Assign/bakeoff 3 overview

P

Christopher Potts
CS224u: Natural Language Understanding

Homework and bakeoff: Compositional generalization

__author__ = "Christopher Potts and Zhengxuan Wu"
_version__ = "(CS224u, Stanford, Spring 2023"

ZC Open in Colab fﬁD Open Studio Lab

COGS: A Compositional Generalization Challenge
Based on Semantic Interpretation

Najoung Kim Tal Linzen
Johns Hopkins University New York University
n.kim@jhu.edu linzen@nyu.edu

ReCOGS: How Incidental Details of a Logical Form
Overshadow an Evaluation of Semantic Interpretation

Zhengxuan Wu Christopher D. Manning Christopher Potts
Stanford University
{wuzhengx, manning, cgpotts}@stanford.edu

The ReCOGS task

Input: A rose was helped by a dog .

Output:rose (53) ; dog (38) ; help (7) AND theme
(7, 53) AND agent (7 , 38)

Input: The sailor dusted a boy .

Output: * sailor (48) ; boy (53) ; dust (10) AND
agent (10 , 48) AND theme (10 , 53)

COGS and ReCOGS

COGS is the original. ReCOGS reworks COGS to focus on purely
semantic phenomena (rather than incidental details of LFs).

Input: The sailor saw Emma .

ReCOGS: * sailor (48) ; Emma (53) ; see (10) AND
agent (10 , 48) AND theme (10 , 53)

COGS: * sailor (x _ 1) ; see . agent (x _ 2, x _ 1) AND
see . theme (x _ 2 , Emma)

ReCOGS splits

* Train: 135,546 input/output pairs
* Dev: 3K input/output pairs like those in Train

* Gen: 21K examples in 21 categories — novel combinations of
familiar elements

Gen split examples

Category Train Gen
Lina gave the bottle to John. A cat rolled Lina.
Lina (1) ; John (7) ; Lina (3) ; cat(45) ;
x pottle (3) ; roll(9) AND agent (9

subj_to_obj_proper give (47) AND 45) AND theme (9, 3)

agent (47 , 1) AND
theme (47 , 3) AND
recipient (47 , 7)

prim_to_subj Bella Bella baked the cake

Emma said that Noah knew that Emma said that Noah knew that

cp_recursion the cat danced. Lucas saw that the cat danced.

Question 1: Proper names & their semantic roles

Task 1: Pattern-based analysis function

import re

def get_propername_role(s):
"""Extract from ‘s’ all the pairs " (name, role)’ determined by
binding relationships. There can be multiple tokens of the same
name with different variables, as in "Kim (1)" and "Kim (47)",
and there can be instances in which a single name with variable
like "Kim (1)" binds into multiple role expressions like
"agent (4 , 1)" and "theme (6 , 1)". Your function should
cover all these cases.

We've suggested a particular program design to get you started,
but you are free to do something different and perhaps cleverer
if you wish!

Parameters

set of tuples "“(name, role)’ where “name’ and ‘role’ are str

Task 2: Finding challenging names

from collections import defaultdict

def find_name_roles(split_df, colname="output"):

"""Create a map from names to dicts mapping roles to counts: the
number of time the name appears with role in “split_df":

Parameters
split_df : pd.DataFrame
Needs to have a column called “colname’.
colname: str
Column to target with “get_propername_role’ . Default: "output".

Returns

"defaultdict”™ mapping names to roles to counts

This is a convenient way to create a multidimensional count dict:
You can access it out of the box as ‘all_roles[keyl][key2] += 1.
all_roles = defaultdict(lambda : defaultdict(int))

Spoilers: Charlie is only a theme in train, only an agent in gen;
Lina is only an agent in train, only a theme in gen

Modeling interlude

Hugging Face PreTrainedTokenizerFast

PyTorch Dataset
EncoderDecoderModel . from_pretrained("ReCOGS/ReCOGS-model")
RecogsLoss(nn.Module)

RecogsModule(nn.Module)

RecogsModel (TorchModelBase) # Main interface. No need to worry
about 1-5 if you are not training

models for your original system.

AN

Question 2: Exploring predictions

For this question, you just use the trained ReCOGS model to
continue your analysis from Question 1.

def category_assess(gen_df, model, category):
"""Assess "model’ against the “category’ examples in “gen_df’.

Parameters

gen_df: pd.DataFrame

Should be ‘dataset["gen"]®
model: A "RecogsModel instance
category: str

A string from "gen_df.category’

Returns

"pd.DataFrame” limited to "category examples and with columns
"prediction" and "correct" added by this function

You will discover that the model struggles the most with proper
10 names in unfamiliar positions.

A note about ReCOGS assessment

The precise names of bound variables do not matter:

recogs_exact_match(
"dog (4) AND happy (4)",
"dog (7) AND happy (7) ")

True

The order of conjuncts does not matter:
recogs_exact_match(

"dog (4) AND happy (4)",

"happy (7) AND dog (7)")

True

Consistency of variable names does matter:

recogs_exact_match(
"dog (4) AND happy (4)",
"dog (4) AND happy (7)")

11 False

Question 3: A basic in-context learning approach

12

Translate sentences into logical forms.

Follow the following format.

Input: ${the sentence to be translated}
Output: ${a logical form}

Input: A cake was painted by Mason .

Output: cake (30) ; Mason (40) ; paint (22) AND theme (22 , 30) AND agent (22 , 40)

Input: The boy painted a rose .

Output: x boy (36) ; rose (20) ; paint (43) AND agent (43 , 36) AND theme (43 , 20)

Input: A rose was helped by a dog .
Output:

@dsp.transformation
def recogs_dsp(example, train=dsp_recogs_train, k=2):
pass
Step 1: Sample k train cases and add them to the “demos’
attribute of “example’:
YOUR CODE HERE

Run your program using “cogs_template:
YOUR CODE HERE

Return the “dsp.Completions”:
YOUR CODE HERE

Question 4: Original systems

For your original system, you can do anything at all. The only constraint:

You cannot train your system on any examples from
dataset["'gen"], nor can the output representations from
those examples be included in any prompts used for
in-context learning.

13

Original system ideas

* DSP program

 Further training of our
model

 Using a pretrained
model

» Training from scratch
* Symbolic solver?

14

recogs_ff = RecogsModel(
batch_size=5,
gradient_accumulation_steps=20,
max_iter=100, -
early_stopping=True,
n_iter_no_change=10,
optimizer_class=torch.optim.Adam,
eta=0.00001)

_ = recogs_ff.fit(dataset['dev'].input[: 40], dataset['dev'].output[: 40])

import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSeg2SeqlLM

class T5RecogsModule(nn.Module):
def __init__(self):
super().__init_ ()
self.encdec = AutoModelForSeq2SeqlLM.from_pretrained("t5-small")

def forward(self, X_pad, X_mask, y_pad, y_mask, labels=None):
outputs = self.encdec(
input_ids=X_pad, *
attention_mask=X_mask,
decoder_attention_mask=y_mask,
labels=y_pad)
return outputs

class T5RecogsModel(RecogsModel):
def __init__ (self, *args, initialize=True, s**kwargs):
super().__init__(*args, s**kwargs)
self.enc_tokenizer = AutoTokenizer.from_pretrained("t5-small")
self.dec_tokenizer = self.enc_tokenizer

def build_graph(self):
return T5RecogsModule()

Bakeoff

15

bakeoff_df = pd.read_csv(
os.path.join(SRC_DIRNAME, '"cs224u-recogs—-test-unlabeled.tsv"), -
sep="\t", index_col=0)

For the bakeoff entry, you should add a column "prediction" containing your predicted LFs
and then use the following command to write the file to disk:

bakeoff_df.to_csv("cs224u-recogs—-bakeoff-entry.tsv", sep="\t")

You cannot train your system on any examples from dataset["gen"],
nor can the output representations from those examples be included
in any prompts used for in-context learning.

