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The task of relation extraction

• Task definition
• Goal: machine reading
• Practical applications
• Hand-built patterns
• Supervised learning
• Distant supervision



The task of relation extraction

Task definition

relation subject object

founders PayPal Elon_Musk

founders SpaceX Elon_Musk

has_spouse Elon_Musk Talulah_Riley

worked_at Elon_Musk Tesla_Motors

Interesting Fact: 
Elon Musk, co-founder 
of PayPal, went on to 
establish SpaceX, one 
of the most promising 
space travel startups 
in the world.

Talulah Riley, the 
new bride of SpaceX 
owner Elon Musk, has 
gone out of her way to 
remind us that our 
next great space race 
will likely ...

If you want to 
see one in action, 
Robert Scoble got a 
ride in the first 
production model, 
driven by Tesla Motors 
chairman Elon Musk. 



The task of relation extraction

Goal: machine reading
Reading the Web: A Breakthrough Goal for AI

I believe AI has an opportunity to achieve a true breakthrough over 
the coming decade by at last solving the problem of reading natural 
language text to extract its factual content. In fact, I hereby offer to 
bet anyone a lobster dinner that by 2015 we will have a computer 
program capable of automatically reading at least 80% of the factual 
content [on the] web, and placing those facts in a structured 
knowledge base. The significance of this AI achievement would be 
tremendous: it would immediately increase by many orders of 
magnitude the volume, breadth, and depth of ground facts and 
general knowledge accessible to knowledge based AI programs. In 
essence, computers would be harvesting in structured form the 
huge volume of knowledge that millions of humans are entering 
daily on the web in the form of unstructured text.

— Tom Mitchell, 2005



The task of relation extraction

Applications: intelligent assistants

/people/person/date_of_death

Barbara Bush     2018-04-17
Milos Forman     2018-04-14
Winnie Mandela   2018-04-11

/organization/organization/parent

tbh              Facebook
Kaggle           Google
LinkedIn         Microsoft

/music/artist/track

The O'Jays       Love Train
Cardi B          Bodak Yellow
Selena Gomez     Bad Liar

/film/film/starring

Wonder Woman     Gal Gadot
Dunkirk          Tom Hardy
Tomb Raider      Alicia Vikander

“Love Train” is a hit single by 
The O’Jays, written by Kenny 
Gamble and Leon Huff. 
Released in 1972, it reached 
number one on both the R&B 
Singles and the Billboard Hot 
100, in February and March 
1973 respectively, number 9 on 
the UK Singles Chart and was 
certified gold by the RIAA. It 
was The O’Jays’ first and only 
number-one record on the US 
pop chart.



The task of relation extraction

Applications: building ontologies

video game
  action game
    ball and paddle game
      Breakout
    platform game
      Donkey Kong
    shooter
      arcade shooter
        Space Invaders
      first-person shooter
        Call of Duty
      third-person shooter
        Tomb Raider
  adventure game
    text adventure
    graphic adventure
  strategy game
    4X game
      Civilization
    tower defense
      Plants vs. Zombies

Melee, in video game terms, is a style of 
elbow-drop hand-to-hand combat popular in 
first-person shooters and other shooters.

Tower defense is a kind of real-time strategy game 
in which the goal is to protect an area or place 
and prevent enemies from reaching ...

Mirror ran a headline questioning whether the 
killer’s actions were a result of playing Call of 
Duty, a first-person shooter game ...



The task of relation extraction

Applications: gene regulation

structured knowledge extraction:
summary for machine

textual abstract: 
summary for human

relation subject object

is_a p53 protein

is_a Bax protein

has_function p53 apoptosis

has_function Bax induction

involved_in apoptosis cell_death

is_in Bax cytoplasm

related_to apoptosis caspase_activation

... ... ...



The task of relation extraction

Hand-built patterns

Idea: define some extraction patterns

You may also be thinking of Elon Musk (founder of SpaceX), who started PayPal.

Elon Musk, co-founder of PayPal, went on to establish SpaceX, one of the most ...

If Space Exploration (SpaceX), founded by Paypal pioneer Elon Musk succeeds, ...

X is the founder of Y

X, who founded Y

Y was founded by X

48-year-old Elon Musk is the founder of SpaceX and a co-founder of Tesla Motors.

Elon Musk, who founded SpaceX in 2002, has said the company is focused on ...

SpaceX was founded by Elon Musk to make life multi-planetary. “You want to ...

Problem: most occurrences do not fit simple patterns



You may also be thinking of Elon Musk (founder of SpaceX), who started PayPal.

Elon Musk, co-founder of PayPal, went on to establish SpaceX, one of the most ...

If Space Exploration (SpaceX), founded by Paypal pioneer Elon Musk succeeds, ...

The task of relation extraction

Supervised learning

Idea: label examples, train a classifier

Entrepreneur Elon Musk announced the latest addition to the SpaceX arsenal ...

Elon Musk tweeted Friday that SpaceX employees are “working on ventilators” ...

✅

✅

✅

❌

❌

Success! Better generalizability

Problem: labeling examples is expensive :-(

founder
founded
establish
co-founder
PayPal
announced
addition
tweeted

+1.56
+1.41
+1.23
+1.01
+0.35
–0.23
–0.32
–0.44



The task of relation extraction

Distant supervision

Idea: derive labels from an existing knowledge base (KB)

relation subject object

founders SpaceX Elon_Musk

founders Apple Steve_Jobs

founders Microsoft Bill_Gates

✅

✅

Elon Musk, co-founder of PayPal, went on to establish SpaceX, one of the most ...

Entrepreneur Elon Musk announced the latest addition to the SpaceX arsenal ...

Elon Musk dismissed concerns that Apple was poaching the company's talent.

Now we know what Apple would have done with Elon Musk if that deal had ...

❌

❌

Hooray! Massive quantities of training data, practically free!

Qualm: are those assumptions reliable?

Assume sentences with related entities are positive examples

Assume sentences with unrelated entities are negative examples



1. Not all sentences with related entities are truly positive examples

🤥

(but the benefit of more data outweighs the harm of noisier data)

The task of relation extraction

Distant supervision: limitations

Distant supervision is a powerful idea — but it has two limitations:

Entrepreneur Elon Musk announced the latest addition to the SpaceX arsenal ... ✅

2. Need an existing KB to start from — can’t start from scratch



Overview

• The task of relation extraction
• Data resources
• Problem formulation
• Evaluation
• Simple baselines
• Directions to explore



Data resources

• The corpus
• The knowledge base (KB)



Data resources

The corpus

We need a corpus of sentences, each containing a pair of entities

relation subject object

founder PayPal Elon_Musk

founder SpaceX Elon_Musk

Elon Musk, co-founder of PayPal, went on to establish SpaceX.

Elon_Musk PayPal SpaceX

Solution: the Wikilinks corpus (heavily adapted for our purposes)

which have been annotated with entity resolutions

so that they can be unambiguously linked to a knowledge base



Data resources

The corpus: the Corpus class

The Corpus class holds examples, and allows lookup by entity:

rel_ext_data_home = os.path.join('data', 'rel_ext_data')
corpus = rel_ext.Corpus(os.path.join(rel_ext_data_home, 'corpus.tsv.gz'))
print('Read {0:,} examples'.format(len(corpus)))

Read 331,696 examples

print(corpus.examples[1])

Example(entity_1='New_Mexico', entity_2='Arizona', left='to all Spanish-occupied lands . The horno has a 
beehive shape and uses wood as the only heat source . The procedure still used in parts of', mention_1='New 
Mexico', middle='and', mention_2='Arizona', right='is to build a fire inside the Horno and , when the proper 
amount of time has passed , remove the embers and ashes and insert the', left_POS='to/TO all/DT 
Spanish-occupied/JJ lands/NNS ./. The/DT horno/NN has/VBZ a/DT beehive/NN ... ')



Data resources

The corpus: the Example class

The procedure still used in parts of

left

New Mexico

mention_1

and

middle

Arizona

mention_2

is to build a fire inside the Horno ...

right

The/DT procedure/NN still/RB 
used/VBN in/IN parts/NNS of/IN

left_POS

New/NNP 
Mexico/NNP

mention_1_POS

and/CC

middle_POS

Arizona/NNP

mention_2_POS

is/VBZ to/TO build/VB a/DT fire/NN 
inside/IN the/DT Horno/NNP ...

right_POS

Example = namedtuple('Example',
    'entity_1, entity_2, left, mention_1, middle, mention_2, right, '
    'left_POS, mention_1_POS, middle_POS, mention_2_POS, right_POS')

New_Mexico

entity_1

Arizona

entity_2



Data resources

The corpus: most common entities
counter = Counter()
for example in corpus.examples:
    counter[example.entity_1] += 1
    counter[example.entity_2] += 1
print('The corpus contains {} entities'.format(len(counter)))
counts = sorted([(count, key) for key, count in counter.items()], reverse=True)
print('The most common entities are:')
for count, key in counts[:10]:
    print('{:10d} {}'.format(count, key))

The corpus contains 95909 entities
The most common entities are:
      8137 India
      5240 England
      4121 France
      4040 Germany
      3937 Australia
      3779 Canada
      3633 Italy
      3138 California
      2894 New_York_City
      2745 Pakistan



Data resources

The corpus: finding examples by entities
corpus.show_examples_for_pair('Elon_Musk', 'Tesla_Motors')

The first of 5 examples for Elon_Musk and Tesla_Motors is:
Example(entity_1='Elon_Musk', entity_2='Tesla_Motors', left='space for a while , here ’ s what might be 
launching Americans into space in the next decade . Falcon 9 From sometimes Canadian , South African & 
American', mention_1='Elon Musk', middle='‘ s company Space X . Musk is a PayPal alumni and', 
mention_2='Tesla Motors', right='co-founder - remember that latter company name for future trivia questions 
and/or a remake of Back to the Future . After several successful launches on their Falcon', ...)

corpus.show_examples_for_pair('Tesla_Motors', 'Elon_Musk')

The first of 2 examples for Tesla_Motors and Elon_Musk is:
Example(entity_1='Tesla_Motors', entity_2='Elon_Musk', left='their factory in Hethel . If you want to see 
one in action , Robert Scoble got a ride in the first production model , driven by', mention_1='Tesla 
Motors', middle='chairman', mention_2='Elon Musk', right='. Needless to say he got the whole thing on video 
, and covers a lot of technical details about the car – this is the', ...)



Data resources

The corpus: final observations

The Wikilinks corpus has some flaws. For example, it contains many 
near-dupes — an artefact of the document sampling methodology 
used to construct it.

One thing this corpus does not include is any annotation about 
relations. So, can’t be used for the fully-supervised approach.

To make headway, we need to connect the corpus to a KB!



Data resources

The knowledge base (KB)

Our KB is derived from Freebase (which shut down in 2016 😞).

It contains relational triples of the form (relation, subject, object).

(place_of_birth, Barack_Obama, Honolulu)
(has_spouse, Barack_Obama, Michelle_Obama)
(author, The_Audacity_of_Hope, Barack_Obama)

The relation is one of a handful of predefined constants.

The subject and object are entities identified by Wiki IDs.



Data resources

The knowledge base: the KB class

The KB class holds KBTriples, and allows lookup by entity:

kb = rel_ext.KB(os.path.join(rel_ext_data_home, 'kb.tsv.gz'))

print('Read {0:,} KB triples'.format(len(kb)))

Read 45,884 KB triples

print(kb.kb_triples[0])

KBTriple(rel='contains', sbj='Brickfields', obj='Kuala_Lumpur_Sentral_railway_station')



len(kb.all_relations)

16

Data resources

The knowledge base: data exploration



for rel in kb.all_relations:
    print('{:12d} {}'.format(len(kb.get_triples_for_relation(rel)), rel))

        1702 adjoins
        2671 author
         522 capital
       18681 contains
        3947 film_performance
        1960 founders
         824 genre
        2563 has_sibling
        2994 has_spouse
        2542 is_a
        1598 nationality
        1586 parents
        1097 place_of_birth
         831 place_of_death
        1216 profession
        1150 worked_at

Data resources

The knowledge base: data exploration



for rel in kb.all_relations:
    print(tuple(kb.get_triples_for_relation(rel)[0]))

('adjoins', 'France', 'Spain')
('author', 'Uncle_Silas', 'Sheridan_Le_Fanu')
('capital', 'Panama', 'Panama_City')
('contains', 'Brickfields', 'Kuala_Lumpur_Sentral_railway_station')
('film_performance', 'Colin_Hanks', 'The_Great_Buck_Howard')
('founders', 'Lashkar-e-Taiba', 'Hafiz_Muhammad_Saeed')
('genre', '8_Simple_Rules', 'Sitcom')
('has_sibling', 'Ari_Emanuel', 'Rahm_Emanuel')
('has_spouse', 'Percy_Bysshe_Shelley', 'Mary_Shelley')
('is_a', 'Bhanu_Athaiya', 'Costume_designer')
('nationality', 'Ruben_Rausing', 'Sweden')
('parents', 'Rosanna_Davison', 'Chris_de_Burgh')
('place_of_birth', 'William_Penny_Brookes', 'Much_Wenlock')
('place_of_death', 'Jean_Drapeau', 'Montreal')
('profession', 'Rufus_Wainwright', 'Actor')
('worked_at', 'Brian_Greene', 'Columbia_University')

Data resources

The knowledge base: data exploration



The get_triples_for_entities() method allows easy lookup:

kb.get_triples_for_entities('France', 'Germany')

[KBTriple(rel='adjoins', sbj='France', obj='Germany')]

Data resources

The knowledge base: data exploration

kb.get_triples_for_entities('Germany', 'France')

[KBTriple(rel='adjoins', sbj='Germany', obj='France')]

Relations like adjoins are intuitively symmetric — but there’s no 
guarantee that such inverse triples actually appear in the KB!



Data resources

The knowledge base: data exploration

kb.get_triples_for_entities('Tesla_Motors', 'Elon_Musk')

[KBTriple(rel='founders', sbj='Tesla_Motors', obj='Elon_Musk')]

kb.get_triples_for_entities('Elon_Musk', 'Tesla_Motors')

[KBTriple(rel='worked_at', sbj='Elon_Musk', obj='Tesla_Motors')]

Most relations are intuitively asymmetric:

So it can be the case that one relation holds between X and Y,
and a different relation holds between Y and X.



Data resources

The knowledge base: data exploration

kb.get_triples_for_entities('Cleopatra', 'Ptolemy_XIII_Theos_Philopator')

[KBTriple(rel='has_sibling', sbj='Cleopatra', obj='Ptolemy_XIII_Theos_Philopator'),
 KBTriple(rel='has_spouse', sbj='Cleopatra', obj='Ptolemy_XIII_Theos_Philopator')]

An entity pair can belong to multiple relations.

🙊



The KB contains 40,141 entities
The most common entities are:
       945 England
       786 India
       438 Italy
       414 France
       412 California
       400 Germany
       372 United_Kingdom
       366 Canada
       302 New_York_City
       247 New_York

counter = Counter()
for kbt in kb.kb_triples:
    counter[kbt.sbj] += 1
    counter[kbt.obj] += 1
print('The KB contains {:,} entities'.format(len(counter)))
counts = sorted([(count, key) for key, count in counter.items()], reverse=True)
print('The most common entities are:')
for count, key in counts[:10]:
    print('{:10d} {}'.format(count, key))

Data resources

The knowledge base: data exploration



Data resources

The knowledge base: data exploration

Note, no promise or expectation that the KB is complete!

In the KB:

(founders, Tesla_Motors, Elon_Musk)
(worked_at, Elon_Musk, Tesla_Motors)
(founders, SpaceX, Elon_Musk)

Not in the KB:

(worked_at, Elon_Musk, SpaceX)



Overview

• The task of relation extraction
• Data resources
• Problem formulation
• Evaluation
• Simple baselines
• Directions to explore



Problem formulation

• Inputs and outputs
• Joining the corpus and the KB
• Negative instances
• Multi-label classification



Problem formulation

Inputs and outputs

What is the input to the prediction?
A pair of entity mentions in the context of a sentence?
A pair of entities, independent of any specific context?

What is the output to the prediction?
A single relation (multi-class classification)? 
Or multiple relations (multi-label classification)?



Classifying a pair of entities for the KB? Get features from corpus.

Problem formulation

Joining the corpus and the KB

Classifying a pair of entity mentions in corpus? Get labels from KB.

relation subject object

founder SpaceX Elon_Musk
Elon Musk, co-founder of PayPal, went on to establish SpaceX, ... ✅

Elon Musk announced the latest addition to the SpaceX arsenal ...

You may also be thinking of Elon Musk (founder of SpaceX), who ...

If Space Exploration (SpaceX), founded by Paypal pioneer Elon Musk ...

(Elon_Musk, SpaceX)

1 addition
1

announced
1 by
1 founded
1 founder
1 latest
1 of
1 PayPal
1 pioneer
2 the
1 to



Problem formulation

Joining the corpus and the KB

                                             examples
relation               examples    triples    /triple
--------               --------    -------    -------
adjoins                   58854       1702      34.58
author                    11768       2671       4.41
capital                    7443        522      14.26
contains                  75952      18681       4.07
film_performance           8994       3947       2.28
founders                   5846       1960       2.98
genre                      1576        824       1.91
has_sibling                8525       2563       3.33
has_spouse                12013       2994       4.01
is_a                       5112       2542       2.01
nationality                3403       1598       2.13
parents                    3802       1586       2.40
place_of_birth             1657       1097       1.51
place_of_death             1523        831       1.83
profession                 1851       1216       1.52
worked_at                  3226       1150       2.81

dataset = rel_ext.Dataset(corpus, kb)
dataset.count_examples()



Problem formulation

Negative instances

To train a classifier, we also need negative instances!

So, find corpus examples containing pairs of entities not related in KB

Found 247,405 unrelated pairs, including:
    ('Inglourious_Basterds', 'Christoph_Waltz')
    ('NBCUniversal', 'E!')
    ('The_Beatles', 'Keith_Moon')
    ('Patrick_Lussier', 'Nicolas_Cage')
    ('Townes_Van_Zandt', 'Johnny_Cash')
    ('UAE', 'Italy')
    ('Arshile_Gorky', 'Hans_Hofmann')
    ('Sandra_Bullock', 'Jae_Head')

unrelated_pairs = dataset.find_unrelated_pairs()
print('Found {0:,} unrelated pairs, including:'.format(len(unrelated_pairs)))
for pair in list(unrelated_pairs)[:10]:
    print('   ', pair)



Problem formulation

Multi-label classification

Many entity pairs belong to more than one relation:

The most common relation combinations are:
      1216 ('is_a', 'profession')
       403 ('capital', 'contains')
       143 ('place_of_birth', 'place_of_death')
        61 ('nationality', 'place_of_birth')
        11 ('adjoins', 'contains')
         9 ('nationality', 'place_of_death')
         7 ('has_sibling', 'has_spouse')
         3 ('nationality', 'place_of_birth', 'place_of_death')
         2 ('parents', 'worked_at')

dataset.count_relation_combinations()

This suggests formulating our problem as multi-label classification.



Problem formulation

Multi-label classification: binary relevance

Many possible approaches to multi-label classification.

The most obvious is the binary relevance method:
just train a separate binary classifier for each label.

Disadvantage: fails to exploit correlations between labels.

Advantage: simple.

(Pericles, Athens)

has_sibling

place_of_birth

place_of_death

✅

❌

✅



Problem formulation

Binary classification of KB triples

So here’s the problem formulation we’ve arrived at:

Input: an entity pair and a candidate relation
Output: does the entity pair belong to the relation?

In other words: binary classification of KB triples!

That is, given a candidate KB triple, do we predict that it is valid?

(worked_at, Elon_Musk, SpaceX) ?



Overview

• The task of relation extraction
• Data resources
• Problem formulation
• Evaluation
• Simple baselines
• Directions to explore



Evaluation

• Test-driven development
• Splitting the data
• Precision and recall
• F-measure
• Micro-averaging and macro-averaging
• Figure of merit



Evaluation

Test-driven development

Good software engineering uses test-driven development:

First, write unit tests that check whether the code works.

Then, start writing the code, iterating until it passes the tests.

Good model engineering can use a similar paradigm:

First, build a test harness that performs a quantitative evaluation.

Then, start building models, hill-climbing on your evaluation.



Evaluation

Splitting the data

As usual, we’ll want to partition our data into multiple splits:

Complication: we need to split both corpus and KB.

We want relations to span splits, so that we can assess our success in 
learning how a given relation is expressed in natural language.

But ideally, we’d like the splits to partition the entities, to avoid leaks.

Tiny 1%

Train 74%

Dev 25% 

Test ?



Evaluation

Splitting the data: the ideal

New World KB

relation subject object

founder SpaceX Elon_Musk

founder Apple Steve_Jobs

founder Microsoft Bill_Gates

Elon Musk, co-founder of PayPal, went on 
to establish SpaceX, one of the most ...

Bill Gates recently talked about Apple 
co-founder Steve Jobs in a CNN  interview.

Microsoft co-founder Bill Gates is stepping 
down from the company's board ...

New World Corpus

Spotify CEO and co-founder Daniel Ek 
doesn't do many interviews. So when he ...

Alibaba founder and CEO Jack Ma, who is 
not related to Pony Ma, said last year ...

Tencent founder Pony Ma forged a 
strategic partnership with Spotify over ...

Old World Corpus

Old World KB

relation subject object

founder Spotify Daniel_Ek

founder Tencent Pony_Ma

founder Alibaba Jack_Ma

train test



Evaluation

Splitting the data: the achievable

But the world is strongly entangled, and the ideal is hard to achieve.

Instead, we’ll approximate the ideal:

● First, split KB triples by subject entity.

● Then, split corpus examples:
○ If entity_1 is in a split, assign example to that split.
○ Or, if entity_2 is in a split, assign example to that split.
○ Otherwise, assign example to split randomly.



{'tiny': Corpus with 3,474 examples; KB with 445 triples,
 'train': Corpus with 249,003 examples; KB with 34,229 triples,
 'dev': Corpus with 79,219 examples; KB with 11,210 triples,
 'all': Corpus with 331,696 examples; KB with 45,884 triples}

splits = dataset.build_splits(
    split_names=['tiny', 'train', 'dev'],
    split_fracs=[0.01, 0.74, 0.25],
    seed=1)

splits

Evaluation

Splitting the data: build_splits()



Evaluation

Precision and recall

Precision and recall are the standard metrics for binary classification.

predicted

F T

actual
F 86 2 88

T 9 3 12

95 5 100

recall  = =  25%
12

3

accuracy  = =  89%
100

89

precision  = =  60%
5

3



Evaluation

F1

The F1 score combines precision and recall using the harmonic mean.

predicted

F T

actual
F 86 2 88

T 9 3 12

95 5 100

recall  = =  25%
12

3

precision  = =  60%
5

3
F1  = =  35.3%

1/P + 1/R

2



Evaluation

F-measure

F-measure is a weighted combination of precision and recall.

Fβ  =
1/P + β2/R

1 + β2

P 0.800 high precision

R 0.200 low recall

F1 0.320 equal weight to precision and recall

F0.5 0.500 more weight to precision

F2 0.235 more weight to recall

For relation extraction, precision probably matters more than recall.
So, let’s use F0.5 as our evaluation metric.



Evaluation

Micro-averaging and macro-averaging

Micro-averaging gives equal weight to each problem instance.
Macro-averaging gives equal weight to each relation.

relation instances F-score

adjoins 100 0.700

author 100 0.800

contains 1000 0.900

micro-average 0.875

macro-average 0.800

We’ll use macro-averaging, so that we don’t overweight large relations.



Evaluation

Figure of merit

Your “figure of merit” is the one metric — a single number —
you’re seeking to optimize in your iterative development process.

We’re choosing macro-averaged F0.5 as our figure of merit.



Overview

• The task of relation extraction
• Data resources
• Problem formulation
• Evaluation
• Simple baselines
• Directions to explore



Simple baselines

• Random guessing
• Common fixed phrases
• A simple classifier



Simple baselines

Random guessing

relation              precision     recall    f-score    support       size
------------------    ---------  ---------  ---------  ---------  ---------
adjoins                   0.062      0.543      0.075        407       7057
author                    0.095      0.519      0.113        657       7307
capital                   0.019      0.508      0.023        126       6776
contains                  0.402      0.501      0.419       4487      11137
film_performance          0.127      0.494      0.149        984       7634
founders                  0.064      0.484      0.078        469       7119
genre                     0.031      0.507      0.038        205       6855
has_sibling               0.085      0.494      0.102        625       7275
has_spouse                0.098      0.481      0.116        754       7404
is_a                      0.085      0.503      0.102        618       7268
nationality               0.062      0.567      0.076        386       7036
parents                   0.055      0.513      0.068        390       7040
place_of_birth            0.045      0.550      0.055        282       6932
place_of_death            0.030      0.502      0.037        209       6859
profession                0.044      0.500      0.054        308       6958
worked_at                 0.041      0.472      0.050        303       6953
------------------    ---------  ---------  ---------  ---------  ---------
macro-average             0.084      0.509      0.097      11210     117610

def random_classifier (xs):
    return [random.random() < 0.5 for x in xs]

rel_ext.evaluate(splits, random_classifier, test_split ='dev')

Recall is generally around 0.50.

Precision is generally poor.

F-score is generally poor.

(But look at contains !)

The number to beat: 0.097.

It’s good practice to start by 
evaluating a weak baseline like 
random guessing.



Simple baselines

Common fixed phrases

Let’s write code to find the most common middles for each relation.

def find_common_middles (split, top_k =3, show_output =False):
    corpus = split.corpus
    kb = split.kb
    mids_by_rel = {
        'fwd': defaultdict( lambda: defaultdict( int)),
        'rev': defaultdict( lambda: defaultdict( int))}
    for rel in kb.all_relations:
        for kbt in kb.get_triples_for_relation(rel):
            for ex in corpus.get_examples_for_entities(kbt.sbj, kbt.obj):
                mids_by_rel[ 'fwd'][rel][ex.middle] += 1
            for ex in corpus.get_examples_for_entities(kbt.obj, kbt.sbj):
                mids_by_rel[ 'rev'][rel][ex.middle] += 1
    def most_frequent (mid_counter):
        return sorted ([(cnt, mid) for mid, cnt in mid_counter.items()], reverse =True)[:top_k]
    for rel in kb.all_relations:
        for dir in ['fwd', 'rev']:
            top = most_frequent(mids_by_rel[dir][rel])
            if show_output:
                for cnt, mid in top:
                    print('{:20s} {:5s} {:10d} {:s}' .format(rel, dir, cnt, mid))
            mids_by_rel[dir][rel] = set([mid for cnt, mid in top])
    return mids_by_rel



Simple baselines

Common fixed phrases

...
film_performance     fwd          283 in
film_performance     fwd          151 's
film_performance     fwd           96 film
film_performance     rev          183 with
film_performance     rev          128 , starring
film_performance     rev           97 opposite
...
has_sibling          fwd         1115 and
has_sibling          fwd          545 ,
has_sibling          fwd          125 , and
has_sibling          rev          676 and
has_sibling          rev          371 ,
has_sibling          rev           68 , and
...
parents              fwd           64 , son of
parents              fwd           45 and
parents              fwd           42 ,
parents              rev          187 and
parents              rev          151 ,
parents              rev           42 and his son
...

_ = find_common_middles(splits[ 'train'], show_output =True)



Simple baselines

Common fixed phrases

relation              precision     recall    f-score    support       size
------------------    ---------  ---------  ---------  ---------  ---------
adjoins                   0.272      0.285      0.274        407       7057
author                    0.325      0.078      0.198        657       7307
capital                   0.089      0.159      0.097        126       6776
contains                  0.582      0.064      0.222       4487      11137
film_performance          0.455      0.005      0.024        984       7634
founders                  0.146      0.038      0.094        469       7119
genre                     0.000      0.000      0.000        205       6855
has_sibling               0.261      0.176      0.238        625       7275
has_spouse                0.349      0.211      0.309        754       7404
is_a                      0.068      0.024      0.050        618       7268
nationality               0.103      0.036      0.075        386       7036
parents                   0.081      0.067      0.077        390       7040
place_of_birth            0.016      0.007      0.013        282       6932
place_of_death            0.024      0.014      0.021        209       6859
profession                0.039      0.039      0.039        308       6958
worked_at                 0.050      0.020      0.038        303       6953
------------------    ---------  ---------  ---------  ---------  ---------
macro-average             0.179      0.076      0.111      11210     117610

rel_ext.evaluate(splits, train_top_k_middles_classifier())

Recall is much worse across the 
board.

But precision and F-score have 
improved for many relations, 
especially adjoins , author, 
has_sibling , and has_spouse .

The new number to beat: 0.111.



Simple baselines

A simple classifier: bag-of-words features
def simple_bag_of_words_featurizer(kbt, corpus, feature_counter):
    for ex in corpus.get_examples_for_entities(kbt.sbj, kbt.obj):
        for word in ex.middle.split(' '):
            feature_counter[word] += 1
    for ex in corpus.get_examples_for_entities(kbt.obj, kbt.sbj):
        for word in ex.middle.split(' '):
            feature_counter[word] += 1
    return feature_counter



Simple baselines

A simple classifier: bag-of-words features

KBTriple(rel='contains', sbj='Brickfields', obj='Kuala_Lumpur_Sentral_railway_station')

kbt = kb.kb_triples[ 0]

kbt

'it was just a quick 10-minute walk to'

corpus.get_examples_for_entities(kbt.sbj, kbt.obj)[ 0].middle

Counter({'it': 1,
         'was': 1,
         'just': 1,
         'a': 1,
         'quick': 1,
         '10-minute': 1,
         'walk': 1,
         'to': 2,
         'the': 1})

simple_bag_of_words_featurizer(kb.kb_triples[ 0], corpus, Counter())



Simple baselines

A simple classifier: training a model
train_result = rel_ext.train_models(
    splits, 
    featurizers =[simple_bag_of_words_featurizer],
    split_name ='train',
    model_factory=(lambda: LogisticRegression(fit_intercept =True, solver='liblinear' )))



Simple baselines

A simple classifier: making predictions
predictions, true_labels = rel_ext.predict(
    splits, train_result, split_name ='dev')



Simple baselines

A simple classifier: evaluating predictions

relation              precision     recall    f-score    support       size
------------------    ---------  ---------  ---------  ---------  ---------
adjoins                   0.832      0.378      0.671        407       7057
author                    0.779      0.525      0.710        657       7307
capital                   0.638      0.294      0.517        126       6776
contains                  0.783      0.608      0.740       4487      11137
film_performance          0.796      0.591      0.745        984       7634
founders                  0.783      0.384      0.648        469       7119
genre                     0.654      0.166      0.412        205       6855
has_sibling               0.865      0.246      0.576        625       7275
has_spouse                0.878      0.342      0.668        754       7404
is_a                      0.731      0.238      0.517        618       7268
nationality               0.555      0.171      0.383        386       7036
parents                   0.862      0.544      0.771        390       7040
place_of_birth            0.637      0.206      0.449        282       6932
place_of_death            0.512      0.100      0.282        209       6859
profession                0.716      0.205      0.477        308       6958
worked_at                 0.688      0.254      0.513        303       6953
------------------    ---------  ---------  ---------  ---------  ---------
macro-average             0.732      0.328      0.567      11210     117610

rel_ext.evaluate_predictions(predictions, true_labels)



Simple baselines

A simple classifier: running experiments

relation              precision     recall    f-score    support       size
------------------    ---------  ---------  ---------  ---------  ---------
adjoins                   0.832      0.378      0.671        407       7057
author                    0.779      0.525      0.710        657       7307
capital                   0.638      0.294      0.517        126       6776
contains                  0.783      0.608      0.740       4487      11137
film_performance          0.796      0.591      0.745        984       7634
founders                  0.783      0.384      0.648        469       7119
genre                     0.654      0.166      0.412        205       6855
has_sibling               0.865      0.246      0.576        625       7275
has_spouse                0.878      0.342      0.668        754       7404
is_a                      0.731      0.238      0.517        618       7268
nationality               0.555      0.171      0.383        386       7036
parents                   0.862      0.544      0.771        390       7040
place_of_birth            0.637      0.206      0.449        282       6932
place_of_death            0.512      0.100      0.282        209       6859
profession                0.716      0.205      0.477        308       6958
worked_at                 0.688      0.254      0.513        303       6953
------------------    ---------  ---------  ---------  ---------  ---------
macro-average             0.732      0.328      0.567      11210     117610

_ = rel_ext.experiment(
    splits,
    featurizers =[simple_bag_of_words_featurizer])



Overview

• The task of relation extraction
• Data resources
• Problem formulation
• Evaluation
• Simple baselines
• Directions to explore



Directions to explore

• Examining the trained models
• Discovering new relation instances
• Enhancing the model



Directions to explore

Examining the trained models

Highest and lowest feature weights for relation author:

     3.055 author
     3.032 books
     2.342 by
     ..... .....
    -2.002 directed
    -2.019 or
    -2.211 poetry

Highest and lowest feature weights for relation  
film_performance:

     4.004 starring
     3.731 alongside
     3.199 opposite
     ..... .....
    -1.702 then
    -1.840 She
    -1.889 Genghis

rel_ext.examine_model_weights(train_result)

Highest and lowest feature weights for relation adjoins:

     2.511 Córdoba
     2.467 Taluks
     2.434 Valais
     ..... .....
    -1.143 for
    -1.186 Egypt
    -1.277 America

Highest and lowest feature weights for relation has_spouse:

     5.319 wife
     4.652 married
     4.617 husband
     ..... .....
    -1.528 between
    -1.559 MTV
    -1.599 Terri



Directions to explore

Discovering new relation instances

Highest probability examples for relation adjoins:

     1.000 KBTriple(rel='adjoins', sbj='Canada', obj='Vancouver')
     1.000 KBTriple(rel='adjoins', sbj='Vancouver', obj='Canada')
     1.000 KBTriple(rel='adjoins', sbj='Australia', obj='Sydney')
     1.000 KBTriple(rel='adjoins', sbj='Sydney', obj='Australia')
     1.000 KBTriple(rel='adjoins', sbj='Mexico', obj='Atlantic_Ocean')
     1.000 KBTriple(rel='adjoins', sbj='Atlantic_Ocean', obj='Mexico')
     1.000 KBTriple(rel='adjoins', sbj='Dubai', obj='United_Arab_Emirates')
     1.000 KBTriple(rel='adjoins', sbj='United_Arab_Emirates', obj='Dubai')
     1.000 KBTriple(rel='adjoins', sbj='Sydney', obj='New_South_Wales')
     1.000 KBTriple(rel='adjoins', sbj='New_South_Wales', obj='Sydney')

rel_ext.find_new_relation_instances(
    dataset,
    featurizers =[simple_bag_of_words_featurizer])



Directions to explore

Discovering new relation instances

Highest probability examples for relation author:

     1.000 KBTriple(rel='author', sbj='Oliver_Twist', obj='Charles_Dickens')
     1.000 KBTriple(rel='author', sbj='Jane_Austen', obj='Pride_and_Prejudice')
     1.000 KBTriple(rel='author', sbj='Iliad', obj='Homer')
     1.000 KBTriple(rel='author', sbj='Divine_Comedy', obj='Dante_Alighieri')
     1.000 KBTriple(rel='author', sbj='Pride_and_Prejudice', obj='Jane_Austen')
     1.000 KBTriple(rel='author', sbj="Euclid's_Elements", obj='Euclid')
     1.000 KBTriple(rel='author', sbj='Aldous_Huxley', obj='The_Doors_of_Perception')
     1.000 KBTriple(rel='author', sbj="Uncle_Tom's_Cabin", obj='Harriet_Beecher_Stowe')
     1.000 KBTriple(rel='author', sbj='Ray_Bradbury', obj='Fahrenheit_451')
     1.000 KBTriple(rel='author', sbj='A_Christmas_Carol', obj='Charles_Dickens')

rel_ext.find_new_relation_instances(
    dataset,
    featurizers =[simple_bag_of_words_featurizer])



Directions to explore

Discovering new relation instances

Highest probability examples for relation capital:

     1.000 KBTriple(rel='capital', sbj='Delhi', obj='India')
     1.000 KBTriple(rel='capital', sbj='Bangladesh', obj='Dhaka')
     1.000 KBTriple(rel='capital', sbj='India', obj='Delhi')
     1.000 KBTriple(rel='capital', sbj='Lucknow', obj='Uttar_Pradesh')
     1.000 KBTriple(rel='capital', sbj='Chengdu', obj='Sichuan')
     1.000 KBTriple(rel='capital', sbj='Dhaka', obj='Bangladesh')
     1.000 KBTriple(rel='capital', sbj='Uttar_Pradesh', obj='Lucknow')
     1.000 KBTriple(rel='capital', sbj='Sichuan', obj='Chengdu')
     1.000 KBTriple(rel='capital', sbj='Bandung', obj='West_Java')
     1.000 KBTriple(rel='capital', sbj='West_Java', obj='Bandung')

rel_ext.find_new_relation_instances(
    dataset,
    featurizers =[simple_bag_of_words_featurizer])



Directions to explore

Discovering new relation instances

Highest probability examples for relation worked_at:

     1.000 KBTriple(rel='worked_at', sbj='William_C._Durant', obj='Louis_Chevrolet')
     1.000 KBTriple(rel='worked_at', sbj='Louis_Chevrolet', obj='William_C._Durant')
     1.000 KBTriple(rel='worked_at', sbj='Iliad', obj='Homer')
     1.000 KBTriple(rel='worked_at', sbj='Homer', obj='Iliad')
     1.000 KBTriple(rel='worked_at', sbj='Marvel_Comics', obj='Stan_Lee')
     1.000 KBTriple(rel='worked_at', sbj='Stan_Lee', obj='Marvel_Comics')
     1.000 KBTriple(rel='worked_at', sbj='Mongol_Empire', obj='Genghis_Khan')
     1.000 KBTriple(rel='worked_at', sbj='Genghis_Khan', obj='Mongol_Empire')
     1.000 KBTriple(rel='worked_at', sbj='Comic_book', obj='Marvel_Comics')
     1.000 KBTriple(rel='worked_at', sbj='Marvel_Comics', obj='Comic_book')

rel_ext.find_new_relation_instances(
    dataset,
    featurizers =[simple_bag_of_words_featurizer])



Directions to explore

Error analysis

Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe
Founded by | Louis Chevrolet | and ousted GM founder | William C. Durant | on Novembe

exs = dataset.corpus.get_examples_for_entities( 'Louis_Chevrolet' , 'William_C._Durant' )
for ex in exs:
    print(' | '.join((ex.left[ -10:], ex.mention_1, ex.middle, ex.mention_2, ex.right[: 10])))

model = train_result[ 'models']['worked_at' ]
vectorizer = train_result[ 'vectorizer' ]
print(model.coef_[0][vectorizer.vocabulary_[ 'founder']])

2.0528435038145383



mids = defaultdict(int)
for ex in dataset.corpus.get_examples_for_entities( 'Homer', 'Iliad'):
    mids[ex.middle] += 1
for cnt, mid in sorted([(cnt, mid) for mid, cnt in mids.items()], reverse =True)[:5]:
    print('{:10d} {:s}' .format(cnt, mid))

Directions to explore

Error analysis

118

print(len(dataset.corpus.get_examples_for_entities( 'Homer', 'Iliad')))

        51 's
        13 ‘ s
         4 , and in particular the
         4 ,
         3 in the

model = train_result[ 'models']['worked_at' ]
vectorizer = train_result[ 'vectorizer' ]
print(model.coef_[0][vectorizer.vocabulary_[ "'s"]])

0.5801433006163413



Directions to explore

Enhancing the model: feature representations

• Word embeddings
• Directional bag-of-words
• N-grams
• POS tags
• WordNet synsets
• Syntactic features
• Features based on entity mentions
• Features based on left and right



Directions to explore

Enhancing the model: model types

• Support vector machines (SVMs)
• Feed-forward neural networks
• LSTMs
• Transformers


