words

● We’ve seen lots of methods for this
○ One-hot, PPMI, LSA, word2vec, GloVe, BERT

● How can we get from word vectors to 
paragraph/document vectors?



Good baseline methods

● Bag of word vectors (sum, mean, max-pool)
○ What are some drawbacks?



Good baseline methods

● Bag of word vectors (sum, mean, max-pool)
○ Loses sentence structure

● Combine using structure of parse trees [1]

[1] Socher, Richard, et al. "Parsing natural scenes and natural language with recursive neural networks." Proceedings of the 28th international 
conference on machine learning (ICML-11). 2011.



Good baseline methods

● Bag of word vectors (sum, mean, max-pool)
○ Loses sentence structure

● Combine using structure of parse trees [1]
○ Relies on accurate parsing, does not work as well 

beyond single sentences

[1] Socher, Richard, et al. "Parsing natural scenes and natural language with recursive neural networks." Proceedings of the 28th international 
conference on machine learning (ICML-11). 2011.



RNNs as document encoders

● Train an RNN as an autoencoder, or for your 
downstream task

● Use the output at the last timestep as a document 
embedding

● Length limitations: loses context information after many 
timesteps



Doc2vec [2]

[2] Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014.
[3] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 
2013.

Continuous Bag of Words algorithm (word2vec [3])

The dog over

jumped

W W W Word embedding 
matrix

Word vectors

Classifier

the

W

Sum/concat



Doc2vec [2]

[2] Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014.

Paragraph Vector - Distributed Memory

The dog over

jumped

W W W Word embedding 
matrix

Word vectors

the

W

Doc id

DDocument 
matrix

Classifier

Sum/concat



Doc2vec [2]

[2] Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014.

● Simultaneously learn a word vector for every word and 
document vector for every document

● Unsupervised training
● To get the vector for a new document, fix word matrix W, 

augment document matrix D, and train for few epochs
○ Careful: can yield different vectors for the same input!



Resources

● Doc2vec
○ The gensim package provides an easy-to-use API

● General document embedding
○ The flair library allows for using and combining 

various embedding types (so far only supports 
pooling and RNN document embedders)

https://radimrehurek.com/gensim/models/doc2vec.html
https://github.com/zalandoresearch/flair


TODO: LM deep learning

● Transformer
● BERT -- call out limitations
● ELMo
● Etc
● Other encoder-decoder type approaches



Sentence encoders (to include?)

● Skip-thought (sentences)
● InferSent
● Google Universal Sentence Encoder (USE)


