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CS224u: hybrid, asynchronous, hands-on

• Core course content in screencasts on YouTube and linked from the
homepage, with accompanying Juypter notebook for hands-on work.

• A series of special events: conversations with prominent NLU
researchers (details later in this lecture). Mostly on Zoom. Attend
live or listen later.

• Other class meetings: optional open discussions and/or spaces for
you to work, with the teaching team there to help. Open to mixing
in-classroom and Zoom formats.

• Office hours offered in person and on Zoom. Details to come.

• Continuous evaluation: three assignments, four online quizzes, and
project work.
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Plan for today

1. A golden age for NLU
2. A peek behind the curtain
3. Underlying challenges
4. Assignments, bake-offs, and projects
5. Course mechanics
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A brief history of NLU approaches

• McCarthy et al. (1955): “We think that a significant advance can be
made in one or more of these problems if a carefully selected group
of scientists work on it together for a summer.”
• 1960s: Pattern-matching with small rule-sets, oriented towards NLU.
• 1970–80s: Linguistically rich, logic-driven, grounded systems

(LLGs); restricted applications.
• Mid-1990s: Machine learning revolution in NLP leads to a decrease

in NLU work.
• Late 2000s: LLGs re-emerge, now with learning.
• Mid-2010s: NLU returns to center stage, with deep learning the

most prevalent set of techniques. LLGs go into decline.
• 2020s: Grounding is back, and rich logical and linguistic structure is

emergent.
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Watson wins Jeopardy (2011)
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QANTA beats Ken Jennings (2015)
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Artificial assistants
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The promise of these artificial assistants

You: Any good burger joints around here?
Siri: I found a number of burger restaurants

near you.
You: Hmm. How about tacos?

Apple: [Siri remembers that you asked about
restaurants. so it will look for Mexican
restaurants in the neighborhood. And Siri
is proactive, so it will question you until it
finds what you’re looking for.]
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Text generation

https://www.copy.ai

https://www.wordtune.com/
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Image captioning
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Sutskever et al. 2014
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Search, and way beyond search
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Search, and way beyond searchSemantic query parsing at Google

A growing proportion of queries require semantic interpretation.
Conventional keyword-based retrieval does not suffice! 

how to bike to my office

(TravelQuery
  (Destination /m/0d6lp)
  (Mode BIKE))

text my wife on my way

(SendMessage
  (Recipient 0x31cbf492)
  (MessageType SMS)
  (Subject "on my way"))

weather friday austin tx

(WeatherQuery
  (Location /m/0vzm)
  (Date 2013-12-13))

angelina jolie net worth

(FactoidQuery
  (Entity /m/0f4vbz)
  (Attribute /person/net_worth))

is REI open on sunday

(LocalQuery
  (QueryType OPENING_HOURS)
  (Location /m/02nx4d)
  (Date 2013-12-15))

play sunny by boney m

(PlayMedia
  (MediaType MUSIC)
  (SongTitle "sunny")
  (MusicArtist /m/017mh))
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Benchmarks saturate faster than ever
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Stanford Question Answering Dataset (SQuAD)

...
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Rajpurkar et al. 2016
https://rajpurkar.github.io/SQuAD-explorer/
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MultiNLI
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Williams et al. 2018
https://paperswithcode.com/sota/natural-language-inference-on-multinli
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Watson gets confused

• Answer: Grasshoppers eat it.
• Watson: What is kosher
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SIRI on The Colbert Show

Colbert: For the love of God, the cameras are on,
give me something?

Siri: What kind of place are you looking for?
Camera stores or churches?
[…]

Colbert: I don’t want to search for anything! I want
to write the show!

Siri: Searching the Web for “search for
anything. I want to write the shuffle.”
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Worrisome text generation with GPT-3

@yoavgo

www.nabla.com/
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https://twitter.com/yoavgo/status/1284192413477670912
https://www.nabla.com/blog/gpt-3/
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Un-human image captioning
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Misleading automatic curation
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https://searchengineland.com

https://searchengineland.com
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The United Airlines “bankruptcy”

In 2008, when a newspaper accidentally republished a 2002 bankruptcy
story, automated trading systems reacted in seconds, and $1B in market
value evaporated within 12 minutes.
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SQuAD adversarial testing

Passage
Peyton Manning became the first quarterback ever to lead two different
teams to multiple Super Bowls. He is also the oldest quarterback ever to
play in a Super Bowl at age 39. The past record was held by John Elway,
who led the Broncos to victory in Super Bowl XXXIII at age 38 and is
currently Denver’s Executive Vice President of Football Operations and
General Manager.

Question
What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer
John Elway

Model: Leland Stanford

26 / 56

Jia and Liang 2017
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SQuAD adversarial testing
System Original Adversarial

ReasoNet-E 81.1 39.4
SEDT-E 80.1 35.0
BiDAF-E 80.0 34.2
Mnemonic-E 79.1 46.2
Ruminating 78.8 37.4
jNet 78.6 37.9
Mnemonic-S 78.5 46.6
ReasoNet-S 78.2 39.4
MPCM-S 77.0 40.3
SEDT-S 76.9 33.9
RaSOR 76.2 39.5
BiDAF-S 75.5 34.3
Match-E 75.4 29.4
Match-S 71.4 27.3
DCR 69.4 37.8
Logistic 50.4 23.2
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SQuAD adversarial testing
System Original Rank Adversarial Rank

ReasoNet-E 1 5
SEDT-E 2 10
BiDAF-E 3 12
Mnemonic-E 4 2
Ruminating 5 9
jNet 6 7
Mnemonic-S 7 1
ReasoNet-S 8 5
MPCM-S 9 3
SEDT-S 10 13
RaSOR 11 4
BiDAF-S 12 11
Match-E 13 14
Match-S 14 15
DCR 15 8
Logistic 16 16
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NLI adversarial testing

Premise Relation Hypothesis

A turtle danced. entails A turtle moved.

Every reptile danced. neutral A turtle ate.

Some turtles walk. contradicts No turtles move.
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NLI adversarial testing

Premise Relation Hypothesis

Train A little girl kneeling
in the dirt crying.

entails A little girl is very
sad.

Adversarial
entails A little girl is very

unhappy.
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NLI adversarial testing

Premise Relation Hypothesis

Train
A woman is pulling a
child on a sled in the
snow.

entails

A child is sitting on a
sled in the snow.

Adversarial
A child is pulling a
woman on a sled in
the snow.

neutral

27 / 56

Nie et al. 2019



Welcome A golden age for NLU A peek behind the curtain Underlying challenges Assignments Course mechanics Wrap-up

NLI adversarial testing

Off-the-shelf RoBERTa fine-tuned on MultiNLI:

precision recall F1 N

contradiction 0.99 0.97 0.98 7,164
entailment 0.86 1.00 0.92 982
neutral 0.15 0.15 0.15 14
Macro avg. 0.67 0.71 0.68 8,193
Accuracy 0.97 8,193
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Two perspectives
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Underlying challenges
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Behind the benchmarks saturation
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Benchmark limitations
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Limited assessments

Leaderboards today
• One-dimensional
• Largely insensitive to context (use-case)
• Terms set by the research community
• Build around machine tasks

Leaderboards in the future
• High-dimensional and fluid
• Highly sensitive to context (use-case)
• Terms set by the stakeholders
• Build around human tasks
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Bias perpetuation
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Ever larger models
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Diminishing returns for large models?Published as a conference paper at ICLR 2020

Figure 1: Replaced token detection pre-training consistently outperforms masked language model
pre-training given the same compute budget. The left figure is a zoomed-in view of the dashed box.

approach is reminiscent of training the discriminator of a GAN, our method is not adversarial in that
the generator producing corrupted tokens is trained with maximum likelihood due to the difficulty
of applying GANs to text (Caccia et al., 2018).

We call our approach ELECTRA1 for “Efficiently Learning an Encoder that Classifies Token Re-
placements Accurately.” As in prior work, we apply it to pre-train Transformer text encoders
(Vaswani et al., 2017) that can be fine-tuned on downstream tasks. Through a series of ablations, we
show that learning from all input positions causes ELECTRA to train much faster than BERT. We
also show ELECTRA achieves higher accuracy on downstream tasks when fully trained.

Most current pre-training methods require large amounts of compute to be effective, raising con-
cerns about their cost and accessibility. Since pre-training with more compute almost always re-
sults in better downstream accuracies, we argue an important consideration for pre-training methods
should be compute efficiency as well as absolute downstream performance. From this viewpoint,
we train ELECTRA models of various sizes and evaluate their downstream performance vs. their
compute requirement. In particular, we run experiments on the GLUE natural language understand-
ing benchmark (Wang et al., 2019) and SQuAD question answering benchmark (Rajpurkar et al.,
2016). ELECTRA substantially outperforms MLM-based methods such as BERT and XLNet given
the same model size, data, and compute (see Figure 1). For example, we build an ELECTRA-Small
model that can be trained on 1 GPU in 4 days.2 ELECTRA-Small outperforms a comparably small
BERT model by 5 points on GLUE, and even outperforms the much larger GPT model (Radford
et al., 2018). Our approach also works well at large scale, where we train an ELECTRA-Large
model that performs comparably to RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019), de-
spite having fewer parameters and using 1/4 of the compute for training. Training ELECTRA-Large
further results in an even stronger model that outperforms ALBERT (Lan et al., 2019) on GLUE
and sets a new state-of-the-art for SQuAD 2.0. Taken together, our results indicate that the discrim-
inative task of distinguishing real data from challenging negative samples is more compute-efficient
and parameter-efficient than existing generative approaches for language representation learning.

2 METHOD

We first describe the replaced token detection pre-training task; see Figure 2 for an overview. We
suggest and evaluate several modeling improvements for this method in Section 3.2.

1Code and pre-trained weights will be released at https://github.com/google-research/
electra

2It has 1/20th the parameters and requires 1/135th the pre-training compute of BERT-Large.

2
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Diminishing returns for large models?
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Why is this all so difficult?

The promise of conversational agents

Where is Black Panther playing in Mountain View?

Black Panther is playing at the Century 16 Theater.

When is it playing there?

It’s playing at 2pm, 5pm, and 8pm.

OK. I’d like 1 adult and 2 children for the first show.
How much would that cost?

Need domain knowledge, discourse knowledge, world knowledge
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Our perspective

• This is the most exciting moment ever in history for doing NLU!

• In academia, there’s been a resurgence of interest in NLU (after a
long winter).

• In industry, there’s been an explosion in products and services that
rely on NLU.

• Systems are impressive, but show their weaknesses quickly.

• NLU is far from solved – big breakthroughs lie in the future.
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Assignments, bakeoffs, and projects
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5. Course mechanics
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High-level summary
Topics

1. Vector-space models
2. Sentiment analysis
3. Contextual representations
4. Grounded language generation
5. Natural language inference
6. NLU and information retrieval
7. Adversarial testing
8. Model introspection
9. Methods and metrics

Assignments/bakeoffs

1. Word relatedness
2. Cross-domain sentiment

analysis
3. Generating color descriptions

in context
OR
Few-shot open-domain
question answering

Final projects

1. Literature review
2. Experiment protocol
3. Final paper
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Assignments and bakeoffs

1. There are three regular assignments. (For the third, you can choose
between two options.)

2. Each assignment culminates in a bakeoff: an informal competition in
which you enter your original model.

3. The assignments ask you to build baseline systems to inform your
own model design, and to build your original model.

4. The assignments earn you 9 of the 10 points. All bakeoff entries
earn the additional point.

5. Winning bakeoff entries earn extra credit.

6. Rationale for all this: exemplify best practices for NLU projects. (Let
us know where we’re not living up to this!)
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Assign/Bakeoff: Word relatedness

:) :/ :D :| ;p abandon abc ability able · · ·

:) 74 1 0 0 0 1 0 2 2
:/ 1 306 0 0 0 0 0 0 17
:D 0 0 16 0 0 0 6 1 1
:| 0 0 0 120 0 0 0 1 9
;p 0 0 0 0 516286 0 0 0 0 · · ·
abandon 1 0 0 0 0 370 24 65 235
abc 0 0 6 0 0 24 7948 77 291
ability 2 0 1 1 0 65 77 4820 1807
able 2 17 1 9 0 235 291 1807 14328
...

...
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Assign/Bakeoff: Word relatedness

Reweighting

probabilities
length norm.
TF-IDF
O/E
PMI
Positive PMI

...

Dimensionality
reduction

LSA
GloVe
word2vec
autoencoders

...

Vector
comparison

Euclidean
Cosine
Dice
KL

...
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Assign/Bakeoff: Word relatedness

Reweighting

probabilities
length norm.
TF-IDF
O/E
PMI
Positive PMI

...

Dimensionality
reduction

LSA
GloVe
word2vec
autoencoders

...

Vector
comparison

Euclidean
Cosine
Dice
KL

...

(and BERT too, if you wish!)
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Assign/Bakeoff: Word relatedness

sun sunlight 0.9
automobile car 0.95
river water 0.8
food gull 0.4
gate hotel 0.45
dessert head 0.01
born hockey 0.01

abandon soldier ?
about wandering ?
abstract moon ?
abstract rally ?
abundance wealth ?
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Assign/Bakeoff: Cross-domain sentiment

• Stanford Sentiment Treebank (movie review sentences) with
positive/negative/neutral labels (SST-3)
• Restaurant Review Sentences (RRS): A new (unreleased) dev/test

split for positive/negative/neutral sentiment

Train

SST-3 train
...

Dev

SST-3 dev
RRS dev

...

Bakeoff test

SST-3 test
RRS test
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Assign/Bakeoff: Contextual color describers

Context Utterance

xxxx xxxx xxxx blue

xxxx xxxx xxxx The darker blue one

xxxx xxxx xxxx dull pink not the super
bright one

xxxx xxxx xxxx Purple

xxxx xxxx xxxx blue

43 / 56
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Assign/Bakeoff: Contextual color describers

DecoderEncoder

target light<s> blue

x1 x37 x11

h1 h2 h3

w2 w3 w4

distractordistractor

43 / 56

Monroe et al. 2017, 2018
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Assign/Bakeoff: Few-shot OpenQA

OOD gold examples

Title: Bert
Background: Bert is a Muppet who is lives with Ernie.
Q: Who is Bert?
A: Bert is a Muppet.

Title: Phonology
Background: Phonology is the study of linguistic sound
systems.
Q: What is phonology?
A: the study of linguistic sound systems

Retrieved with ColBERT
Title: Pragmatics
Background: Pragmatics is the study of language use.

Given Q: What is pragmatics?

Pure language model A: The branch of linguistics focused on how meaning
arises in context.
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A note on grading original systems

All the homeworks culminate in an “original system” question that
becomes your bakeoff entry. Here are the basic guidelines we will adopt
for grading this work

1. Any system that performs extremely well on the bakeoff data will be
given full credit, even systems that are very simple. We can’t argue
with success according to our own metrics!

2. Systems that are very creative and well-motivated will be given full
credit even if they do not perform well on the bakeoff data. We
want to encourage creative exploration!

3. Other systems will receive less than full credit, based on the
judgment of the teaching team. The specific criteria will vary based
on the nature of the assignment. Point deductions will be justified in
feedback.
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Project work

1. The second half of the course is devoted to projects.
2. The associated lectures, notebooks, and readings are focused on

methods, metrics, and best practices.
3. The assignments are all project-related; details are available at the

course website:
a. Literature review
b. Experiment protocol
c. Final paper

4. Exceptional final projects from past years (access restricted):
https://web.stanford.edu/class/cs224u/restricted/
past-final-projects/

5. Lots of guidance on projects:
https://github.com/cgpotts/cs224u/blob/master/projects.md
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Course mechanics

1. A golden age for NLU
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Crucial course locations

Website
https://web.stanford.edu/class/cs224u/

Code repository
https://github.com/cgpotts/cs224u/

Discussion forum
https://edstem.org/us/courses/21353/discussion/

Gradescope
https://www.gradescope.com/courses/381598

Teaching team
cs224u-spr2122-staff@lists.stanford.edu
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Components

Quizzes 12%
Special event participation 3%
Homeworks and bakeoffs 35%
Literature review 10%
Experimental protocol 10%
Final project paper 30%
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Special events (confirmed so far)

• Rishi Bommasani https://rishibommasani.github.io
• Douwe Kiela https://douwekiela.github.io
• Omar Khattab https://omarkhattab.com
• Adina Williams https://wp.nyu.edu/adinawilliams/
• Ellie Pavlick https://cs.brown.edu/people/epavlick/
• Yulia Tsvetkov https://homes.cs.washington.edu/~yuliats/
• Richard Socher https://www.socher.org
• Kalika Bali https://www.microsoft.com/en-us/research/people/kalikab/
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Fully asynchronous

• Core course content in screencasts on YouTube and linked from the
homepage, with accompanying Juypter notebook for hands-on work.

• A series of special events: conversations with prominent NLU
researchers. Mostly on Zoom. Attend live or listen later.

• Other class meetings: optional open discussions and/or spaces for
you to work, with the teaching team there to help. Open to mixing
in-classroom and Zoom formats.

• Office hours offered in person and on Zoom. Details to come.

• Continuous evaluation: three assignments, four online quizzes, and
project work.

51 / 56



Welcome A golden age for NLU A peek behind the curtain Underlying challenges Assignments Course mechanics Wrap-up

Tutorials

All in the course Github repo and linked from the course site:

• setup.ipynb

• tutorial_jupyter_notebooks.ipynb

• tutorial_numpy.ipynb

• tutorial_pytorch.ipynb
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Quizzes

1. Quiz 0 is on course requirements and related details. The sole
purpose of the quiz is to create a clear incentive for you to study the
website and understand your rights and obligations.

2. Quizzes 1–4 create a course-related incentive for individual students
to study the material beyond what is required for the more free-form
and collaborative assignments.

3. All quizzes are open notes, open book, etc., but no collaboration is
permitted.
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AWS credits

1. Thanks to AWS Educate, we expect to be able to provide every
enrolled student with a $100 AWS credit.

2. As of this year, these codes need to be associated with specific
Amazon/AWS accounts. We will share information on this soon.

3. If you haven’t used AWS before:
É Plan ahead to make sure that you are able to claim the kind of

machine you want.
É Get your account set up so that you cannot be billed

beyond your credits.

4. This is the only official cloud support for this course. Feel free to use
other providers and post questions about them to discussion forum,
but the team cannot guarantee support for them.
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For next time

1. Get your computing environment set up using setup.ipynb.

2. Make sure you’re in the discussion forum. If not, follow the link
given at the homepage for our course Canvas.

3. Consider doing Quiz 0 as a way of getting to know your rights and
obligations for this course.

4. Start working with vsm_01_distributional.ipynb. If this
material is new to you, consider watching the associated screencasts
(linked from the course site).

5. For corresponding with the teaching team:
cs224u-spr2122-staff@lists.stanford.edu
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Wrap-up

1. This is the most exciting moment ever in history for doing NLU!

2. This course will give you hands-on experience with a wide range of
challenging NLU problems.

3. A mentor from the teaching team will guide you through the project
assignments – there are many examples of these projects becoming
important publications.

4. Central goal: to make you the best – most insightful and responsible
– NLU researcher and practitioner wherever you go next.
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1. van Halteren 2000 E
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5. Naik et al. 2018 G

6. Poliak et al. 2018 A

7. Tsuchiya 2018 A

8. Gururangan et al. 2018 A
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10. McCoy et al. 2019 A
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2. Sugawara et al. 2018 A
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ImageNet (Deng et al. 2009)

1. Deng et al. 2014 G
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3. Yang et al. 2020 B

4. Recht et al. 2019 E

5. Northcutt et al. 2021 E
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