Assign/bakeoff 3 overview

Christopher Potts
CS224u: Natural Language Understanding
Homework and bakeoff: Compositional generalization

__author__ = "Christopher Potts and Zhengxuan Wu"
__version__ = "CS224u, Stanford, Spring 2023"
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation

Najoung Kim
Johns Hopkins University
n.kim@jhu.edu

Tal Linzen
New York University
linzen@nyu.edu

ReCOGS: How Incidental Details of a Logical Form Overshadow an Evaluation of Semantic Interpretation

Zhengxuan Wu
Christopher D. Manning
Christopher Potts
Stanford University
{wuzhengx, manning, cgpotts}@stanford.edu
The ReCOGS task

Input: A rose was helped by a dog.

Output: rose (53); dog (38); help (7) AND theme (7, 53) AND agent (7, 38)

Input: The sailor dusted a boy.

Output: * sailor (48); boy (53); dust (10) AND agent (10, 48) AND theme (10, 53)
COGS and ReCOGS

COGS is the original. ReCOGS reworks COGS to focus on purely semantic phenomena (rather than incidental details of LFs).

Input: The sailor saw Emma.

ReCOGS: * sailor (48); Emma (53); see (10) AND agent (10, 48) AND theme (10, 53)

COGS: * sailor (x_1); see . agent (x_2, x_1) AND see . theme (x_2, Emma)
ReCOGS splits

- **Train**: 135,546 input/output pairs
- **Dev**: 3K input/output pairs like those in Train
- **Gen**: 21K examples in 21 categories – novel combinations of familiar elements
<table>
<thead>
<tr>
<th>Category</th>
<th>Train</th>
<th>Gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>subj_to_obj_proper</td>
<td>Lina gave the bottle to John.</td>
<td>A cat rolled Lina.</td>
</tr>
<tr>
<td></td>
<td>Lina (1) ; John (7) ; * bottle (3) ; give (47) AND agent (47, 1) AND theme (47, 3) AND recipient (47, 7)</td>
<td>Lina (3) ; cat (45) ; roll (9) AND agent (9, 45) AND theme (9, 3)</td>
</tr>
<tr>
<td>prim_to_subj</td>
<td>Bella</td>
<td>Bella baked the cake</td>
</tr>
<tr>
<td>cp_recursion</td>
<td>Emma said that Noah knew that the cat danced.</td>
<td>Emma said that Noah knew that Lucas saw that the cat danced.</td>
</tr>
</tbody>
</table>
Question 1: Proper names & their semantic roles

Task 1: Pattern-based analysis function

```python
import re

def get_propername_role(s):
    """Extract from `s` all the pairs `(name, role)` determined by binding relationships. There can be multiple tokens of the same name with different variables, as in "Kim (1)" and "Kim (47)"; and there can be instances in which a single name with variable like "Kim (1)" binds into multiple role expressions like "agent (4,1)" and "theme (6,1)". Your function should cover all these cases.

    We've suggested a particular program design to get you started, but you are free to do something different and perhaps cleverer if you wish!

    Parameters
    ----------
    s : str

    Returns
    -------
    set of tuples `(name, role)` where `name` and `role` are str
    """
```

Task 2: Finding challenging names

```python
from collections import defaultdict

def find_name_roles(split_df, colname="output"):
    """Create a map from names to dicts mapping roles to counts: the number of time the name appears with role in `split_df`:

    Parameters
    ----------
    split_df : pd.DataFrame
        Needs to have a column called `colname`.
    colname : str
        Column to target with `get_propername_role`. Default: "output".

    Returns
    -------
    `defaultdict` mapping names to roles to counts
    """

    # This is a convenient way to create a multidimensional count dict:
    all_roles = defaultdict(lambda : defaultdict(int))
```

Spoilers: Charlie is only a theme in train, only an agent in gen;
Lina is only an agent in train, only a theme in gen
Modeling interlude

1. Hugging Face PreTrainedTokenizerFast
2. PyTorch Dataset
3. EncoderDecoderModel.from_pretrained("ReCOGS/ReCOGS-model")
4. RecogsLoss(nn.Module)
5. RecogsModule(nn.Module)
6. RecogsModel(TorchModelBase) # Main interface. No need to worry
 # about 1-5 if you are not training
 # models for your original system.
Question 2: Exploring predictions

For this question, you just use the trained ReCOGS model to continue your analysis from Question 1.

```python
def category_assess(gen_df, model, category):

    """Assess `model` against the `category` examples in `gen_df`.

    Parameters
    ----------
    gen_df: pd.DataFrame
        Should be `dataset["gen"]`
    model: A `RecogsModel` instance
    category: str
        A string from `gen_df.category`

    Returns
    -------
    pd.DataFrame` limited to `category` examples and with columns
    "prediction" and "correct" added by this function
    """
```

You will discover that the model struggles the most with proper names in unfamiliar positions.
A note about ReCOGS assessment

The precise names of bound variables do not matter:

```python
recogs_exact_match(
    "dog ( 4 ) AND happy ( 4 )", 
    "dog ( 7 ) AND happy ( 7 )")
```

True

The order of conjuncts does not matter:

```python
recogs_exact_match(
    "dog ( 4 ) AND happy ( 4 )", 
    "happy ( 7 ) AND dog ( 7 )")
```

True

Consistency of variable names does matter:

```python
recogs_exact_match(
    "dog ( 4 ) AND happy ( 4 )", 
    "dog ( 4 ) AND happy ( 7 )")
```

False
Question 3: A basic in-context learning approach

Translate sentences into logical forms.

Follow the following format.

Input: ${the\ sentence\ to\ be\ translated}$
Output: ${a\ logical\ form}$

Input: A cake was painted by Mason.
Output: cake(30); Mason(40); paint(22) AND theme(22,30) AND agent(22,40)

Input: The boy painted a rose.
Output: * boy(36); rose(20); paint(43) AND agent(43,36) AND theme(43,20)

Input: A rose was helped by a dog.
Output:
Question 4: Original systems

For your original system, you can do anything at all. The only constraint:

You cannot train your system on any examples from dataset["gen"], nor can the output representations from those examples be included in any prompts used for in-context learning.
Original system ideas

- DSP program
- Further training of our model
- Using a pretrained model
- Training from scratch
- Symbolic solver?
- …

```python
recogs_ff = RecogsModel(
    batch_size=5,
    gradient_accumulation_steps=20,
    max_iter=100,
    early_stopping=True,
    n_iter_no_change=10,
    optimizer_class=torch.optim.Adam,
    eta=0.00001)

recogs_ff.fit(dataset['dev'].input[:40], dataset['dev'].output[:40])
```

```python
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

class TSRecogsModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.encdec = AutoModelForSeq2SeqLM.from_pretrained("t5-small")

    def forward(self, X_pad, X_mask, y_pad, y_mask, labels=None):
        outputs = self.encdec(
            input_ids=X_pad,
            attention_mask=X_mask,
            decoder_attention_mask=y_mask,
            labels=y_pad)
        return outputs

class TSRecogsModel(RecogsModel):
    def __init__(self, *args, initialize=True, **kwargs):
        super().__init__(*args, **kwargs)
        self.enc_tokenizer = AutoTokenizer.from_pretrained("t5-small")
        self.dec_tokenizer = self.enc_tokenizer

    def build_graph(self):
        return TSRecogsModule()
```
You cannot train your system on any examples from `dataset["gen"]`, nor can the output representations from those examples be included in any prompts used for in-context learning.