
Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Contextual word representations

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

1 /81

http://creativecommons.org/licenses/by/4.0/

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Guiding ideas

2 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Static vector representations of words

1. Feature-based (sparse): Classical lexical representations

2. Count-based methods (sparse): PMI, TF-IDF, etc.

3. Classical dimensionality reduction (dense): PCA, SVD,
LDA, etc.

4. Learned dimensionality reduction (dense): autoencoders,
word2vec, GloVe, etc.

Hands-on review:
https://web.stanford.edu/class/cs224u/background.html

3 /81

https://web.stanford.edu/class/cs224u/background.html

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burglar broke into the house.
g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.

4 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

A brief history of contextual representation

1. November 2015: Dai and Le (2015) showed the value of
LM-style pretraining for downstream tasks.

2. August 2017: McCann et al. (2017) (CoVe) pretrained
bi-LSTMs for machine translation and showed that this
was a useful start-state for downstream tasks.

3. February 2018: Peters et al. (2018) (ELMo) first showed
how very large-scale pretraining of bidirectional LSTMs
can lead to rich multipurpose representations.

4. June 2018: Radford et al. (2018) introduced GPT.

5. October 2018: Devlin et al. (2019) introduced BERT.

5 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Model structure and linguistic structure

The Rock

rulesx47 x30

x34
h1

hr

The rock rules

x47 x30 x34

h1 h2 h3

The Rock rules

x47 x30 x34

x

+

The Rock rules

x47 x30 x34

h1 h2 h3

• •• attention

6 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Attention

classifier y = softmax(h̃W+ b)

attention combo h̃ = tanh([κ;hC]Wκ)

context κ =mean ([α1h1, α2h2, α3h3])

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C
h1 h>

C
h2 h>

C
h3

�

really goodnot so

x36 x45 x39 x11

h1 h2 h3 hC

7 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Subword modeling in ELMo

r u l e s

Filters of different length, obtained
via dense layers processing the
input character embeddings and
combined via max-pooling:

4 2 6 1

1 7 8 2

1 3 9 3

4 7 9 3

Max-pooling layers concatenated
to form the word representation

8 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Guiding idea: Word pieces
iQF2MBxBM;

J�`+? ke- kyky

(R), 7`QK i`�Mb7Q`K2`b BKTQ`i "2`ihQF2MBx2`

(k), iQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/U^#2`i@#�b2@+�b2/^V

(j), iQF2MBx2`XiQF2MBx2U]h?Bb BbM^i iQQ bm`T`BbBM;X]V

(j), (^h?Bb^- ^BbM^-]^]- ^i^- ^iQQ^- ^bm`T`BbBM;^- ^X^)

(9), iQF2MBx2`XiQF2MBx2U]1M+Q/2 K25]V

(9), (^1M^- ^OO+Q/2^- ^K2^- ^5^)

(8), iQF2MBx2`XiQF2MBx2U]aMm77H2mT�;mb\]V

(8), (^a^- ^OOMm^- ^OO77H2^- ^OOmT^- ^OO�;m^- ^OOb^- ^\^)

(e), iQF2MBx2`XpQ+�#nbBx2

(e), k3NNe

R

9 /81

Sennrich et al. 2016,
https://github.com/google/sentencepiece

https://github.com/google/sentencepiece

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Guiding idea: Positional encoding

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

10 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Guiding idea: Massive scale pretraining

11 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Guiding idea: Fine-tuning

1. 2016–2018: Static word representation as RNN
embeddings

2. 2018–:

}M2imMBM;

�T`BH RR- kykR

(jR), +H�bb >7"2`i*H�bbB7B2`JQ/2HUMMXJQ/mH2V,
/27 nnBMBinnUb2H7- Mn+H�bb2b- r2B;?ibnM�K24^#2`i@#�b2@+�b2/^V,

bmT2`UVXnnBMBinnUV
b2H7XMn+H�bb2b 4 Mn+H�bb2b
b2H7Xr2B;?ibnM�K2 4 r2B;?ibnM�K2
b2H7X#2`i 4 "2`iJQ/2HX7`QKnT`2i`�BM2/Ub2H7Xr2B;?ibnM�K2V
b2H7X#2`iXi`�BMUV
b2H7X?B//2Mn/BK 4 b2H7X#2`iX2K#2//BM;bXrQ`/n2K#2//BM;bX2K#2//BM;n/BK
O h?2 QMHv M2r T�`�K2i2`b @@ i?2 +H�bbB7B2`,
b2H7X+H�bbB7B2`nH�v2` 4 MMXGBM2�`U

b2H7X?B//2Mn/BK- b2H7XMn+H�bb2bV

/27 7Q`r�`/Ub2H7- BM/B+2b- K�bFV,
`2Tb 4 b2H7X#2`iU

BM/B+2b- �ii2MiBQMnK�bF4K�bFV
`2im`M b2H7X+H�bbB7B2`nH�v2`U`2TbXTQQH2`nQmiTmiV

(jk), +H�bb >7"2`i*H�bbB7B2`UhQ`+?a?�HHQrL2m`�H*H�bbB7B2`V,
/27 nnBMBinnUb2H7- r2B;?ibnM�K2- �`;b- Fr�`;bV,

b2H7Xr2B;?ibnM�K2 4 r2B;?ibnM�K2
b2H7XiQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/Ub2H7Xr2B;?ibnM�K2V
bmT2`UVXnnBMBinnU �`;b- Fr�`;bV
b2H7XT�`�Kb Y4 (^r2B;?ibnM�K2^)

/27 #mBH/n;`�T?Ub2H7V,
`2im`M >7"2`i*H�bbB7B2`JQ/2HUb2H7XMn+H�bb2bn- b2H7Xr2B;?ibnM�K2V

/27 #mBH/n/�i�b2iUb2H7- s- v4LQM2V,
/�i� 4 b2H7XiQF2MBx2`X#�i+?n2M+Q/2nTHmbU

s-
K�tnH2M;i?4LQM2-
�//nbT2+B�HniQF2Mb4h`m2-
T�//BM;4^HQM;2bi^-
`2im`Mn�ii2MiBQMnK�bF4h`m2V

BM/B+2b 4 iQ`+?Xi2MbQ`U/�i�(^BMTminB/b^)V
K�bF 4 iQ`+?Xi2MbQ`U/�i�(^�ii2MiBQMnK�bF^)V
B7 v Bb LQM2,

R

3. 2021–:

12 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

The Transformer

13 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Core model structure

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

cinput = x34 + p3

aattn battn cattn c
attn

= sum
��

α1ainput, α2binput
��

α = softmax(α̃)

α̃ =

�

cinput>ainput
p

dk
,
cinput>binput

p

dk

�

calayer calayer =Dropout
�

c
attn

+ cinput
�

+ + +

canorm canorm =
calayer−mean(calayer)

std(calayer)+ϵ

norm norm norm

cff cff = ReLU(canormW1 + b1)W2 + b2

cfflayer cfflayer = canorm +Dropout(cff)

+ + +

cout cout =
cfflayer−mean(cfflayer)

std(cfflayer)+ϵ

norm norm norm

14 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Computing the attention representations

Calculation as previously given

cattn = sum
��

α1ainput, α2binput
��

α = softmax(α̃)

α̃ =

�

cinput>ainput
p

dk
,
cinput>binput

p

dk

�

Matrix format

softmax









cinput

�

ainput
binput

�>

p

dk









�

ainput
binput

�

15 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Computing the attention representations
�ii2MiBQMn+QKTmi�iBQMb

J�`+? k3- kyky

(R), BKTQ`i MmKTv �b MT

(k), b2[nH2M;i? 4 j
/nF 4 9

(j), BMTmib 4 MTX`�M/QKXmMB7Q`KUbBx24Ub2[nH2M;i?- /nFVV
BMTmib

(j), �``�vU((yXjR9jeNkk- yXeeNeNjyd- yXkdy3y9 - yXdkykj8y9)-
(yX3dR3yRjk- yXkdejd998- yX9jyNR3ed- yXj9Rj3dy9)-
(yXkykNky89- yXej98RjR - yXyRy83j9j- yXkk39eeje))V

(9), �nBMTmi 4 BMTmib(y)
#nBMTmi 4 BMTmib(R)
+nBMTmi 4 BMTmib(k)

(),

(),

(),

(),

(),

(),

(),

(),

(),

(),

(),

R

15 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Computing the attention representations(),

(8), /27 bQ7iK�tUsV,
x 4 MTX2tTUsV
`2im`M Ux f xXbmKU�tBb4yVVXh

(e), +n�HT?� 4 bQ7iK�tU(
U+nBMTmiX/QiU�nBMTmiV f MTXb[`iU/nFVV-
U+nBMTmiX/QiU#nBMTmiV f MTXb[`iU/nFVV)V

(d), +n�iiM 4 bmKU(+n�HT?�(y) �nBMTmi- +n�HT?�(R) #nBMTmi)V
+n�iiM

(d), �``�vU(yX8dde3ykd- yX93jNyjj3- yXj9e9je9e- yX89Rk3yde)V

(3), �# 4 BMTmib(,@R)

(N), bQ7iK�tU+nBMTmiX/QiU�#XhV f MTXb[`iU/nFVVX/QiU�#V

(N), �``�vU(yX8dde3ykd- yX93jNyjj3- yXj9e9je9e- yX89Rk3yde)V

(Ry), O A7 r2 �HHQr 2p2`v BMTmi iQ �ii2M/ iQ Bib2H7,
bQ7iK�tUBMTmibX/QiUBMTmibXhV f MTXb[`iU/nFVVX/QiUBMTmibV

(Ry), �``�vU((yX9eR9j33 - yX8jky9999- yXk98RkRk - yX98RjeRkd)-
(yX8yRdjRkj- yX8yeR3kdk- yXkeR399y9- yX9jed3k33)-
(yX989Nj9ed- yX8jjkjk3 - yXkje9j9yj- yX9j33k9k))V

k

15 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Multi-headed attention

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

b1
attn

a1
attn

c1
attn

b2
attn

a2
attn

c2
attn

b3
attn

a3
attn

c3
attn

a2
attn

a1
attn

a3
attn

b2
attn

b1
attn

b3
attn

c2
attn

c1
attn

c3
attn

c1
attn

= sum
��

α1(ainputW
V
1
), α2(binputW

V
1

��

α = softmax(α̃)

α̃ =





(cinputW
Q
1)
>(ainputWK

1
)

p

dk
,
(cinputW

Q
1)
>(binputWK

1
)

p

dk





c2
attn

= sum
��

α1(ainputW
V
2
), α2(binputW

V
2

��

α = softmax(α̃)

α̃ =





(cinputW
Q
2)
>(ainputWK

2
)

p

dk
,
(cinputW

Q
2)
>(binputWK

2
)

p

dk





c3
attn

= sum
��

α1(ainputW
V
3
), α2(binputW

V
3

��

α = softmax(α̃)

α̃ =





(cinputW
Q
3)
>(ainputWK

3
)

p

dk
,
(cinputW

Q
3)
>(binputWK

3
)

p

dk





16 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Repeated transformer blocks

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

aattn battn cattn

calayer

+ + +

canorm

norm norm norm

cff

cfflayer

+ + +

cout

norm norm norm

Repeated N times with
cout serving as cinput at
each successive layer.

Includes multi-headed
attention in each block

17 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

The architecture diagram

18 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

A view from PyTorch

19 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Positional encoding

20 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

The role of positional encoding

• The Transformer has a very limited capacity to keep
track of word order:
É the attention connections are not directional, and
É there are no other interactions between the columns.

• Positional encodings ensure differences between A B C
and C B A.

• Positional encodings have also been used to keep track
of hierarchical notions of position like premise/hypothesis
in Natural Language Inference.

21 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Evaluating positional encoding schemes

1. Does the set of positions need to be decided ahead of
time?

2. Does the scheme hinder generalization to new positions?

Models will tend to impose a max length on the sequences
they can process for reasons relating to their learned
weights. We will ask whether different positional encoding
schemes are imposing anything about length generalization
separate from this.

22 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Absolute positional encoding

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

Limitations
1. Set of position needs to be decided ahead of time.
2. May hinder generalization to new positions, even for

familiar phenomena:

The 1 Rock 2 The 15 Rock 16

23 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Frequency-based positional encoding

Limitations
1. Set of position needs to be decided ahead of time.
2. May hinder generalization to new positions, even for

familiar phenomena.

24 /81

‘The Annotated Transformer’

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Relative positional encoding: Basics

Previously
cattn = sum

��

αc
1ainput, α

c
2binput

��

αc = softmax

��

cinput>ainput
p

dk
,
cinput>binput

p

dk

��

ainput binput cinput

aattn battn cattn

Relative encoding
cattn = sum

��

αc
1ainput + aV3,1, α

c
2binput + aV3,2

��

αc = softmax









cinput>(ainput + aK3,1)
p

dk

cinput>(binput + aK3,2)
p

dk









25 /81

Shaw et al. 2018

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Relative positional encoding: Windows

cattn = sum
��

αc1ainput + aV3,1, α
c
2binput + aV3,2

��

αc = softmax









cinput>(ainput + aK3,1)
p

dk

cinput>(binput + aK3,2)
p

dk









With window size d = 2:

ainput binput cinput dinput einput finput ginput

1 2 3 4 5 6 7

aK
4,1

= wK
−2 aK

4,2
= wK

−2 aK
4,3

= wK
−1 aK

4,4
= wK

0
aK
4,5

= wK
1

aK
4,6

= wK
2

aK
4,7

= wK
2

aK
3,1

= wK
−2 aK

3,2
= wK

−1 aK
3,3

= wK
0

Same logic for the representations aVij .

26 /81

Shaw et al. 2018

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Relative positional encoding: Full definition
With learned attention parameters:

attni =
n
∑

j=1

αij
�

xjW
V + aV

ij

�

αij = softmax

(xiWQ)>(xjWK + aKij)
p

dk

!

Limitations
1. Set of position needs to be decided ahead of time.
2. May hinder generalization to new positions, even for

familiar phenomena.

The Rock

wK
0

wK
1

wK
−1

27 /81

Shaw et al. 2018

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT

28 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Autoregressive loss function

For vocabulary V, sequence x = [x1, . . . ,xT], and word-level
embedding e:

max
θ

T
∑

t=1

log
exp

�

e(xt)>hθ(x1:t−1)
�

∑

x′∈V exp
�

e(x′)>hθ(x1:t−1)
�

for model parameters hθ.

29 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Conditional language modeling

x = [〈s〉,The,Rock, rules, 〈/s〉]

t1 t2 t3 t4

〈s〉 The Rock rules

x0 x47 x30 x34

h1 h2 h3 h4

The Rock rules 〈/s〉

t2 t3 t4 t5

Rock ∝ exp

�

x30 > h2

�

30 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT

〈s〉 0 The 1 Rock 2 rules 3

x47 p0 x47 p1 x30 p2 x34 p3

〈s〉in ain bin cin

+ + + +

〈s〉out aout bout cout

Transformer blocks

The Rock rules 〈/s〉

31 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Attention masking

ainput binput cinput

aattn battn cattn

32 / 81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Training with teacher forcing

[1,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] [0,0,0,0,1,0,0,0] [0,0,0,0,0,1,0,0]

dk × |V | dk × |V | dk × |V | dk × |V |

[BOS] The Rock rules

dk × |V | dk × |V | dk × |V | dk × |V |

[0,0,
Th

e
1,0,0,0,0,0] [0,0,0,0,

R
oc
k

1,0,0,0] [0,0,0,0,0,

ru
le
s

1,0,0] [0,

[E
O
S
]

1 ,0,0,0,0,0,0]

[1,7,9,2,3,4,8,1] [3,2,1,1,6,5,4,4] [1,2,4,6,2,1,0, 7] [1,9,2,1,2,3,3,6]

33 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Generation

[1,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0]

dk × |V | dk × |V |

[BOS] The

dk × |V | dk × |V |

[0,0,
Th

e
1,0,0,0,0,0] [0,0,0,0,

R
oc
k

1,0,0,0]

[0,0,0,0,1,0,0,0]

dk × |V |

Rock

dk × |V |

[1,2,4,6,2,1,0,

ro
lls

7]

[0,0,0,0,0,0,0,1]

dk × |V |

rolls

dk × |V |

[1,1,1,

al
on

g

9 ,1,3,1]

34 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Fine-tuning

〈s〉 0 The 1 Rock 2 rules 3

x47 p0 x47 p1 x30 p2 x34 p3

〈s〉in ain bin cin

+ + + +

〈s〉out aout bout cout

Transformer blocks

35 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Fine-tuning

〈s〉 0 The 1 Rock 2 rules 3

x47 p0 x47 p1 x30 p2 x34 p3

〈s〉in ain bin cin

+ + + +

〈s〉out aout bout cout

Transformer blocks

35 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Fine-tuning

〈s〉 0 The 1 Rock 2 rules 3

x47 p0 x47 p1 x30 p2 x34 p3

〈s〉in ain bin cin

+ + + +

〈s〉out aout bout cout

Transformer blocks

35 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Fine-tuning

〈s〉 0 The 1 Rock 2 rules 3

x47 p0 x47 p1 x30 p2 x34 p3

〈s〉in ain bin cin

+ + + +

〈s〉out aout bout cout

Transformer blocks

35 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Scaling up from OpenAI

Layers dk dff Parameters

GPT (Radford et al. 2018) 12 768 3,072 117M
GPT-2 (Radford et al. 2019) 48 1,600 1,600 1,542M
GPT-3 (Brown et al. 2020) 96 12,288 ? 175,000M

The GPT-3 paper also reports on models ranging in size from 125M to
13B (Table 2.1).

36 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

GPT: Scaling up truly open models

Layers dk dff Parameters

GPT-Neo (Eleuther) 24 2,048 2,048 2,700M
GPT-J (Eleuther) 28 4,096 16,384 6,000M
GPT-NeoX (Eleuther) 44 6,144 6,144 20,000M
OPT-66B (Zhang et al. 2022) 64 9,216 9,216 66,000M
BLOOM (Scao et al. 2022) 70 14,336 14,336 176,247M

This table will be out of date by the time anyone reads it, if not
before!

37 /81

https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/EleutherAI/gpt-neox-20b

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT

38 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT: Core model structure

[CLS] 0 SentA The 1 SentA Rock 2 SentA rules 3 SentA [SEP] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x34 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

39 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Masked Language Modeling (MLM)

[CLS] 0 SentA The 1 SentA Rock 2 SentA rules 3 SentA [SEP] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x34 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

rules

masking: none

40 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Masked Language Modeling (MLM)

[CLS] 0 SentA The 1 SentA Rock 2 SentA [MASK] 3 SentA [SEP] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x0 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

rules

masking: [MASK]

40 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Masked Language Modeling (MLM)

[CLS] 0 SentA The 1 SentA Rock 2 SentA every 3 SentA [SEP] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x10 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

rules

masking: random word

40 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT: MLM loss function

For Transformer parameters Hθ and sequence x = [x1, . . . ,xT]
with masked version x̂:

max
θ

T
∑

t=1

mt log
exp

�

e(xt)>Hθ(x̂)t
�

∑

x′∈V exp
�

e(x′)>Hθ(x̂)t
�

where V is the vocabulary, xt is the actual token at step t,
mt = 1 if token t was masked, else 0, and e(x) is the
embedding for x.

41 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Binary next sentence prediction pretraining

Positive: Actual sentence sequences
• [CLS] the man went to [MASK] store [SEP]
• he bought a gallon [MASK] milk [SEP]
• Label: IsNext

Negative: Randomly chosen second sentence
• [CLS] the man went to [MASK] store [SEP]
• penguin [MASK] are flight ##less birds [SEP]
• Label: NotNext

42 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT: Transfer learning and fine-tuning

[CLS] 0 SentA The 1 SentA Rock 2 SentA rules 3 SentA [SEP] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x34 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

your task
params

your task labels

43 / 81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Tokenization and the BERT embedding spaceiQF2MBxBM;

J�`+? ke- kyky

(R), 7`QK i`�Mb7Q`K2`b BKTQ`i "2`ihQF2MBx2`

(k), iQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/U^#2`i@#�b2@+�b2/^V

(j), iQF2MBx2`XiQF2MBx2U]h?Bb BbM^i iQQ bm`T`BbBM;X]V

(j), (^h?Bb^- ^BbM^-]^]- ^i^- ^iQQ^- ^bm`T`BbBM;^- ^X^)

(9), iQF2MBx2`XiQF2MBx2U]1M+Q/2 K25]V

(9), (^1M^- ^OO+Q/2^- ^K2^- ^5^)

(8), iQF2MBx2`XiQF2MBx2U]aMm77H2mT�;mb\]V

(8), (^a^- ^OOMm^- ^OO77H2^- ^OOmT^- ^OO�;m^- ^OOb^- ^\^)

(e), iQF2MBx2`XpQ+�#nbBx2

(e), k3NNe

R

44 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT: Core model releases

Layers dk dff Parameters

BERT-tiny 2 128 512 4M
BERT-mini 4 246 1,024 11M
BERT-small 4 512 2,048 29M
BERT-medium 8 512 2,048 41M
BERT-base 12 768 3,072 110M
BERT-large 24 1,024 4,096 340M

Limited to sequences of 512 tokens due to dimensionality of
the positional embeddings.

Many new releases at the project site and on Hugging Face,
including BERT variants for different languages.

45 /81

https://github.com/google-research/bert
https://huggingface.co

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT: Known limitations

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”

46 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

RoBERTa

47 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”

48 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Robustly optimized BERT approach

BERT RoBERTa

Static masking/substitution Dynamic masking/substitution

Inputs are two concatenated
document segments

Inputs are sentence sequences that
may span document boundaries

Next Sentence Prediction (NSP) No NSP

Training batches of 256 examples Training batches of 2,000 examples

Word-piece tokenization Character-level byte-pair encoding

Pretraining on BooksCorpus and
English Wikipedia

Pretraining on BooksCorpus,
Wikipedia, CC-News, OpenWebText,
Stories

Train for 1M steps Train for up to 500K steps

Train on short sequences first Train only on full-length sequences

Additional differences in the optimizer and data presentation (sec 3.1).

49 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

RoBERTa results informing final system design

V2.0 some questions are not answered in the pro-

vided context, making the task more challenging.

For SQuAD V1.1 we adopt the same span pre-

diction method as BERT (Devlin et al., 2019). For

SQuAD V2.0, we add an additional binary classi-

fier to predict whether the question is answerable,

which we train jointly by summing the classifica-

tion and span loss terms. During evaluation, we

only predict span indices on pairs that are classi-

fied as answerable.

RACE The ReAding Comprehension from Ex-

aminations (RACE) (Lai et al., 2017) task is a

large-scale reading comprehension dataset with

more than 28,000 passages and nearly 100,000

questions. The dataset is collected from English

examinations in China, which are designed for

middle and high school students. In RACE, each

passage is associated with multiple questions. For

every question, the task is to select one correct an-

swer from four options. RACE has significantly

longer context than other popular reading compre-

hension datasets and the proportion of questions

that requires reasoning is very large.

4 Training Procedure Analysis

This section explores and quantifies which choices

are important for successfully pretraining BERT

models. We keep the model architecture fixed.7

Specifically, we begin by training BERT models

with the same configuration as BERTBASE (L =
12, H = 768, A = 12, 110M params).

4.1 Static vs. Dynamic Masking

As discussed in Section 2, BERT relies on ran-

domly masking and predicting tokens. The orig-

inal BERT implementation performed masking

once during data preprocessing, resulting in a sin-

gle static mask. To avoid using the same mask for

each training instance in every epoch, training data

was duplicated 10 times so that each sequence is

masked in 10 different ways over the 40 epochs of

training. Thus, each training sequence was seen

with the same mask four times during training.

We compare this strategy with dynamic mask-

ing where we generate the masking pattern every

time we feed a sequence to the model. This be-

comes crucial when pretraining for more steps or

with larger datasets.

7Studying architectural changes, including larger archi-
tectures, is an important area for future work.

Masking SQuAD 2.0 MNLI-m SST-2

reference 76.3 84.3 92.8

Our reimplementation:

static 78.3 84.3 92.5

dynamic 78.7 84.0 92.9

Table 1: Comparison between static and dynamic
masking for BERTBASE . We report F1 for SQuAD and
accuracy for MNLI-m and SST-2. Reported results are
medians over 5 random initializations (seeds). Refer-
ence results are from Yang et al. (2019).

Results Table 1 compares the published

BERTBASE results from Devlin et al. (2019) to our

reimplementation with either static or dynamic

masking. We find that our reimplementation

with static masking performs similar to the

original BERT model, and dynamic masking is

comparable or slightly better than static masking.

Given these results and the additional efficiency

benefits of dynamic masking, we use dynamic

masking in the remainder of the experiments.

4.2 Model Input Format and Next Sentence

Prediction

In the original BERT pretraining procedure, the

model observes two concatenated document seg-

ments, which are either sampled contiguously

from the same document (with p = 0.5) or from

distinct documents. In addition to the masked lan-

guage modeling objective, the model is trained to

predict whether the observed document segments

come from the same or distinct documents via an

auxiliary Next Sentence Prediction (NSP) loss.

The NSP loss was hypothesized to be an impor-

tant factor in training the original BERT model.

Devlin et al. (2019) observe that removing NSP

hurts performance, with significant performance

degradation on QNLI, MNLI, and SQuAD 1.1.

However, some recent work has questioned the

necessity of the NSP loss (Lample and Conneau,

2019; Yang et al., 2019; Joshi et al., 2019).

To better understand this discrepancy, we com-

pare several alternative training formats:

• SEGMENT-PAIR+NSP: This follows the original

input format used in BERT (Devlin et al., 2019),

with the NSP loss. Each input has a pair of seg-

ments, which can each contain multiple natural

sentences, but the total combined length must

be less than 512 tokens.

50 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

RoBERTa results informing final system design

Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE

Our reimplementation (with NSP loss):

SEGMENT-PAIR 90.4/78.7 84.0 92.9 64.2

SENTENCE-PAIR 88.7/76.2 82.9 92.1 63.0

Our reimplementation (without NSP loss):

FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8

DOC-SENTENCES 90.6/79.7 84.7 92.7 65.6

BERTBASE 88.5/76.3 84.3 92.8 64.3

XLNetBASE (K = 7) –/81.3 85.8 92.7 66.1

XLNetBASE (K = 6) –/81.0 85.6 93.4 66.7

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are
trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m,
SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERTBASE and
XLNetBASE are from Yang et al. (2019).

• SENTENCE-PAIR+NSP: Each input contains a

pair of natural sentences, either sampled from

a contiguous portion of one document or from

separate documents. Since these inputs are sig-

nificantly shorter than 512 tokens, we increase

the batch size so that the total number of tokens

remains similar to SEGMENT-PAIR+NSP. We re-

tain the NSP loss.

• FULL-SENTENCES: Each input is packed with

full sentences sampled contiguously from one

or more documents, such that the total length is

at most 512 tokens. Inputs may cross document

boundaries. When we reach the end of one doc-

ument, we begin sampling sentences from the

next document and add an extra separator token

between documents. We remove the NSP loss.

• DOC-SENTENCES: Inputs are constructed sim-

ilarly to FULL-SENTENCES, except that they

may not cross document boundaries. Inputs

sampled near the end of a document may be

shorter than 512 tokens, so we dynamically in-

crease the batch size in these cases to achieve

a similar number of total tokens as FULL-

SENTENCES. We remove the NSP loss.

Results Table 2 shows results for the four dif-

ferent settings. We first compare the original

SEGMENT-PAIR input format from Devlin et al.

(2019) to the SENTENCE-PAIR format; both for-

mats retain the NSP loss, but the latter uses sin-

gle sentences. We find that using individual

sentences hurts performance on downstream

tasks, which we hypothesize is because the model

is not able to learn long-range dependencies.

We next compare training without the NSP

loss and training with blocks of text from a sin-

gle document (DOC-SENTENCES). We find that

this setting outperforms the originally published

BERTBASE results and that removing the NSP loss

matches or slightly improves downstream task

performance, in contrast to Devlin et al. (2019).

It is possible that the original BERT implementa-

tion may only have removed the loss term while

still retaining the SEGMENT-PAIR input format.

Finally we find that restricting sequences to

come from a single document (DOC-SENTENCES)

performs slightly better than packing sequences

from multiple documents (FULL-SENTENCES).

However, because the DOC-SENTENCES format

results in variable batch sizes, we use FULL-

SENTENCES in the remainder of our experiments

for easier comparison with related work.

4.3 Training with large batches

Past work in Neural Machine Translation has

shown that training with very large mini-batches

can both improve optimization speed and end-task

performance when the learning rate is increased

appropriately (Ott et al., 2018). Recent work has

shown that BERT is also amenable to large batch

training (You et al., 2019).

Devlin et al. (2019) originally trained

BERTBASE for 1M steps with a batch size of

256 sequences. This is equivalent in computa-

tional cost, via gradient accumulation, to training

for 125K steps with a batch size of 2K sequences,

or for 31K steps with a batch size of 8K.

In Table 3 we compare perplexity and end-

RoBERTa choice
for effificient
batching, and
comparisons with
related work.

50 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

RoBERTa results informing final system design

bsz steps lr ppl MNLI-m SST-2

256 1M 1e-4 3.99 84.7 92.7

2K 125K 7e-4 3.68 85.2 92.9

8K 31K 1e-3 3.77 84.6 92.8

Table 3: Perplexity on held-out training data (ppl) and
development set accuracy for base models trained over
BOOKCORPUS and WIKIPEDIA with varying batch
sizes (bsz). We tune the learning rate (lr) for each set-
ting. Models make the same number of passes over the
data (epochs) and have the same computational cost.

task performance of BERTBASE as we increase the

batch size, controlling for the number of passes

through the training data. We observe that train-

ing with large batches improves perplexity for the

masked language modeling objective, as well as

end-task accuracy. Large batches are also easier to

parallelize via distributed data parallel training,8

and in later experiments we train with batches of

8K sequences.

Notably You et al. (2019) train BERT with even

larger batche sizes, up to 32K sequences. We leave

further exploration of the limits of large batch

training to future work.

4.4 Text Encoding

Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

is a hybrid between character- and word-level rep-

resentations that allows handling the large vocab-

ularies common in natural language corpora. In-

stead of full words, BPE relies on subwords units,

which are extracted by performing statistical anal-

ysis of the training corpus.

BPE vocabulary sizes typically range from

10K-100K subword units. However, unicode char-

acters can account for a sizeable portion of this

vocabulary when modeling large and diverse cor-

pora, such as the ones considered in this work.

Radford et al. (2019) introduce a clever imple-

mentation of BPE that uses bytes instead of uni-

code characters as the base subword units. Using

bytes makes it possible to learn a subword vocab-

ulary of a modest size (50K units) that can still en-

code any input text without introducing any “un-

known” tokens.

8Large batch training can improve training efficiency even
without large scale parallel hardware through gradient ac-
cumulation, whereby gradients from multiple mini-batches
are accumulated locally before each optimization step. This
functionality is supported natively in FAIRSEQ (Ott et al.,
2019).

The original BERT implementa-

tion (Devlin et al., 2019) uses a character-level

BPE vocabulary of size 30K, which is learned

after preprocessing the input with heuristic tok-

enization rules. Following Radford et al. (2019),

we instead consider training BERT with a larger

byte-level BPE vocabulary containing 50K sub-

word units, without any additional preprocessing

or tokenization of the input. This adds approxi-

mately 15M and 20M additional parameters for

BERTBASE and BERTLARGE, respectively.

Early experiments revealed only slight dif-

ferences between these encodings, with the

Radford et al. (2019) BPE achieving slightly

worse end-task performance on some tasks. Nev-

ertheless, we believe the advantages of a univer-

sal encoding scheme outweighs the minor degre-

dation in performance and use this encoding in

the remainder of our experiments. A more de-

tailed comparison of these encodings is left to fu-

ture work.

5 RoBERTa

In the previous section we propose modifications

to the BERT pretraining procedure that improve

end-task performance. We now aggregate these

improvements and evaluate their combined im-

pact. We call this configuration RoBERTa for

Robustly optimized BERT approach. Specifi-

cally, RoBERTa is trained with dynamic mask-

ing (Section 4.1), FULL-SENTENCES without NSP

loss (Section 4.2), large mini-batches (Section 4.3)

and a larger byte-level BPE (Section 4.4).

Additionally, we investigate two other impor-

tant factors that have been under-emphasized in

previous work: (1) the data used for pretraining,

and (2) the number of training passes through the

data. For example, the recently proposed XLNet

architecture (Yang et al., 2019) is pretrained us-

ing nearly 10 times more data than the original

BERT (Devlin et al., 2019). It is also trained with

a batch size eight times larger for half as many op-

timization steps, thus seeing four times as many

sequences in pretraining compared to BERT.

To help disentangle the importance of these fac-

tors from other modeling choices (e.g., the pre-

training objective), we begin by training RoBERTa

following the BERTLARGE architecture (L = 24,

H = 1024, A = 16, 355M parameters). We

pretrain for 100K steps over a comparable BOOK-

CORPUS plus WIKIPEDIA dataset as was used in

50 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

RoBERTa results informing final system design

Model data bsz steps
SQuAD

MNLI-m SST-2
(v1.1/2.0)

RoBERTa

with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3

+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4

BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7

XLNetLARGE

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB→ 160GB of text) and pretrain
for longer (100K → 300K → 500K steps). Each row accumulates improvements from the rows above. RoBERTa
matches the architecture and training objective of BERTLARGE . Results for BERTLARGE and XLNetLARGE are from
Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the
Appendix.

Devlin et al. (2019). We pretrain our model using

1024 V100 GPUs for approximately one day.

Results We present our results in Table 4. When

controlling for training data, we observe that

RoBERTa provides a large improvement over the

originally reported BERTLARGE results, reaffirming

the importance of the design choices we explored

in Section 4.

Next, we combine this data with the three ad-

ditional datasets described in Section 3.2. We

train RoBERTa over the combined data with the

same number of training steps as before (100K).

In total, we pretrain over 160GB of text. We ob-

serve further improvements in performance across

all downstream tasks, validating the importance of

data size and diversity in pretraining.9

Finally, we pretrain RoBERTa for significantly

longer, increasing the number of pretraining steps

from 100K to 300K, and then further to 500K. We

again observe significant gains in downstream task

performance, and the 300K and 500K step mod-

els outperform XLNetLARGE across most tasks. We

note that even our longest-trained model does not

appear to overfit our data and would likely benefit

from additional training.

In the rest of the paper, we evaluate our best

RoBERTa model on the three different bench-

marks: GLUE, SQuaD and RACE. Specifically

9Our experiments conflate increases in data size and di-
versity. We leave a more careful analysis of these two dimen-
sions to future work.

we consider RoBERTa trained for 500K steps over

all five of the datasets introduced in Section 3.2.

5.1 GLUE Results

For GLUE we consider two finetuning settings.

In the first setting (single-task, dev) we finetune

RoBERTa separately for each of the GLUE tasks,

using only the training data for the correspond-

ing task. We consider a limited hyperparameter

sweep for each task, with batch sizes ∈ {16, 32}
and learning rates ∈ {1e−5, 2e−5, 3e−5}, with a

linear warmup for the first 6% of steps followed by

a linear decay to 0. We finetune for 10 epochs and

perform early stopping based on each task’s eval-

uation metric on the dev set. The rest of the hyper-

parameters remain the same as during pretraining.

In this setting, we report the median development

set results for each task over five random initial-

izations, without model ensembling.

In the second setting (ensembles, test), we com-

pare RoBERTa to other approaches on the test set

via the GLUE leaderboard. While many submis-

sions to the GLUE leaderboard depend on multi-

task finetuning, our submission depends only on

single-task finetuning. For RTE, STS and MRPC

we found it helpful to finetune starting from the

MNLI single-task model, rather than the baseline

pretrained RoBERTa. We explore a slightly wider

hyperparameter space, described in the Appendix,

and ensemble between 5 and 7 models per task.

50 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

RoBERTa: Core model releases

Layers dk dff Parameters

RobERTa-base 12 768 3,072 125M
RobERTa-large 24 1,024 4,096 355M

51 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Related work

A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky
Department of Computer Science, University of Massachusetts Lowell

Lowell, MA 01854
{arogers, okovalev, arum}@cs.uml.edu

Abstract

Transformer-based models are now widely
used in NLP, but we still do not understand a
lot about their inner workings. This paper de-
scribes what is known to date about the famous
BERT model (Devlin et al., 2019), synthesiz-
ing over 40 analysis studies. We also provide
an overview of the proposed modifications to
the model and its training regime. We then out-
line the directions for further research.

1 Introduction

Since their introduction in 2017, Transformers
(Vaswani et al., 2017) took NLP by storm, of-
fering enhanced parallelization and better model-
ing of long-range dependencies. The best known
Transformer-based model is BERT (Devlin et al.,
2019) which obtained state-of-the-art results in nu-
merous benchmarks, and was integrated in Google
search1, improving an estimated 10% of queries.

While it is clear that BERT and other
Transformer-based models work remarkably well,
it is less clear why, which limits further hypothesis-
driven improvement of the architecture. Unlike
CNNs, the Transformers have little cognitive mo-
tivation, and the size of these models limits our
ability to experiment with pre-training and perform
ablation studies. This explains a large number of
studies over the past year that attempted to under-
stand the reasons behind BERT’s performance.

This paper provides an overview of what has
been learned to date, highlighting the questions
which are still unresolved. We focus on the studies
investigating the types of knowledge learned by
BERT, where this knowledge is represented, how it
is learned, and the methods proposed to improve it.

1https://blog.google/products/search/
search-language-understanding-bert

2 Overview of BERT architecture

Fundamentally, BERT is a stack of Transformer
encoder layers (Vaswani et al., 2017) which consist
of multiple “heads”, i.e., fully-connected neural
networks augmented with a self-attention mecha-
nism. For every input token in a sequence, each
head computes key, value and query vectors, which
are used to create a weighted representation. The
outputs of all heads in the same layer are combined
and run through a fully-connected layer. Each layer
is wrapped with a skip connection and layer nor-
malization is applied after it.

The conventional workflow for BERT consists
of two stages: pre-training and fine-tuning. Pre-
training uses two semi-supervised tasks: masked
language modeling (MLM, prediction of randomly
masked input tokens) and next sentence prediction
(NSP, predicting if two input sentences are adjacent
to each other). In fine-tuning for downstream ap-
plications, one or more fully-connected layers are
typically added on top of the final encoder layer.

The input representations are computed as fol-

Figure 1: BERT fine-tuning (Devlin et al., 2019).

ar
X

iv
:2

00
2.

12
32

7v
1

 [c
s.C

L]
 2

7
Fe

b
20

20

52 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA

53 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”

54 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Core model structure (Clark et al. 2019)

the

chef

cooked

the

meal

x

[MASK]

chef

[MASK]

the

meal

xmasked

Random sample of
≈15% of tokens masked

Generator
(typically a
small MLM;
paper uses

the BERT loss)

ate

chef

the

the

meal

xcorrupt

Masked tokens replaced
proportional to Gen-
erator probabilities

Discriminator
(ELECTRA)

re-
placed

original

original

original

original

Loss:
Generator +
λ ELECTRA

55 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Generator/Discriminator relationships
Where Generator and Discriminator are the same size, they
can share Transformer parameters, and more sharing is
better. However, the best results come from having a
Generator that is small compared to the Discriminator:

Published as a conference paper at ICLR 2020

Figure 3: Left: GLUE scores for different generator/discriminator sizes (number of hidden units).
Interestingly, having a generator smaller than the discriminator improves results. Right: Comparison
of different training algorithms. As our focus is on efficiency, the x-axis shows FLOPs rather than
train steps (e.g., ELECTRA is trained for fewer steps than BERT because it includes the generator).

tied token embeddings because masked language modeling is particularly effective at learning these
representations: while the discriminator only updates tokens that are present in the input or are
sampled by the generator, the generator’s softmax over the vocabulary densely updates all token
embeddings. On the other hand, tying all encoder weights caused little improvement while incurring
the significant disadvantage of requiring the generator and discriminator to be the same size. Based
on these findings, we use tied embeddings for further experiments in this paper.

Smaller Generators If the generator and discriminator are the same size, training ELECTRA
would take around twice as much compute per step as training only with masked language mod-
eling. We suggest using a smaller generator to reduce this factor. Specifically, we make models
smaller by decreasing the layer sizes while keeping the other hyperparameters constant. We also
explore using an extremely simple “unigram” generator that samples fake tokens according their
frequency in the train corpus. GLUE scores for differently-sized generators and discriminators are
shown in the left of Figure 3. All models are trained for 500k steps, which puts the smaller gen-
erators at a disadvantage in terms of compute because they require less compute per training step.
Nevertheless, we find that models work best with generators 1/4-1/2 the size of the discriminator. We
speculate that having too strong of a generator may pose a too-challenging task for the discriminator,
preventing it from learning as effectively. In particular, the discriminator may have to use many of
its parameters modeling the generator rather than the actual data distribution. Further experiments
in this paper use the best generator size found for the given discriminator size.

Training Algorithms Lastly, we explore other training algorithms for ELECTRA, although these
did not end up improving results. The proposed training objective jointly trains the generator and
discriminator. We experiment with instead using the following two-stage training procedure:

1. Train only the generator with LMLM for n steps.
2. Initialize the weights of the discriminator with the weights of the generator. Then train the

discriminator with LDisc for n steps, keeping the generator’s weights frozen.

Note that the weight initialization in this procedure requires having the same size for the generator
and discriminator. We found that without the weight initialization the discriminator would some-
times fail to learn at all beyond the majority class, perhaps because the generator started so far ahead
of the discriminator. Joint training on the other hand naturally provides a curriculum for the dis-
criminator where the generator starts off weak but gets better throughout training. We also explored
training the generator adversarially as in a GAN, using reinforcement learning to accommodate the
discrete operations of sampling from the generator. See Appendix F for details.

Results are shown in the right of Figure 3. During two-stage training, downstream task performance
notably improves after the switch from the generative to the discriminative objective, but does not
end up outscoring joint training. Although still outperforming BERT, we found adversarial training
to underperform maximum-likelihood training. Further analysis suggests the gap is caused by two

5

56 /81

Clark et al. 2019, Figure 3

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Efficiency

Published as a conference paper at ICLR 2020

Figure 3: Left: GLUE scores for different generator/discriminator sizes (number of hidden units).
Interestingly, having a generator smaller than the discriminator improves results. Right: Comparison
of different training algorithms. As our focus is on efficiency, the x-axis shows FLOPs rather than
train steps (e.g., ELECTRA is trained for fewer steps than BERT because it includes the generator).

tied token embeddings because masked language modeling is particularly effective at learning these
representations: while the discriminator only updates tokens that are present in the input or are
sampled by the generator, the generator’s softmax over the vocabulary densely updates all token
embeddings. On the other hand, tying all encoder weights caused little improvement while incurring
the significant disadvantage of requiring the generator and discriminator to be the same size. Based
on these findings, we use tied embeddings for further experiments in this paper.

Smaller Generators If the generator and discriminator are the same size, training ELECTRA
would take around twice as much compute per step as training only with masked language mod-
eling. We suggest using a smaller generator to reduce this factor. Specifically, we make models
smaller by decreasing the layer sizes while keeping the other hyperparameters constant. We also
explore using an extremely simple “unigram” generator that samples fake tokens according their
frequency in the train corpus. GLUE scores for differently-sized generators and discriminators are
shown in the left of Figure 3. All models are trained for 500k steps, which puts the smaller gen-
erators at a disadvantage in terms of compute because they require less compute per training step.
Nevertheless, we find that models work best with generators 1/4-1/2 the size of the discriminator. We
speculate that having too strong of a generator may pose a too-challenging task for the discriminator,
preventing it from learning as effectively. In particular, the discriminator may have to use many of
its parameters modeling the generator rather than the actual data distribution. Further experiments
in this paper use the best generator size found for the given discriminator size.

Training Algorithms Lastly, we explore other training algorithms for ELECTRA, although these
did not end up improving results. The proposed training objective jointly trains the generator and
discriminator. We experiment with instead using the following two-stage training procedure:

1. Train only the generator with LMLM for n steps.
2. Initialize the weights of the discriminator with the weights of the generator. Then train the

discriminator with LDisc for n steps, keeping the generator’s weights frozen.

Note that the weight initialization in this procedure requires having the same size for the generator
and discriminator. We found that without the weight initialization the discriminator would some-
times fail to learn at all beyond the majority class, perhaps because the generator started so far ahead
of the discriminator. Joint training on the other hand naturally provides a curriculum for the dis-
criminator where the generator starts off weak but gets better throughout training. We also explored
training the generator adversarially as in a GAN, using reinforcement learning to accommodate the
discrete operations of sampling from the generator. See Appendix F for details.

Results are shown in the right of Figure 3. During two-stage training, downstream task performance
notably improves after the switch from the generative to the discriminative objective, but does not
end up outscoring joint training. Although still outperforming BERT, we found adversarial training
to underperform maximum-likelihood training. Further analysis suggests the gap is caused by two

5

57 /81

Clark et al. 2019, Figure 3

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA efficiency analyses

Full ELECTRA

the

chef

cooked

the

meal

x

[MASK]

chef

[MASK]

the

meal

xmasked

Generator
(typically a
small MLM;
paper uses

the BERT loss)

ate

chef

the

the

meal

xcorrupt

Discriminator
(ELECTRA)

re-
placed

original

original

original

original

58 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA efficiency analyses

ELECTRA 15%

the

chef

cooked

the

meal

x

[MASK]

chef

[MASK]

the

meal

xmasked

Generator
(typically a
small MLM;
paper uses

the BERT loss)

ate

chef

the

the

meal

xcorrupt

Discriminator
(ELECTRA)

re-
placed

original

58 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA efficiency analyses

Replace MLM

the

chef

cooked

the

meal

x

dog

chef

run

the

meal

xmaskedxreplaced

Generator
(typically a
small MLM;
paper uses

the BERT loss)

ate

chef

the

the

meal

xcorrupt

cooked

58 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA efficiency analyses

All-tokens MLM

the

chef

cooked

the

meal

x

dog

chef

run

the

meal

xmaskedxreplaced

Generator
(typically a
small MLM;
paper uses

the BERT loss)

ate

chef

the

the

meal

xcorrupt

cooked

58 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA efficiency analyses

Model GLUE score

ELECTRA 85.0
All-tokens MLM 84.3
Replace MLM 82.4
ELECTRA 15% 82.4

BERT 82.2

58 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

ELECTRA model releases

Available from the project site:

Model Layers Hidden Size Params GLUE test

Small 12 256 14M 77.4
Base 12 768 110M 82.7
Large 24 1024 335M 85.2

‘Small’ is the model designed to be “quickly trained on a
single GPU”.

59 /81

https://github.com/google-research/electra

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

seq2seq architectures

60 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Some tasks with natural seq2seq structure

1. Machine translation (language to language)

2. Summarization (text to shorter text)

3. Free-form question answering (question to answer)

4. Dialogue (utterance to utterance)

5. Semantic parsing (sentence to logical form)

6. Code generation (sentence to program)

7. . . .

More general class: encoder–decoder (agnostic about
whether the encoding and decoding involve sequences).

61 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

From the RNN era

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421,
Lisbon, Portugal, 17-21 September 2015. c�2015 Association for Computational Linguistics.

Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong Hieu Pham Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA 94305
{lmthang,hyhieu,manning}@stanford.edu

Abstract

An attentional mechanism has lately been
used to improve neural machine transla-
tion (NMT) by selectively focusing on
parts of the source sentence during trans-
lation. However, there has been little
work exploring useful architectures for
attention-based NMT. This paper exam-
ines two simple and effective classes of at-
tentional mechanism: a global approach
which always attends to all source words
and a local one that only looks at a subset
of source words at a time. We demonstrate
the effectiveness of both approaches on the
WMT translation tasks between English
and German in both directions. With local
attention, we achieve a significant gain of
5.0 BLEU points over non-attentional sys-
tems that already incorporate known tech-
niques such as dropout. Our ensemble
model using different attention architec-
tures yields a new state-of-the-art result in
the WMT’15 English to German transla-
tion task with 25.9 BLEU points, an im-
provement of 1.0 BLEU points over the
existing best system backed by NMT and
an n-gram reranker.1

1 Introduction

Neural Machine Translation (NMT) achieved
state-of-the-art performances in large-scale trans-
lation tasks such as from English to French (Luong
et al., 2015) and English to German (Jean et al.,
2015). NMT is appealing since it requires minimal
domain knowledge and is conceptually simple.
The model by Luong et al. (2015) reads through all
the source words until the end-of-sentence symbol
<eos> is reached. It then starts emitting one tar-
get word at a time, as illustrated in Figure 1. NMT

1All our code and models are publicly available at http:
//nlp.stanford.edu/projects/nmt.

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 1: Neural machine translation – a stack-
ing recurrent architecture for translating a source
sequence A B C D into a target sequence X Y
Z. Here, <eos> marks the end of a sentence.

is often a large neural network that is trained in an
end-to-end fashion and has the ability to general-
ize well to very long word sequences. This means
the model does not have to explicitly store gigantic
phrase tables and language models as in the case
of standard MT; hence, NMT has a small memory
footprint. Lastly, implementing NMT decoders is
easy unlike the highly intricate decoders in stan-
dard MT (Koehn et al., 2003).

In parallel, the concept of “attention” has gained
popularity recently in training neural networks, al-
lowing models to learn alignments between dif-
ferent modalities, e.g., between image objects
and agent actions in the dynamic control problem
(Mnih et al., 2014), between speech frames and
text in the speech recognition task (Chorowski et
al., 2014), or between visual features of a picture
and its text description in the image caption gen-
eration task (Xu et al., 2015). In the context of
NMT, Bahdanau et al. (2015) has successfully ap-
plied such attentional mechanism to jointly trans-
late and align words. To the best of our knowl-
edge, there has not been any other work exploring
the use of attention-based architectures for NMT.

In this work, we design, with simplicity and ef-
fectiveness in mind, two novel types of attention-

1412

h̃t

Attention Layer

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 4: Input-feeding approach – Attentional
vectors h̃t are fed as inputs to the next time steps to
inform the model about past alignment decisions.

3.3 Input-feeding Approach

In our proposed global and local approaches,
the attentional decisions are made independently,
which is suboptimal. Whereas, in standard MT,
a coverage set is often maintained during the
translation process to keep track of which source
words have been translated. Likewise, in atten-
tional NMTs, alignment decisions should be made
jointly taking into account past alignment infor-
mation. To address that, we propose an input-

feeding approach in which attentional vectors h̃t

are concatenated with inputs at the next time steps
as illustrated in Figure 4.11 The effects of hav-
ing such connections are two-fold: (a) we hope
to make the model fully aware of previous align-
ment choices and (b) we create a very deep net-
work spanning both horizontally and vertically.

Comparison to other work – Bahdanau et al.
(2015) use context vectors, similar to our ct, in
building subsequent hidden states, which can also
achieve the “coverage” effect. However, there has
not been any analysis of whether such connections
are useful as done in this work. Also, our approach
is more general; as illustrated in Figure 4, it can be
applied to general stacking recurrent architectures,
including non-attentional models.

Xu et al. (2015) propose a doubly attentional

approach with an additional constraint added to
the training objective to make sure the model pays
equal attention to all parts of the image during the
caption generation process. Such a constraint can

11If n is the number of LSTM cells, the input size of the
first LSTM layer is 2n; those of subsequent layers are n.

also be useful to capture the coverage set effect
in NMT that we mentioned earlier. However, we
chose to use the input-feeding approach since it
provides flexibility for the model to decide on any
attentional constraints it deems suitable.

4 Experiments

We evaluate the effectiveness of our models on the
WMT translation tasks between English and Ger-
man in both directions. newstest2013 (3000 sen-
tences) is used as a development set to select our
hyperparameters. Translation performances are
reported in case-sensitive BLEU (Papineni et al.,
2002) on newstest2014 (2737 sentences) and new-
stest2015 (2169 sentences). Following (Luong et
al., 2015), we report translation quality using two
types of BLEU: (a) tokenized

12 BLEU to be com-
parable with existing NMT work and (b) NIST

13

BLEU to be comparable with WMT results.

4.1 Training Details

All our models are trained on the WMT’14 train-
ing data consisting of 4.5M sentences pairs (116M
English words, 110M German words). Similar to
(Jean et al., 2015), we limit our vocabularies to
be the top 50K most frequent words for both lan-
guages. Words not in these shortlisted vocabular-
ies are converted into a universal token <unk>.

When training our NMT systems, following
(Bahdanau et al., 2015; Jean et al., 2015), we fil-
ter out sentence pairs whose lengths exceed 50
words and shuffle mini-batches as we proceed.
Our stacking LSTM models have 4 layers, each
with 1000 cells, and 1000-dimensional embed-
dings. We follow (Sutskever et al., 2014; Luong
et al., 2015) in training NMT with similar set-
tings: (a) our parameters are uniformly initialized
in [�0.1, 0.1], (b) we train for 10 epochs using
plain SGD, (c) a simple learning rate schedule is
employed – we start with a learning rate of 1; after
5 epochs, we begin to halve the learning rate ev-
ery epoch, (d) our mini-batch size is 128, and (e)
the normalized gradient is rescaled whenever its
norm exceeds 5. Additionally, we also use dropout
for our LSTMs as suggested by (Zaremba et al.,
2015). For dropout models, we train for 12 epochs
and start halving the learning rate after 8 epochs.

Our code is implemented in MATLAB. When

12All texts are tokenized with tokenizer.perl and
BLEU scores are computed with multi-bleu.perl.

13With the mteval-v13a script as per WMT guideline.

1416

62 /81

From Luong et al. 2015, Figures 1 and 4

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Transformer-based optionsRaffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li and Liu

x1 x2 x3 x4

y1 y2 .

En
co

de
r

D
ec

od
er

x1 x2 x3 y1 y2

x2 x3 y1 y2 .

Language model

x1 x2 x3 y1 y2

x2 x3 y1 y2 .

Prefix LM

Figure 4: Schematics of the Transformer architecture variants we consider. In this diagram,
blocks represent elements of a sequence and lines represent attention visibility.
Di�erent colored groups of blocks indicate di�erent Transformer layer stacks. Dark
grey lines correspond to fully-visible masking and light grey lines correspond
to causal masking. We use “.” to denote a special end-of-sequence token that
represents the end of a prediction. The input and output sequences are represented
as x and y respectively. Left: A standard encoder-decoder architecture uses fully-
visible masking in the encoder and the encoder-decoder attention, with causal
masking in the decoder. Middle: A language model consists of a single Transformer
layer stack and is fed the concatenation of the input and target, using a causal
mask throughout. Right: Adding a prefix to a language model corresponds to
allowing fully-visible masking over the input.

the jth entry of the input sequence. yi is computed as
q

j wi,jxj , where wi,j is the scalar
weight produced by the self-attention mechanism as a function of xi and xj . The attention
mask is then used to zero out certain weights in order to constrain which entries of the input
can be attended to at a given output timestep. Diagrams of the masks we will consider are
shown in Figure 3. For example, the causal mask (Figure 3, middle) sets any wi,j to zero if
j > i.

The first model structure we consider is an an encoder-decoder Transformer, which
consists of two layer stacks: The encoder, which is fed an input sequence, and the decoder,
which produces a new output sequence. A schematic of this architectural variant is shown
in the left panel of Figure 4.

The encoder uses a “fully-visible” attention mask. Fully-visible masking allows a self-
attention mechanism to attend to any entry of the input when producing each entry of
its output. We visualize this masking pattern in Figure 3, left. This form of masking is
appropriate when attending over a “prefix”, i.e. some context provided to the model that
is later used when making predictions. BERT (Devlin et al., 2018) also uses a fully-visible
masking pattern and appends a special “classification” token to the input. BERT’s output
at the timestep corresponding to the classification token is then used to make a prediction
for classifying the input sequence.

16

63 /81

From Raffel et al. 2019, Figure 4

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

T5

Encoder–Decoder variant with extensive multi-task
supervised and unsupervised training. Input task-prefixes
guide model behavior. Lots of pretrained versions.

64 /81

From Raffel et al. 2019, Figure 1

https://huggingface.co/docs/transformers/model_doc/t5

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

T5 model releases

See https://huggingface.co/docs/transformers/model_doc/t5

Layers dk dff Parameters

T5-small 6 512 2,048 60M
T5-base 12 768 3,072 220M
T5-large 24 1,024 4,096 770M
T5-3B 24 1,024 16,384 3,000M
T5-11B 24 1,024 65,536 11,000M

Also: FLAN-T5 models (instruction-tuned) of Chung et al.
2022

65 /81

https://huggingface.co/docs/transformers/model_doc/t5

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BART

• Text infilling
• Sentence shuffling
• Token masking
• Token deletion
• Document rotation

Bidirectional
Encoder

A _ C _ E

B D

(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.

Autoregressive
Decoder

A B C D E

<s> A B C D
(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.

Autoregressive
Decoder

Bidirectional
Encoder

A B C D E

A _ B _ E <s> A B C D
(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.

≈BERT + GPT

Fine-tuning
• Classification: Uncorrupted copies of the input are fed to
the encoder and the decoder. The final decoder state is
usually the basis for classification.
• seq2seq: Standard encoder–decoder usage.

66 /81

Lewis et al. 2019

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Distillation

67 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Trends in model size

68 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Teachers and students

69 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Distillation objectives

From least to most heavy duty; weighted averages of these are
common:

0. Gold data for the task.
1. Teacher’s output labels.
2. Teacher’s output scores (Hinton et al. 2015).
3. Teacher’s final output states (cosine loss; Sanh et al. 2019).
4. Other teacher hidden states and embeddings (Romero et al.

2015)
5. Student is trained to mimic the counterfactual behavior of

the teacher under interventions (Wu et al. 2022).

70 /81

For more: Gou et al. 2021

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Distillation objectives

These can be used in combination to some extent:

1. Standard: One teacher with frozen parameters; only
student parameters are updated.

2. Multi-teacher: An ensemble for the same task or
potentially multi-task.

3. Co-distillation: The teacher and student are trained
jointly. Also called ‘online distillation’ (Anil et al. 2018).

4. Self-distillation: The objective includes terms that seek
to make some model components align with others
(Zhang et al. 2019).

71 /81

For more: Gou et al. 2021

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Distillation performance

Distillation has been applied in many domains. The following
point to a core result for GLUE (Wang et al. 2018): via
distillation, we can increase efficiency with almost no loss in
performance.

1. Sanh et al. (2019): Distill 12-layer BERT-base into 6
layers retaining 97% of GLUE performance.

2. Sun et al. (2019): Distill BERT-base into 3-layer and
6-layer variants, also maintaining good performance on
GLUE.

3. Jiao et al. (2020): Distill BERT-base into 4-layers with
similarly strong GLUE results.

72 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Wrap-up

73 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Other noteworthy architectures

• Transformer XL (Dai et al. 2019): Long contexts via
recurrent connections to previous (frozen) states.

• XLNet (Yang et al. 2019): Bidirectional context with an
autoregressive loss, via sampling of different sequence
orders.

• DeBERTa (He et al. 2021): Separate representations for
word and positions, with distinct attention connections.

74 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

BERT: Known limitations

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.
RoBERTa

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.” ELECTRA

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch” ELECTRA

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language” XLNet!

75 /81

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Pretraining data

1. OpenBookCorpus (Bandy and Vincent 2021):
https://huggingface.co/datasets/bookcorpusopen

2. The Pile (Gao et al. 2020):
https://pile.eleuther.ai

3. Big Science Data (Laurençon et al. 2022):
https://huggingface.co/bigscience-data

4. Wikipedia processing:
https://github.com/attardi/wikiextractor

5. Pushshift Reddit Data (Baumgartner et al. 2020):
https://files.pushshift.io/reddit/

76 /81

https://huggingface.co/datasets/bookcorpusopen
https://pile.eleuther.ai
https://huggingface.co/bigscience-data
https://github.com/attardi/wikiextractor
https://files.pushshift.io/reddit/

Guiding ideas Transformer Pos enc GPT BERT RoBERTa ELECTRA seq2seq Distillation Wrap-up

Current trends

1. Autoregressive architectures seem to have taken over,
possibly just because the field is focused on generation.

2. Bidirectional models may still have the edge when it
comes to representation.

3. seq2seq is still a dominant choice for tasks with that
structure.

4. People are still obsessed with scaling up, but we are
seeing a counter movement towards “smaller” models
(still ≈10B parameters).

77 /81

References

References I
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E. Dahl, and Geoffrey E. Hinton. 2018. Large scale

distributed neural network training through online distillation. ArXiv, abs/1804.03235.
Jack Bandy and Nicholas Vincent. 2021. Addressing" documentation debt" in machine learning research: A retrospective

datasheet for bookcorpus. arXiv preprint arXiv:2105.05241.
Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. 2020. The PushShift Reddit

dataset. In Proceedings of the international AAAI conference on web and social media, volume 14, pages 830–839.
T. Brown, B. Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, P. Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, G. Krüger, Tom Henighan, R. Child, Aditya Ramesh, D. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, E. Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
J. Clark, Christopher Berner, Sam McCandlish, A. Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models
are few-shot learners. ArXiv, abs/2005.14165.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani,
Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2019. Electra: Pre-training text encoders as
discriminators rather than generators. In International Conference on Learning Representations.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond a fixed-length context. ArXiv:1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite,
Noa Nabeshima, Shawn Presser, and Connor Leahy. 2020. The Pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowledge distillation: A survey. International
Journal of Computer Vision, 129:1789–1819.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. DeBERTa: Decoding-enhanced BERT with
disentangled attention. In Proceedings of the International Conference on Learning Representations.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. ArXiv:1503.02531.
Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. TinyBERT: Distilling

BERT for natural language understanding. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 4163–4174, Online. Association for Computational Linguistics.

78 / 81

https://proceedings.neurips.cc/paper_files/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

References

References II
Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro

Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, et al. 2022. The bigscience roots corpus: A 1.6
tb composite multilingual dataset. Advances in Neural Information Processing Systems, 35:31809–31826.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke
Zettlemoyer. 2019. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. ArXiv:1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. ArXiv:1907.11692.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1412–1421, Lisbon, Portugal. Association for Computational Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned in translation: Contextualized word
vectors. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 6294–6305. Curran Associates, Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and
phrases and their compositionality. In Christopher J. C. Burges, Leon Bottou, Max Welling, Zoubin Ghahramani, and
Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran
Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, Doha, Qatar. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018.
Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
2227–2237. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by
generative pre-training. Ms, OpenAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J
Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in bertology: What we know about how bert works.
ArXiv:2002.12327.

79 / 81

https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://www.aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/N18-1202
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/

References

References III
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. 2015.

FitNets: Hints for thin deep nets. In International Conference on Learning Representations.
Alexander Rush. 2018. The annotated Transformer. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS),

pages 52–60, Melbourne, Australia. Association for Computational Linguistics.
Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT: smaller,

faster, cheaper and lighter. arXiv:1910.01108.
Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha

Luccioni, François Yvon, Matthias Gallé, et al. 2022. Bloom: A 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations.
ArXiv:1803.02155.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient knowledge distillation for BERT model compression. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4323–4332, Hong Kong, China. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.
Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Zhengxuan Wu, Atticus Geiger, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, and Noah D.
Goodman. 2022. Causal distillation for language models. In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4288–4295,
Seattle, United States. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized
autoregressive pretraining for language understanding. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 5753–5763. Curran
Associates, Inc.

80 / 81

https://arxiv.org/pdf/1412.6550.pdf
https://doi.org/10.18653/v1/W18-2509
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/1803.02155
https://doi.org/10.18653/v1/D19-1441
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://doi.org/10.18653/v1/2022.naacl-main.318
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf

References

References IV

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. 2019. Be your own teacher:
Improve the performance of convolutional neural networks via self distillation. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 3712–3721.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. 2022. Opt: Open pre-trained Transformer language models. arXiv preprint
arXiv:2205.01068.

81 / 81

	Guiding ideas
	Static vector representations of words
	Word representations and context
	A brief history of contextual representation
	Model structure and linguistic structure
	Guiding idea: Attention
	Guiding idea: Subword modeling in ELMo
	Guiding idea: Word pieces
	Guiding idea: Positional encoding
	Guiding idea: Massive scale pretraining
	Guiding idea: Fine-tuning

	The Transformer
	Core model structure
	Computing the attention representations
	Multi-headed attention
	Repeated transformer blocks
	The architecture diagram
	A view from PyTorch

	Positional encoding
	The role of positional encoding
	Evaluating positional encoding schemes
	Absolute positional encoding
	Frequency-based positional encoding
	Relative positional encoding: Basics
	Relative positional encoding: Windows
	Relative positional encoding: Full definition

	GPT
	GPT: Autoregressive loss function
	Conditional language modeling
	GPT
	GPT: Attention masking
	GPT: Training with teacher forcing
	Generation
	GPT: Fine-tuning
	GPT: Scaling up from OpenAI
	Scaling up truly open models

	BERT
	BERT: Core model structure
	Masked Language Modeling (MLM)
	BERT: MLM loss function
	BERT: Binary next sentence prediction pretraining
	BERT: Transfer learning and fine-tuning
	Tokenization and the BERT embedding space
	BERT: Core model releases
	BERT: Known limitations

	RoBERTa
	Addressing the known limitations with BERT
	Robustly Optimized BERT Approach
	RoBERTa results informing final system design
	RoBERTa: Core model releases
	Related work

	ELECTRA
	Addressing the known limitations with BERT
	Core model structure (Clark et al. 2019)
	Generator/Discriminator relationships
	Efficiency
	Efficiency analyses
	ELECTRA model releases

	seq2seq
	Some tasks with natural seq2seq structure
	From the RNN era
	Transformer-based options
	T5
	T5 model releases
	BART

	Distillation
	Trends in model size
	Teachers and students
	Distillation objectives
	Distillation architectures
	Distillation performance

	Wrap-up
	Other noteworthy architectures
	BERT: Known limitations
	Pretraining data
	Current trends

	References
	References

