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Varieties of evaluation

Behavioral

• Standard (“IID”;
Independent and
Identically Distributed)
• Exploratory
• Hypothesis-driven
• Challenge
• Adversarial
• Security-oriented

Structural

• Probing
• Feature attribution
• Interventions
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Standard evaluations

1. Create a dataset from a single process.

2. Divide the dataset into disjoint train and test sets, and
set the test set aside.

3. Develop a system on the train set.

4. Only after all development is complete, evaluate the
system based on accuracy on the test set.

5. Report the results as providing an estimate of
the system’s capacity to generalize.
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Adversarial evaluations

1. Create a dataset by whatever means you like.

2. Develop and assess the system using that dataset,
according to whatever protocols you choose.

3. Develop a new test dataset of examples that you
suspect or know will be challenging given your system
and the original dataset.

4. Only after all system development is complete, evaluate
the system based on accuracy on the new test dataset.

5. Report the results as providing an estimate of the
system’s capacity to generalize.
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A bit of history

[October, 1950 

M I N D   
A Q U A R T E R L Y  R E V I E W  

PSYCHOLOGY AND PHILOSOPHY 

I.-COMPUTING MACHINERY AND  
INTELLIGENCE  

1. The Imitation Game. 
I PROPOSE to consider the question, ' Can machines think ? ' 
This should begin with definitions of the meaning of the terms 
'machine ' and ' think '. The definitions might be framed so as to 
reflect so far as possible the normal use of the words, but this 
attitude is dangerous. If the meaning of the words ' machine ' 
and ' think ' are to be found by examining how they are commonly 
used i t  is difficult to escaDe the conclusion that the meaning a 
and the answer to tlie auestion, ' Can machines think ? ' is to be 
sought in a statistical sirvey sdch as a Gallup poll. But this is 
absurd. Instead of attempting such a definition I shall replace the 
question by another, which is closely related to it and is expressed 
in relatively unambiguous words. 

The new form of the problem can be described in terms of 
a game which we call the ' imitation game '. I t  is played with 
three people, a man (A), a woman (B), and an interrogator (C) who 
may be of either sex. The interrogator stays in a room apart 
from the other two. The object of the game for the interrogator 
is to determine which of the other two is the man and which is 
the woman. He knows them by labels X and Y, and at the end 
of the game he says either ' X is A and Y is B ' or ' X is B and Y 
is A '. The interrogator is allowed to put questions to A and B 
thas : 

C : Will X please tell me the length of his or her hair ? 
Now suppose X is actually A, then A must answer. It is A's 

28 433 
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COGNITIVE PSYCHOLOGY 3, l-191 (1972) 

Understanding Natural Language 

TERRY WINOGRAD’ 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

This paper describes a computer system for understanding English. The 
system answers questions, executes commands, and accepts information in 
an interactive English dialog. 

It is based on the belief that in modeling language understanding, we 
must deal in an integrated way with all of the aspects of language- 
syntax, semantics, and inference. The system contains a parser, a recognition 
grammar of English, programs for semantic analysis, and a general problem 
solving system. We assume that a computer cannot deal reasonably with 
language unless it can understand the subject it is discussing. Therefore, the 
program is given a detailed model of a particular domain. In addition, the 
system has a simple model of its own mentality. It can remember and 
discuss its plans and actions as well as carrying them out. It enters into a 
dialog with a person, responding to English sentences with actions and 
English replies, asking for clarification when its heuristic programs can- 
not understand a sentence through the use of syntactic, semantic, con- 
textual, and physical knowledge. Knowledge in the system is represented 
in the form of procedures, rather than tables of rules or lists of patterns. By 
developing special procedural representations for syntax, semantics, and 
inference, we gain flexibility and power. Since each piece of knowledge can 
be a procedure, it can call directly on any other piece of knowledge in the 
system. 

1. OVERVIEW OF THE LANGUAGE UNDERSTANDING PROGRAM 

1.1. Introduction 
When a person sees or hears a sentence, he makes full use of his 

knowledge and intelligence to understand it. This includes not only 
grammar, but also his knowledge about words, the context of the sen- 

1 Work reported herein was conducted at the Artificial Intelligence Laboratory, a 
Massachusetts Institute of Technology research program supported by the Advanced 
Research Projects Agency of the Department of Defense under Contract Number 
N00014-70-A-0362-0002. The author wishes to express his gratitude to the members 
of the Artificial Intelligence Laboratory for their advice and support in this work. 

Requests for reprints or further information should be sent to the author, at the 
Artificial Intelligence Laboratory, M.I.T., 545 Technology Square, Cambridge, Massa- 
chusetts 02139. 

1 
@ 1972 by Academic Press, Inc. 
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Winograd sentences

1. The trophy doesn’t fit into the brown suitcase because
it’s too small. What is too small?
The suitcase / The trophy

2. The trophy doesn’t fit into the brown suitcase because
it’s too large. What is too large?
The suitcase / The trophy

3. The council refused the demonstrators a permit because
they feared violence. Who feared violence?
The council / The demonstrators

4. The council refused the demonstrators a permit because
they advocated violence. Who advocated violence?
The council / The demonstrators

7 /80

Winograd 1972; Levesque 2013



Overview Analytical Compositionality (Re)COGS Tests ANLI DynaSent Conclusions

Levesque’s (2013) adversarial framing

Could a crocodile run a steeplechase?
“The intent here is clear. The question can be answered by
thinking it through: a crocodile has short legs; the hedges in
a steeplechase would be too tall for the crocodile to jump
over; so no, a crocodile cannot run a steeplechase.”

Foiling cheap tricks
“Can we find questions where cheap tricks like this will not
be sufficient to produce the desired behaviour? This
unfortunately has no easy answer. The best we can do,
perhaps, is to come up with a suite of multiple-choice
questions carefully and then study the sorts of computer
programs that might be able to answer them.”
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Analytical considerations
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Key questions

What can behavioral testing tell us?
(And what can’t it tell us?)
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No need to be adversarial

Here are some questions that start off exploratory and end
up being adversarial:

1. Has my system learned anything about numerical terms?
2. Does my system understand how negation works?
3. Does my system work with a new style or genre?
4. This system is supposed to know about numerical terms,

but here are some test cases that are outside of its
training experiences for such terms. . .

5. When applied to invented genres, does my system
produce socially problematic (e.g., stereotyped) outputs?

6. Are their patterns of random inputs that lead my system
to produce problematic outputs?
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Limits of behavioral testing

sixty three

thirty six

thirty two

twenty one

four

twenty two

five

eighty nine

fifty six

sixteen

Even/Odd Model 1

even
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Limits of behavioral testing
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Limits of behavioral testing
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Limits of behavioral testing
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Limits of behavioral testing
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Metrics

The limitations of accuracy-based metrics are generally left
unaddressed by the methods we will explore here, but these
limitations should be brought in!
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Model failing or dataset failing?

Liu et al. (2019)
“What should we conclude when a system fails on a
challenge dataset? In some cases, a challenge might exploit
blind spots in the design of the original dataset (dataset
weakness). In others, the challenge might expose an
inherent inability of a particular model family to handle
certain natural language phenomena (model weakness).
These are, of course, not mutually exclusive.”
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Model failing or dataset failing?

Geiger et al. (2019)
However, for any evaluation method, we should ask whether
it is fair. Has the model been shown data sufficient to
support the kind of generalization we are asking of it? Unless
we can say “yes” with complete certainty, we can’t be sure
whether a failed evaluation traces to a model limitation or a
data limitation that no model could overcome.
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Model failing or dataset failing?

3 5 7 . . .

What number comes next?
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Model failing or dataset failing?

p q

T T T
T F
F T T
F F

p q p→ q

T T T
T F F
F T T
F F T

p q p∨ q

T T T
T F T
F T T
F F F
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Inoculation by fine-tuning
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Abstract

Several datasets have recently been con-
structed to expose brittleness in models trained
on existing benchmarks. While model perfor-
mance on these challenge datasets is signifi-
cantly lower compared to the original bench-
mark, it is unclear what particular weaknesses
they reveal. For example, a challenge dataset
may be difficult because it targets phenomena
that current models cannot capture, or because
it simply exploits blind spots in a model’s spe-
cific training set. We introduce inoculation by
fine-tuning, a new analysis method for study-
ing challenge datasets by exposing models (the
metaphorical patient) to a small amount of
data from the challenge dataset (a metaphor-
ical pathogen) and assessing how well they
can adapt. We apply our method to analyze
the NLI “stress tests” (Naik et al., 2018) and
the Adversarial SQuAD dataset (Jia and Liang,
2017). We show that after slight exposure,
some of these datasets are no longer challeng-
ing, while others remain difficult. Our results
indicate that failures on challenge datasets
may lead to very different conclusions about
models, training datasets, and the challenge
datasets themselves.

1 Introduction

NLP research progresses through the construction
of dataset-benchmarks and the development of
systems whose performance on them can be fairly
compared. A recent pattern involves challenges to
benchmarks:1 manipulations to input data that re-
sult in severe degradation of system performance,
but not human performance. These challenges
have been used as evidence that current systems
are brittle (Belinkov and Bisk, 2018; Mudrakarta
et al., 2018; Zhao et al., 2018; Glockner et al.,
2018; Ebrahimi et al., 2018; Ribeiro et al., 2018,

1Often referred to as “adversarial datasets” or “attacks”.

Figure 1: An illustration of the standard challenge eval-
uation procedure (e.g., Jia and Liang, 2017) and our
proposed analysis method. “Original” refers to the a
standard dataset (e.g., SQuAD) and “Challenge” refers
to the challenge dataset (e.g., Adversarial SQuAD).
Outcomes are discussed in Section 2.

inter alia). For instance, Naik et al. (2018) gen-
erated natural language inference challenge data
by applying simple textual transformations to ex-
isting examples from MultiNLI (Williams et al.,
2018) and SNLI (Bowman et al., 2015). Similarly,
Jia and Liang (2017) built an adversarial evalua-
tion dataset for reading comprehension based on
SQuAD (Rajpurkar et al., 2016).

What should we conclude when a system fails
on a challenge dataset? In some cases, a challenge
might exploit blind spots in the design of the origi-
nal dataset (dataset weakness). In others, the chal-
lenge might expose an inherent inability of a par-
ticular model family to handle certain natural lan-
guage phenomena (model weakness). These are,
of course, not mutually exclusive.

We introduce inoculation by fine-tuning, a

15 /80
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Inoculation by fine-tuning

2174

Outcome 1 Outcome 2 Outcome 3

(a) Word Overlap (c) Spelling Errors (e) Numerical Reasoning

(b) Negation (d) Length Mismatch (f) Adversarial SQuAD

Figure 3: Inoculation by fine-tuning results. (a–e): NLI accuracy for the ESIM and decomposable attention (DA)
models. (f): Reading comprehension F1 scores for the BiDAF and QANet models.
Fine-tuning on a small number of word overlap (a) and negation (b) examples erases the performance gap (Outcome
1). Fine-tuning does not yield significant improvement on spelling errors (c) and length mismatch (d), but does not
degrade original performance either (Outcome 2). Fine-tuning on numerical reasoning (e) closes the gap entirely,
but also reduces performance on the original dataset (Outcome 3). On Adversarial SQuAD (f), around 60% of the
performance gap is closed after fine-tuning, though performance on the original dataset decreases (Outcome 3).
On each challenge dataset, we observe similar trends between different models.

produced by running each token through a charac-
ter bidirectional GRU (Cho et al., 2014).

Adversarial SQuAD Jia and Liang (2017) cre-
ated a challenge dataset for reading comprehen-
sion by appending automatically-generated dis-
tractor sentences to SQuAD passages. The ap-
pended distractor sentences are crafted to look
similar to the question while not contradicting the
correct answer or misleading humans (Figure 2).
The authors released model-independent Adver-
sarial SQuAD examples, which we analyze. For
our analysis, we use the BiDAF model (Seo et al.,
2017) and the QANet model (Yu et al., 2018).

3.2 Results

We refer to difference between a model’s pre-
inoculation performance on the original test set
and the challenge test set as the performance gap.

NLI Stress Tests Figure 3 presents NLI accu-
racy for the ESIM and DA models on the word
overlap, negation, spelling errors, length mis-

match and numerical reasoning challenge datasets
after fine-tuning on a varying number of challenge
examples.

For the word overlap and negation challenge
datasets, both ESIM and DA quickly close the
performance gap when fine-tuning (Outcome 1).
For instance, on both of the aforementioned chal-
lenge datasets, ESIM requires only 100 exam-
ples to close over 90% of the performance gap
while maintaining high performance on the orig-
inal dataset. Since these performance gaps are
closed after seeing a few challenge dataset exam-
ples (< 0.03% of the original MultiNLI training
dataset), these challenges are likely difficult be-
cause they exploit easily-recoverable gaps in the
models’ training dataset rather than highlighting
their inability to capture semantic phenomena.

In contrast, on spelling errors and length mis-
match, fine-tuning does not allow either model
to close a substantial portion of the performance
gap, while performance on the original dataset

(Dataset weakness) (Model weakness) (Dataset artifacts or other problem)
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Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target
(Yanaka et al. 2019, 2020; Hossain et al. 2020; Geiger et al.
2020b).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)
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A systematic generalization task

NMoNLI Train NMoNLI Test

person 198 dog 88
instrument 100 building 64
food 94 ball 28
machine 60 car 12
woman 58 mammal 4
music 52 animal 4
tree 52
boat 46
fruit 42
produce 40
fish 40
plant 38
jewelry 36
anything 34
hat 20
man 20
horse 16
gun 12
adult 10
shirt 8
shoe 6
store 6
cake 4
individual 4
clothe 2
weapon 2
creature 2

Our models know these lexical relations
(high Positive MoNLI accuracy) and will
be compelled to combine this knowledge
with what they learn about negation dur-
ing Negative MoNLI fine-tuning.
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MoNLI as challenge dataset

No MoNLI fine-tuning With NMoNLI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI SNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9 74.6 93.5

ESIM GloVe SNLI train 87.9 86.6 39.4 56.9 96.2

BERT BERT SNLI train 90.8 94.4 2.2 90.5 90.0

Diagnosis: Dataset failing!
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Reminder: Biological creatures are amazing
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Compositionality
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Informal statement

Compositionality
The meaning of a phrase is a function of the meanings of its
immediate syntactic constituents and the way they are
combined.

S

NP

Det

every

N

student

VP

V

admired

NP

D

the

N

idea

23 /80



Overview Analytical Compositionality (Re)COGS Tests ANLI DynaSent Conclusions

The usual motivation

1. Modeling all meaningful units

JeveryK = λf λg ∀x ((f x)→ (g x))

2. “Infinite” capacity

3. Creativity

4. Systematicity
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idea
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Compositionality or systematicity?

Fodor and Pylyshyn (1988:37):
“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”

1. Sandy loves the puppy.
2. The puppy loves Sandy.
3. the turtle ∼ the puppy
4. The turtle loves the puppy.
5. The puppy loves the turtle.
6. The turtle loves Sandy.
7. . . .
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A worrisome lack of systematicity

Example Gold Prediction

The bakery sells a mean apple pie. pos pos
They sell a mean apple pie. pos pos
She sells a mean apple pie. pos neg
He sells a mean apple pie. pos neg
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Compositionality by design
SHRDLU Chat-80

DCS

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 8
Examples of DCS trees that use the mark–execute construct with the E and Q mark relations.
(a) The head verb borders, which needs to be returned, has a direct object states modified by
which. (b) The quantifier no is syntactically dominated by state but needs to take wider scope.
(c) Two quantifiers yield two possible readings; we build the same basic structure, marking
both quantifiers; the choice of execute relation (X12 versus X21) determines the reading. (d) We
use two mark relations, Q on river for the negation, and E on city to force the quantifier to be
computed for each value of city.

with information to be retrieved when that marked node is executed. A store σ for a
marked node contains the following: (i) the mark relation σ.r (C in the example), (ii) the
base denotation σ.b, which essentially corresponds to denotation of the subtree rooted at
the marked node excluding the mark relation and its subtree (!⟨size⟩"w in the example),
and (iii) the denotation of the child of the mark relation (!⟨argmax⟩"w in the example).
The store of any unmarked nodes is always empty (σ = ø).

Definition 3 (Denotations)
Let D be the set of denotations, where each denotation d ∈ D consists of

! a set of arrays d.A, where each array a = [a1, . . . , an]∈ d.A is a sequence of
n tuples for some n ≥ 0; and

405

SST

5 10 15 20 25
N-Gram Length

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

5 10 15 20 25
N-Gram Length

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e 

Ac
cu

ra
cy

Model
RNTN
MV-RNN
RNN
biNB
NB

Figure 6: Accuracy curves for fine grained sentiment classification at each n-gram lengths. Left: Accuracy separately
for each set of n-grams. Right: Cumulative accuracy of all � n-grams.

5.2 Full Sentence Binary Sentiment
This setup is comparable to previous work on the
original rotten tomatoes dataset which only used
full sentence labels and binary classification of pos-
itive/negative. Hence, these experiments show the
improvement even baseline methods can achieve
with the sentiment treebank. Table 1 shows results
of this binary classification for both all phrases and
for only full sentences. The previous state of the
art was below 80% (Socher et al., 2012). With the
coarse bag of words annotation for training, many of
the more complex phenomena could not be captured,
even by more powerful models. The combination of
the new sentiment treebank and the RNTN pushes
the state of the art on short phrases up to 85.4%.

5.3 Model Analysis: Contrastive Conjunction
In this section, we use a subset of the test set which
includes only sentences with an ‘X but Y ’ structure:
A phrase X being followed by but which is followed
by a phrase Y . The conjunction is interpreted as
an argument for the second conjunct, with the first
functioning concessively (Lakoff, 1971; Blakemore,
1989; Merin, 1999). Fig. 7 contains an example. We
analyze a strict setting, where X and Y are phrases
of different sentiment (including neutral). The ex-
ample is counted as correct, if the classifications for
both phrases X and Y are correct. Furthermore,
the lowest node that dominates both of the word
but and the node that spans Y also have to have the
same correct sentiment. For the resulting 131 cases,
the RNTN obtains an accuracy of 41% compared to
MV-RNN (37), RNN (36) and biNB (27).

5.4 Model Analysis: High Level Negation
We investigate two types of negation. For each type,
we use a separate dataset for evaluation.
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Figure 7: Example of correct prediction for contrastive
conjunction X but Y .

Set 1: Negating Positive Sentences. The first set
contains positive sentences and their negation. In
this set, the negation changes the overall sentiment
of a sentence from positive to negative. Hence, we
compute accuracy in terms of correct sentiment re-
versal from positive to negative. Fig. 9 shows two
examples of positive negation the RNTN correctly
classified, even if negation is less obvious in the case
of ‘least’. Table 2 (left) gives the accuracies over 21
positive sentences and their negation for all models.
The RNTN has the highest reversal accuracy, show-
ing its ability to structurally learn negation of posi-
tive sentences. But what if the model simply makes
phrases very negative when negation is in the sen-
tence? The next experiments show that the model
captures more than such a simplistic negation rule.

Set 2: Negating Negative Sentences. The sec-
ond set contains negative sentences and their nega-
tion. When negative sentences are negated, the sen-
timent treebank shows that overall sentiment should
become less negative, but not necessarily positive.
For instance, ‘The movie was terrible’ is negative
but the ‘The movie was not terrible’ says only that it
was less bad than a terrible one, not that it was good
(Horn, 1989; Israel, 2001). Hence, we evaluate ac-
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No compositionality/systematicity guarantees!

Can we pose behavioral tests that will assess whether
models like this have found systematicity solutions?
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COGS and ReCOGS
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Task

COGS
1. É Input: A rose was helped by a dog .

É Output: rose ( x _ 1 ) AND help . theme ( x _ 3 , x _ 1 )
AND help . agent ( x _ 3 , x _ 6 ) AND dog ( x _ 6 )

2. É Input: The sailor dusted a boy .
É Output: * sailor ( x _ 1 ) ; dust . agent ( x _ 2 , x _ 1

) AND dust . theme ( x _ 2 , x _ 4 ) AND boy ( x _ 4 )

ReCOGS
1. É Input: A rose was helped by a dog .

É Output: rose ( 53 ) ; dog ( 38 ) ; help ( 7 ) AND
theme ( 7 , 53 ) AND agent ( 7 , 38 )

2. É Input: The sailor dusted a boy .
É Output: * sailor ( 48 ) ; boy ( 53 ) ; dust ( 10 ) AND

agent ( 10 , 48 ) AND theme ( 10 , 53 )
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Motivations

1. Humans easily interpret novel combinations of familiar
elements in ways that are systematic.

2. Compositionality is an explanation for this capability.

3. Can our best models generalize this way?

4. Have they too found compositional solutions?

The COGS and ReCOGS tasks are behavioral tests that seek
to resolve 3, and the hope is that this can inform 4.
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Understanding COGS logical forms

1. Verbs specify primitive events that have their own core conceptual
structure and can involve one more more obligatory or optional roles.

a. Emma broke a vase:
vase ( x _ 3 ) ; break . agent ( x _ 2 , Emma ) AND
break . theme ( x _ 2 , x _ 3 )

b. The vase broke:
vase ( x _ 3 ) ; break . theme ( x _ 2 , x _ 1 )

2. Variable numbering is determined by linear position in the input sentence.

3. All variables are bound; free variables are existentially bound with widest
scope:

a. dog ( x _ 1 ) AND run . agent ( x _ 2 , x _ 1 )
b. ∃x _ 1 ∃x _ 2 dog ( x _ 1 ) AND run . agent ( x _ 2 , x _ 1 )

4. Definite descriptions are marked with *:

a. The sailor ran.
b. * sailor ( x _ 1 ) ; run . agent ( x _ 2 , x _ 1 )
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COGS splits

1. Train: 24,000 examples plus 155 primitives
2. Dev: 10,000 examples
3. Test: 10,000 examples
4. Gen: 21,000 examples
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Generalization categories
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Synthetic leaderboard

STRUCT LEX Overall
Model Obj PP → Subj PP CP Recursion PP Recursion %

BART (Lewis et al. 2019) 0 0 12 91 79†

BART+syn (Lewis et al. 2019) 0 5 8 80 80†

T5 (Raffel et al. 2019) 0 0 9 97 83†

Kim and Linzen 2020 0 0 0 73 63
Ontanon et al. 2022 0 0 0 53 48
Akyurek and Andreas 2021 0 0 1 96 82
Conklin et al. 2021 0 0 0 88 75
Csordás et al. 2021 0 0 0 95 81
Zheng and Lapata 2022 0 25 35 99 88‡

†Results are copied from Yao and Koller (2022). ‡Model uses pretrained
weights and is hyperparameter tuned using data sampled from the
generalization splits.
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Why removing redundant tokens matters

COGS: kitten ( x _ 1 ) COGS: kitten ( 1 )
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What is behind the 0s for CP/PP recursion?
Input sentences

Output LFs

To decouple length from
depth, we concatenate ex-
isting examples and rein-
dex the variable names to
cover the variable names
seen at test time.
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What is behind the 0s for PP modifiers?
Hypothesis
The train data teach the model that PPs occur only with a specific
set of variables and positions. When models learn this lesson, they
struggle with examples that contradict it.

Variant Sentence Logical Form

Preposing + Interjection The box in the tent
Emma was um um
lended .

* box ( x _ 1 ) ; * tent ( x _

4 ) ; box . nmod . in ( x _

1 , x _ 4 ) AND lend . theme
( x _ 7 , x _ 1 ) AND lend .
recipient ( x _ 7 , Emma )

Participial VP (Subj) A leaf painting the
spaceship froze .

* spaceship ( x _ 4 ) ; leaf
( x _ 1 ) AND leaf . acl .
paint ( x _ 1 , x _ 4 ) AND
freeze . theme ( x _ 5 , x _

1 )

Result
Large performance increases for LSTMs and Transformers.
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1 , Mia ) AND eat . theme
( x _ 1, x _ 3 ) AND cake ( x _ 3 )

Redundant Token Removal

Meaning-Preserving Data Augmentation

Arbitrary Variable Renaming

ReCOGS LF: Mia ( 3 ) ; cake ( 21 ) ; eat ( 6 ) AND
agent ( 6 , 3 ) AND theme ( 6 , 21 )

Performance
LEX

STRUCT
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ReCOGS results
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Conceptual questions

1. How can we test for meaning if we are predicting logical
forms?

2. What is a fair generalization test in the current context?
a. Models are shown a world that manifests specific

restrictions.
b. In some cases we want them not to learn those

restrictions.
c. In other cases we do want them to learn those

restrictions.

3. What are the limits of compositionality for humans and
how should that inform our generalization tests?

4. If we have goals that are not supported by our datasets
but that seem like good goals for models to reach, how
should we express that in our tasks and our models?
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Adversarial testing
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SQUaD leaderboards

...
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SQUaD adversarial testing

Passage
Peyton Manning became the first quarterback ever to lead
two different teams to multiple Super Bowls. He is also the
oldest quarterback ever to play in a Super Bowl at age 39.
The past record was held by John Elway, who led the Broncos
to victory in Super Bowl XXXIII at age 38 and is currently
Denver’s Executive Vice President of Football Operations and
General Manager.

Question
What is the name of the quarterback who was 38 in Super
Bowl XXXIII?

Answer
John Elway

Model: Leland Stanford
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SQUaD adversarial testing
System Original Adversarial

ReasoNet-E 81.1 39.4
SEDT-E 80.1 35.0
BiDAF-E 80.0 34.2
Mnemonic-E 79.1 46.2
Ruminating 78.8 37.4
jNet 78.6 37.9
Mnemonic-S 78.5 46.6
ReasoNet-S 78.2 39.4
MPCM-S 77.0 40.3
SEDT-S 76.9 33.9
RaSOR 76.2 39.5
BiDAF-S 75.5 34.3
Match-E 75.4 29.4
Match-S 71.4 27.3
DCR 69.4 37.8
Logistic 50.4 23.2
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SQUaD adversarial testing
System Original Rank Adversarial Rank

ReasoNet-E 1 5
SEDT-E 2 10
BiDAF-E 3 12
Mnemonic-E 4 2
Ruminating 5 9
jNet 6 7
Mnemonic-S 7 1
ReasoNet-S 8 5
MPCM-S 9 3
SEDT-S 10 13
RaSOR 11 4
BiDAF-S 12 11
Match-E 13 14
Match-S 14 15
DCR 15 8
Logistic 16 16
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Comparison with regular testing
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Example: NLI
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Example: NLI
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An SNLI adversarial evaluation

Premise Relation Hypothesis

Train A little girl kneeling
in the dirt crying.

entails A little girl is very sad.

Adversarial

entails A little girl is very
unhappy.

Train
An elderly couple are
sitting outside a
restaurant, enjoying
wine.

entails A couple drinking
wine.

Adversarial

neutral A couple drinking
champagne.
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An SNLI adversarial evaluation

653

Model Train set SNLI test set New test set �

Decomposable Attention
(Parikh et al., 2016)

SNLI 84.7% 51.9% -32.8
MultiNLI + SNLI 84.9% 65.8% -19.1

SciTail + SNLI 85.0% 49.0% -36.0

ESIM (Chen et al., 2017)
SNLI 87.9% 65.6% -22.3

MultiNLI + SNLI 86.3% 74.9% -11.4
SciTail + SNLI 88.3% 67.7% -20.6

Residual-Stacked-Encoder
(Nie and Bansal, 2017)

SNLI 86.0% 62.2% -23.8
MultiNLI + SNLI 84.6% 68.2% -16.8

SciTail + SNLI 85.0% 60.1% -24.9

WordNet Baseline - - 85.8% -
KIM (Chen et al., 2018) SNLI 88.6% 83.5% -5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI,
SciTail), and tested on the original SNLI test set and the new test set.

We chose models which are amongst the best
performing within their approaches (excluding en-
sembles) and have available code. All models
are based on pre-trained GloVe embeddings (Pen-
nington et al., 2014), which are either fine-tuned
during training (RESIDUAL-STACKED-ENCODER
and ESIM) or stay fixed (DECOMPOSABLE AT-
TENTION). All models predict the label using a
concatenation of features derived from the sen-
tence representations (e.g. maximum, mean), for
example as in Mou et al. (2016). We use the rec-
ommended hyper-parameters for each model, as
they appear in the provided code.

With External Knowledge. We provide a sim-
ple WORDNET BASELINE, in which we classify
a sentence-pair according to the WordNet relation
that holds between the original word wp and the
replaced word wh. We predict entailment if wp is
a hyponym of wh or if they are synonyms, neutral

if wp is a hypernym of wh, and contradiction if wp

and wh are antonyms or if they share a common
hypernym ancestor (up to 2 edges). Word pairs
with no WordNet relations are classified as other.

We also report the performance of KIM
(Knowledge-based Inference Model, Chen et al.,
2018), an extension of ESIM with external knowl-
edge from WordNet, which was kindly provided
to us by Qian Chen. KIM improves the attention
mechanism by taking into account the existence
of WordNet relations between the words. The lex-
ical inference component, operating over pairs of
aligned words, is enriched with a vector encoding
the specific WordNet relations between the words.

4.2 Experimental Settings

We trained each model on 3 different datasets: (1)
SNLI train set, (2) a union of the SNLI train set

and the MultiNLI train set, and (3) a union of the
SNLI train set and the SciTail train set. The mo-
tivation is that while SNLI might lack the training
data needed to learn the required lexical knowl-
edge, it may be available in the other datasets,
which are presumably richer.

4.3 Results

Table 3 displays the results for all the models on
the original SNLI test set and the new test set. De-
spite the task being considerably simpler, the drop
in performance is substantial, ranging from 11 to
33 points in accuracy. Adding MultiNLI to the
training data somewhat mitigates this drop in ac-
curacy, thanks to almost doubling the amount of
training data. We note that adding SciTail to the
training data did not similarly improve the perfor-
mance; we conjecture that this stems from the dif-
ferences between the datasets.

KIM substantially outperforms the other neural
models, demonstrating that lexical knowledge is
the only requirement for good performance on the
new test set, and stressing the inability of the other
models to learn it. Both WordNet-informed mod-
els leave room for improvement: possibly due to
limited WordNet coverage and the implications of
applying lexical inferences within context.

5 Analysis

We take a deeper look into the predictions of the
models that don’t employ external knowledge, fo-
cusing on the models trained on SNLI.

5.1 Accuracy by Category

Table 4 displays the accuracy of each model per
replacement-word category. The neural models
tend to perform well on categories which are fre-
quent in the training set, such as colors, and badly

Models that have
access to the 
resources used to 
create the 
adversarial 
examples
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An SNLI adversarial evaluation
RoBERTA-MNLI, off-the-shelf

KmHiBMHBn;HQ+FM2`n�/p2`b�`B�Hn`Q#2`i�

J�`+? kj- kyky

(R), BKTQ`i MHB- Qb- iQ`+?
7`QK bFH2�`MXK2i`B+b BKTQ`i +H�bbB7B+�iBQMn`2TQ`i

(k), O �p�BH�#H2 7`QK ?iiTb,ff;Bi?m#X+QKf"Al@LGSf"`2�FBM;nLGA,
#`2�FBM;nMHBnb`+n7BH2M�K2 4 QbXT�i?XDQBMU]XXfM2r@/�i�f/�i�f/�i�b2iXDbQMH]V
`2�/2` 4 MHBXLGA_2�/2`U#`2�FBM;nMHBnb`+n7BH2M�K2V

(j), 2tb 4 (UU2tXb2Mi2M+2R- 2tXb2Mi2M+2kV- 2tX;QH/nH�#2HV 7Q` 2t BM `2�/2`X`2�/UV)

(9), sni2binbi`- vni2bi 4 xBTU 2tbV

(8), KQ/2H 4 iQ`+?X?m#XHQ�/U^TviQ`+?f7�B`b2[^- ^`Q#2`i�XH�`;2XKMHB^V
n 4 KQ/2HX2p�HUV

lbBM; +�+?2 7QmM/ BM flb2`bf+;TQiibfX+�+?2fiQ`+?f?m#fTviQ`+?n7�B`b2[nK�bi2`

(e), sni2bi 4 (KQ/2HX2M+Q/2U 2tV 7Q` 2t BM sni2binbi`)

(d), T`2/nBM/B+2b 4 (KQ/2HXT`2/B+iU^KMHB^- 2tVX�`;K�tUV 7Q` 2t BM sni2bi)

(3), iQnbi` 4 &y, ^+QMi`�/B+iBQM^- R, ^M2mi`�H^- k, ^2Mi�BHK2Mi^'

(N), T`2/b 4 (iQnbi`(+XBi2KUV) 7Q` + BM T`2/nBM/B+2b)

(Ry), T`BMiU+H�bbB7B+�iBQMn`2TQ`iUvni2bi- T`2/bVV

T`2+BbBQM `2+�HH 7R@b+Q`2 bmTTQ`i

+QMi`�/B+iBQM yXNN yXNd yXN3 dRe9
2Mi�BHK2Mi yX3e RXyy yXNk N3k

M2mi`�H yXR8 yXR8 yXR8 9d

�++m`�+v yXNd 3RNj
K�+`Q �p; yXed yXdR yXe3 3RNj

r2B;?i2/ �p; yXNd yXNd yXNd 3RNj

R
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A MultiNLI adversarial evaluation

Category Premise Relation Hypothesis

Antonyms I love the Cinderella
story.

contradicts I hate the Cinderella
story.

Numerical Tim has 350 pounds of
cement in 100, 50,
and 25 pound bags.

contradicts Tim has less than 750
pounds of cement in
100, 50, and 25 pound
bags.

Word overlap Possibly no other
country has had such
a turbulent history.

entails The country’s history
has been turbulent
and true is true

Negation Possibly no other
country has had such
a turbulent history.

entails The country’s history
has been turbulent
and false is not true
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A MultiNLI adversarial evaluation

Category Examples

Antonym 1,561
Length Mismatch 9815
Negation 9,815
Numerical Reasoning 7,596
Spelling Error 35,421
Word Overlap 9,815

49 /80
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A MultiNLI adversarial evaluation

2345

Original Competence Test Distraction Test Noise Test
MultiNLI Word Length Spelling

System Dev Antonymy Numerical Overlap Negation Mismatch Error
Mat Mis Mat Mis Reasoning Mat Mis Mat Mis Mat Mis Mat Mis

NB 74.2 74.8 15.1 19.3 21.2 47.2 47.1 39.5 40.0 48.2 47.3 51.1 49.8
CH 73.7 72.8 11.6 9.3 30.3 58.3 58.4 52.4 52.2 63.7 65.0 68.3 69.1
RC 71.3 71.6 36.4 32.8 30.2 53.7 54.4 49.5 50.4 48.6 49.6 66.6 67.0
IS 70.3 70.6 14.4 10.2 28.8 50.0 50.2 46.8 46.6 58.7 59.4 58.3 59.4

BiLSTM 70.2 70.8 13.2 9.8 31.3 57.0 58.5 51.4 51.9 49.7 51.2 65.0 65.1
CBOW 63.5 64.2 6.3 3.6 30.3 53.6 55.6 43.7 44.2 48.0 49.3 60.3 60.6

Table 3: Classification accuracy (%) of state-of-the-art models on our constructed stress tests. Accuracies
shown on both genre-matched and mismatched categories for each stress set. For reference, random
baseline accuracy is 33%.

3.3 Noise Test Construction
This class consists of an adversarial example set which tests model robustness to spelling errors. Spelling
errors occur often in MultiNLI data, due to involvement of Turkers and noisy source text (Ghaeini et
al., 2018), which is problematic as some NLI systems rely heavily on word embeddings. Inspired by
Belinkov and Bisk (2017), we construct a stress test for “spelling errors” by performing two types of
perturbations on a word sampled randomly from the hypothesis: random swap of adjacent characters
within the word (for example, “I saw Tipper with him at teh movie.”), and random substitution of a single
alphabetical character with the character next to it on the English keyboard. For example, “Agencies have
been further restricted and given less choice in selecting contractimg methods”.

4 Experiments

4.1 Experimental Setup
We focus on the following sentence-encoder models, which achieve strong performance on MultiNLI:
Nie and Bansal (2017) (NB): This model uses a sentence encoder consisting of stacked BiLSTM-RNNs
with shortcut connections and fine-tuning of embeddings. It achieves the top non-ensemble result in the
RepEval-2017 shared task (Nangia et al., 2017).
Chen et al. (2017) (CH): This model also uses a sentence encoder consisting of stacked BiLSTM-RNNs
with shortcut connections. Additionally, it makes use of character-composition word embeddings
learned via CNNs, intra-sentence gated attention and ensembling to achieve the best overall result in the
RepEval-2017 shared task.
Balazs et al. (2017) (RiverCorners - RC): This model uses a single-layer BiLSTM with mean pooling
and intra-sentence attention.
Conneau et al. (2017) (InferSent - IS): This model uses a single-layer BiLSTM-RNN with max-
pooling. It is shown to learn robust universal sentence representations which transfer well across several
inference tasks.
We also set up two simple baseline models:
BiLSTM: The simple BiLSTM baseline model described by Nangia et al. (2017).
CBOW: A bag-of-words sentence representation from word embeddings.

4.2 Model Performance on Stress Tests
Table 3 shows the classification accuracy of all six models on our stress tests and the original MultiNLI
development set. We see that performance of all models drops across all stress tests. On competence
stress tests, no model is a clear winner, with RC and CH performing best on antonymy and numerical
reasoning respectively. On distraction tests, CH is the best-performing model, suggesting that their
gated-attention mechanism handles shallow word-level distractions to some extent. Interestingly, our
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A MultiNLI adversarial evaluation

2174

Outcome 1 Outcome 2 Outcome 3

(a) Word Overlap (c) Spelling Errors (e) Numerical Reasoning

(b) Negation (d) Length Mismatch (f) Adversarial SQuAD

Figure 3: Inoculation by fine-tuning results. (a–e): NLI accuracy for the ESIM and decomposable attention (DA)
models. (f): Reading comprehension F1 scores for the BiDAF and QANet models.
Fine-tuning on a small number of word overlap (a) and negation (b) examples erases the performance gap (Outcome
1). Fine-tuning does not yield significant improvement on spelling errors (c) and length mismatch (d), but does not
degrade original performance either (Outcome 2). Fine-tuning on numerical reasoning (e) closes the gap entirely,
but also reduces performance on the original dataset (Outcome 3). On Adversarial SQuAD (f), around 60% of the
performance gap is closed after fine-tuning, though performance on the original dataset decreases (Outcome 3).
On each challenge dataset, we observe similar trends between different models.

produced by running each token through a charac-
ter bidirectional GRU (Cho et al., 2014).

Adversarial SQuAD Jia and Liang (2017) cre-
ated a challenge dataset for reading comprehen-
sion by appending automatically-generated dis-
tractor sentences to SQuAD passages. The ap-
pended distractor sentences are crafted to look
similar to the question while not contradicting the
correct answer or misleading humans (Figure 2).
The authors released model-independent Adver-
sarial SQuAD examples, which we analyze. For
our analysis, we use the BiDAF model (Seo et al.,
2017) and the QANet model (Yu et al., 2018).

3.2 Results

We refer to difference between a model’s pre-
inoculation performance on the original test set
and the challenge test set as the performance gap.

NLI Stress Tests Figure 3 presents NLI accu-
racy for the ESIM and DA models on the word
overlap, negation, spelling errors, length mis-

match and numerical reasoning challenge datasets
after fine-tuning on a varying number of challenge
examples.

For the word overlap and negation challenge
datasets, both ESIM and DA quickly close the
performance gap when fine-tuning (Outcome 1).
For instance, on both of the aforementioned chal-
lenge datasets, ESIM requires only 100 exam-
ples to close over 90% of the performance gap
while maintaining high performance on the orig-
inal dataset. Since these performance gaps are
closed after seeing a few challenge dataset exam-
ples (< 0.03% of the original MultiNLI training
dataset), these challenges are likely difficult be-
cause they exploit easily-recoverable gaps in the
models’ training dataset rather than highlighting
their inability to capture semantic phenomena.

In contrast, on spelling errors and length mis-
match, fine-tuning does not allow either model
to close a substantial portion of the performance
gap, while performance on the original dataset

(Dataset weakness) (Model weakness) (Dataset artifacts or other problem)
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Adversarial NLI
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Abstract

We introduce a new large-scale NLI bench-
mark dataset, collected via an iterative, ad-
versarial human-and-model-in-the-loop proce-
dure. We show that training models on this
new dataset leads to state-of-the-art perfor-
mance on a variety of popular NLI bench-
marks, while posing a more difficult challenge
with its new test set. Our analysis sheds light
on the shortcomings of current state-of-the-
art models, and shows that non-expert annota-
tors are successful at finding their weaknesses.
The data collection method can be applied in
a never-ending learning scenario, becoming a
moving target for NLU, rather than a static
benchmark that will quickly saturate.

1 Introduction

Progress in AI has been driven by, among other
things, the development of challenging large-scale
benchmarks like ImageNet (Russakovsky et al.,
2015) in computer vision, and SNLI (Bowman
et al., 2015), SQuAD (Rajpurkar et al., 2016), and
others in natural language processing (NLP). Re-
cently, for natural language understanding (NLU)
in particular, the focus has shifted to combined
benchmarks like SentEval (Conneau and Kiela,
2018) and GLUE (Wang et al., 2018), which track
model performance on multiple tasks and provide
a unified platform for analysis.

With the rapid pace of advancement in AI, how-
ever, NLU benchmarks struggle to keep up with
model improvement. Whereas it took around 15
years to achieve “near-human performance” on
MNIST (LeCun et al., 1998; Cireşan et al., 2012;
Wan et al., 2013) and approximately 7 years to
surpass humans on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015; He et al., 2016), the
GLUE benchmark did not last as long as we would
have hoped after the advent of BERT (Devlin et al.,

2018), and rapidly had to be extended into Super-
GLUE (Wang et al., 2019). This raises an important
question: Can we collect a large benchmark dataset
that can last longer?

The speed with which benchmarks become ob-
solete raises another important question: are cur-
rent NLU models genuinely as good as their high
performance on benchmarks suggests? A grow-
ing body of evidence shows that state-of-the-art
models learn to exploit spurious statistical patterns
in datasets (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018; Glockner et al., 2018; Geva
et al., 2019; McCoy et al., 2019), instead of learn-
ing meaning in the flexible and generalizable way
that humans do. Given this, human annotators—be
they seasoned NLP researchers or non-experts—
might easily be able to construct examples that
expose model brittleness.

We propose an iterative, adversarial human-and-
model-in-the-loop solution for NLU dataset collec-
tion that addresses both benchmark longevity and
robustness issues. In the first stage, human anno-
tators devise examples that our current best mod-
els cannot determine the correct label for. These
resulting hard examples—which should expose ad-
ditional model weaknesses—can be added to the
training set and used to train a stronger model.
We then subject the strengthened model to the
same procedure and collect weaknesses over sev-
eral rounds. After each round, we train a new
model and set aside a new test set. The process
can be iteratively repeated in a never-ending learn-
ing (Mitchell et al., 2018) setting, with the model
getting stronger and the test set getting harder in
each new round. Thus, not only is the resultant
dataset harder than existing benchmarks, but this
process also yields a “moving post” dynamic target
for NLU systems, rather than a static benchmark
that will eventually saturate.

Our approach draws inspiration from recent ef-
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Adversarial NLI: Dataset creation

A direct response to adversarial test failings *NLI datasets:

1. The annotator is presented with a premise sentence and a
condition (entailment, contradiction, neutral).

2. The annotator writes a hypothesis.

3. A state-of-the-art model makes a prediction about the
premise–hypothesis pair.

4. If the model’s prediction matches the condition, the
annotator returns to step 2 to try again.

5. If the model was fooled, the premise–hypothesis pair is
independently validated by other annotators.
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Adversarial NLI: Example

Premise Hypothesis Reason Label Model

A melee weapon is
any weapon used in
direct hand-to-hand
combat; by contrast
with ranged weapons
which act at a
distance. The term
“melee” originates in
the 1640s from the
French word “mělée”,
which refers to
hand-to-hand combat,
a close quarters
battle, a brawl, a
confused fight, etc.
Melee weapons can be
broadly divided into
three categories

Melee weapons
are good for
ranged and
hand-to-hand
combat.

Melee weapons
are good for hand
to hand combat,
but NOT ranged.

E N
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Adversarial NLI results

Model Data A1 A2 A3 ANLI ANLI-E SNLI MNLI-m/-mm

BERT

S,M?1 00.0 28.9 28.8 19.8 19.9 91.3 86.7 / 86.4
+A1 44.2 32.6 29.3 35.0 34.2 91.3 86.3 / 86.5
+A1+A2 57.3 45.2 33.4 44.6 43.2 90.9 86.3 / 86.3
+A1+A2+A3 57.2 49.0 46.1 50.5 46.3 90.9 85.6 / 85.4
S,M,F,ANLI 57.4 48.3 43.5 49.3 44.2 90.4 86.0 / 85.8

XLNet S,M,F,ANLI 67.6 50.7 48.3 55.1 52.0 91.8 89.6 / 89.4

RoBERTa

S,M 47.6 25.4 22.1 31.1 31.4 92.6 90.8 / 90.6
+F 54.0 24.2 22.4 32.8 33.7 92.7 90.6 / 90.5
+F+A1?2 68.7 19.3 22.0 35.8 36.8 92.8 90.9 / 90.7
+F+A1+A2?3 71.2 44.3 20.4 43.7 41.4 92.9 91.0 / 90.7
S,M,F,ANLI 73.8 48.9 44.4 53.7 49.7 92.6 91.0 / 90.6

Table 3: Model Performance. ‘Data’ refers to training dataset (‘S’ refers to SNLI, ‘M’ to MNLI dev (-m=matched,
-mm=mismatched), and ‘F’ to FEVER); ‘A1–A3’ refer to the rounds respectively. ‘-E’ refers to test set examples
written by annotators exclusive to the test set. Datasets marked ‘?n’ were used to train the base model for round n,
and their performance on that round is underlined.

data is likely to be more interesting, but also simply
because the base model is better and so annotation
took longer to collect good, verified correct exam-
ples of model vulnerabilities.

For each round, we report the model error rate,
both on verified and unverified examples. The un-
verified model error rate captures the percentage
of examples where the model disagreed with the
writer’s target label, but where we are not (yet) sure
if the example is correct. The verified model error
rate is the percentage of model errors from example
pairs that other annotators were able to confirm the
correct label for. Note that this error rate represents
a straightforward way to evaluate model quality:
the lower the model error rate—assuming constant
annotator quality and context-difficulty—the better
the model.

We observe that model error rates decrease as
we progress through rounds. In Round 3, where
we included a more diverse range of contexts
from various domains, the overall error rate went
slightly up compared to the preceding round, but
for Wikipedia contexts the error rate decreased sub-
stantially. While for the first round roughly 1 in
every 5 examples were verified model errors, this
quickly dropped over consecutive rounds, and the
overall model error rate is less than 1 in 10. On
the one hand, this is impressive, and shows how far
we have come with just three rounds. On the other
hand, it shows that we still have a long way to go
if even untrained annotators can fool ensembles of
state-of-the-art models with relative ease.

Table 2 also reports the average number of
“tries”, i.e., attempts made for each context until a
model error was found (or the number of possible

tries is exceeded), and the average time this took
(in seconds). Again, these metrics represent a use-
ful way to evaluate model quality. We observe that
the average tries and average time per verified error
both go up as we progress through the rounds. The
numbers clearly demonstrate that the rounds are
getting increasingly more difficult.

4 Results

Table 3 reports the main results. In addition to
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019b), we also include XLNet (Yang et al.,
2019) as an example of a strong, but different,
model architecture. We show test set performance
on the ANLI test sets per round, the total ANLI test
set, and the exclusive test subset (examples from
test-set-exclusive workers). We also show accuracy
on the SNLI test set and the MNLI development
(for the purpose of comparing between different
model configurations across table rows) set. In
what follows, we briefly discuss our observations.

Base model performance is low. Notice that the
base model for each round performs very poorly on
that round’s test set. This is the expected outcome:
For round 1, the base model gets the entire test set
wrong, by design. For rounds 2 and 3, we used an
ensemble, so performance is not necessarily zero.
However, as it turns out, performance still falls
well below chance, indicating that workers did not
find vulnerabilities specific to a single model, but
generally applicable ones for that model class.

Rounds become increasingly more difficult.

As already foreshadowed by the dataset statistics,
round 3 is more difficult (yields lower performance)
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A vision for future development

Zellers et al. (2019)
“a path for NLP progress going forward: towards benchmarks
that adversarially co-evolve with evolving state-of-the-art
models.”

Nie et al. (2019)
“This process yields a “moving post” dynamic target for NLU
systems, rather than a static benchmark that will eventually
saturate.”
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Dynabench
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Dynabench

1. NLI (see Nie et al. 2020)
2. QA (see Bartolo et al. 2020)
3. Sentiment (DynaSent; Potts et al. 2021)
4. Hate Speech (Vidgen et al. 2020)
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DynaSent
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Overview and resources

• Data, code, and models:
https://github.com/cgpotts/dynasent

• 121,634 sentences, across two rounds, each with 5 gold labels

• Paper: Potts et al. 2021

• Dynabench: https://dynabench.org
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DynaSent overview

Model 0
RoBERTa fine-
tuned on senti-

ment benchmarks

Model 0 used to find
challenging naturally
occurring sentences

Human validationRound 1 Dataset

Model 1
RoBERTa fine-tuned

on sentiment
benchmarks +
Round 1 Dataset

Dynabench used
to crowdsource
sentences that
fool Model 1

Human validationRound 2 Dataset
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Round 1

Model 0
RoBERTa fine-
tuned on senti-

ment benchmarks

Model 0 used to find
challenging naturally
occurring sentences

Human validationRound 1 Dataset
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Model 0: RoBERTa-based classifier

Training data

CR IMDB SST-3 Yelp Amazon

Positive 2,405 12,500 42,672 260,000 1,200,000
Negative 1,366 12,500 34,944 260,000 1,200,000
Neutral 0 0 81,658 130,000 600,000

Total 3,771 25,000 159,274 650,000 3,000,000

Performance on external assessment datasets

SST-3 Yelp Amazon
Dev Test Dev Test Dev Test

Positive 85.1 89.0 88.3 90.5 89.1 89.4
Negative 84.1 84.1 88.8 89.1 86.6 86.6
Neutral 45.4 43.5 58.2 59.4 53.9 53.7

Macro avg 71.5 72.2 78.4 79.7 76.5 76.6
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Harvesting sentences

Favor sentences where the review is 1-star and Model 0
predicts positive, and where the review is 5-star and Model 0
predicts negative.
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Validation
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Resulting dataset

Dist Majority Label
Train Train Dev Test

Positive 130,045 21,391 1,200 1,200
Negative 86,486 14,021 1,200 1,200
Neutral 215,935 45,076 1,200 1,200
Mixed 39,829 3,900 0 0
No Majority – 10,071 0 0
Total 472,295 94,459 3,600 3,600

47% adversarial examples
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Model 0 versus the humans
Model 0

SST-3 Yelp Amazon Round 1
Dev Test Dev Test Dev Test Dev Test

Positive 85.1 89.0 88.3 90.5 89.1 89.4 33.3 33.3
Negative 84.1 84.1 88.8 89.1 86.6 86.6 33.3 33.3
Neutral 45.4 43.5 58.2 59.4 53.9 53.7 33.3 33.3

Macro avg 71.5 72.2 78.4 79.7 76.5 76.6 33.3 33.3

Five annotators synthesized from our crowd

Dev Test

Positive 88.1 87.8
Negative 89.2 89.3
Neutral 86.6 86.9

Macro avg 88.0 88.0

Note: 614/1,280 workers never disagreed with the majority label.
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Randomly sampled (short) examples

Sentence Model 0 Responses

Good food nasty attitude by hostesses . neg mix, mix, mix, neg, neg
Not much of a cocktail menu that I saw. neg neg, neg, neg, neg, neg
I scheduled the work for 3 weeks later. neg neu, neu, neu, neu, pos
I was very mistaken, it was much more! neg neg, pos, pos, pos, pos

It is a gimmick, but when in Rome, I get it. neu mix, mix, mix, neu, neu
Probably a little pricey for lunch. neu mix, neg, neg, neg, neg
But this is strictly just my opinion. neu neu, neu, neu, neu, pos
The price was okay, not too pricey. neu mix, neu, pos, pos, pos

The only downside was service was a little slow. pos mix, mix, mix, neg, neg
However there is a 2 hr seating time limit. pos mix, neg, neg, neg, neu
With Alex, I never got that feeling. pos neu, neu, neu, neu, pos
Its ran very well by management. pos pos, pos, pos, pos, pos
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Round 2

Model 1
RoBERTa fine-tuned

on sentiment
benchmarks +
Round 1 Dataset

Dynabench used
to crowdsource
sentences that
fool Model 1

Human validationRound 2 Dataset
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Model 1: RoBERTa-based classifier

Training data

CR IMDB SST-3 Yelp Amazon Round 1

Positive 2,405 12,500 128,016 29,841 133,411 339,748
Negative 1,366 12,500 104,832 30,086 133,267 252,630
Neutral 0 0 244,974 30,073 133,322 431,870

Total 3,771 25,000 477,822 90,000 400,000 1,024,248

Performance on external assessment datasets and Round 1

SST-3 Yelp Amazon Round 1
Dev Test Dev Test Dev Test Dev Test

Positive 84.6 88.6 80.0 83.1 83.3 83.3 81.0 80.4
Negative 82.7 84.4 79.5 79.6 78.7 78.8 80.5 80.2
Neutral 40.0 45.2 56.7 56.6 55.5 55.4 83.1 83.5
Macro avg 69.1 72.7 72.1 73.1 72.5 72.5 81.5 81.4
Model 0 71.5 72.2 78.4 79.7 76.5 76.6 33.3 33.3
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Dynabench interface
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The prompt condition
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Validation

Same as in Round 1.
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Resulting dataset

Dist Majority Label
Train Train Dev Test

Positive 32,551 6,038 240 240
Negative 24,994 4,579 240 240
Neutral 16,365 2,448 240 240
Mixed 18,765 3,334 0 0
No Majority – 2,136 0 0
Total 92,675 18,535 720 720

19% adversarial examples
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Model 1 versus the humans
Model 1

SST-3 Yelp Amazon Round 1 Round 2
Dev Test Dev Test Dev Test Dev Test Dev Test

Positive 84.6 88.6 80.0 83.1 83.3 83.3 81.0 80.4 33.3 33.3
Negative 82.7 84.4 79.5 79.6 78.7 78.8 80.5 80.2 33.3 33.3
Neutral 40.0 45.2 56.7 56.6 55.5 55.4 83.1 83.5 33.3 33.3

Macro avg 69.1 72.7 72.1 73.1 72.5 72.5 81.5 81.4 33.3 33.3

Five annotators synthesized from our crowd

Dev Test

Positive 91.0 90.9
Negative 91.2 91.0
Neutral 88.9 88.2

Macro avg 90.4 90.0

Note: 116/244 workers never disagreed with the majority label.
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Randomly sampled (short) examples

Sentence Model 1 Responses

The place was somewhat good and not well neg mix, mix, mix, mix, neg
I bought a new car and met with an accident. neg neg, neg, neg, neg, neg
The retail store is closed for now at least. neg neu, neu, neu, neu, neu
Prices are basically like garage sale prices. neg neg, neu, pos, pos, pos

That book was good. I need to get rid of it. neu mix, mix, mix, neg, pos
I REALLY wanted to like this place neu mix, neg, neg, neg, pos
I’m going to leave my money for the next vet. neu neg, neu, neu, neu, neu
once the model made a super decision. neu pos, pos, pos, pos, pos

I cook my caribbean food and it was okay pos mix, mix, mix, pos, pos
This concept is really cool in name only. pos mix, neg, neg, neg, neu
Wow, it’d be super cool if you could join us pos neu, neu, neu, neu, pos
Knife cut thru it like butter! It was great. pos pos, pos, pos, pos, pos
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Conclusions
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Key open questions

1. Can adversarial training improve systems? (See Jia and
Liang 2017:§4.6; Alzantot et al. 2018:§4.3; Liu et al.
2019; Iyyer et al. 2018.)

2. What constitutes a fair non-IID generalization test?

3. Can hard behavioral testing provide us with the insights
we need when it comes to certifying systems as
trusworthy? If so, which tests? If not, what should be do
instead?

4. Are systems finding systematic solutions?

5. Where humans generalize in ways that are unsupported
by direct experience, how should AI respond in terms of
system design?
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