Outbreak Detection in Networks

CS224W: Analysis of Networks
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
(1) New problem: Outbreak detection
(2) Develop an approximation algorithm
 - It is a submodular opt. problem!
(3) Speed-up greedy hill-climbing
 - Valid for optimizing general submodular functions
 (i.e., also works for influence maximization)
(4) Prove a new “data dependent” bound on the solution quality
 - Valid for optimizing any submodular function
 (i.e., also works for influence maximization)
Detecting Contamination Outbreaks

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Detect the contaminant as quickly as possible
- Problem posed by the US Environmental Protection Agency
Detecting Information Outbreaks

Which users/news sites should one follow to detect cascades as effectively as possible?
Detecting Information Outbreaks

Detect **blue** & **yellow stories** soon but miss the **red story**.

Want to read things before others do.

Detect **all stories** but **late**.
Both of these two are instances of the same underlying problem!

Given a dynamic process spreading over a network we want to select a set of nodes to detect the process effectively.

Many other applications:
- Epidemics
- Influence propagation
- Network security
Water Network: Utility

- **Utility of placing sensors:**
 - Water flow dynamics, demands of households, ...
- **For each subset** $S \subseteq V$ **compute utility** $f(S)$

![Diagram showing high impact outbreak, medium impact outbreak, and low impact outbreak with sensors S1, S2, S3, S4 and their impact on contamination.]

- High sensing “quality” (e.g., $f(S) = 0.9$)
- Low sensing “quality” (e.g., $f(S) = 0.01$)

Sensor reduces impact through early detection!
Given:
- Graph \(G(V, E) \)
- Data about how outbreaks spread over the \(G \):
 - For each outbreak \(i \) we know the time \(T(u, i) \) when outbreak \(i \) contaminates node \(u \)

Water distribution network (physical pipes and junctions)

Simulator of water consumption & flow (built by Mech. Eng. people)
We simulate the contamination spread for every possible location.
Problem Setting: News

Given:
- Graph $G(V, E)$
- Data about how outbreaks spread over the G:
 - For each outbreak i we know the time $T(u, i)$ when outbreak i contaminates node u

The network of newsmedia

Traces of the information flow and identify influence sets
Collect lots of articles and trace them to obtain data about information flow from a given news site.
Problem Setting

Given:
- Graph $G(V, E)$
- Data on **how outbreaks spread over the G:**
 - For each outbreak i we know the time $T(u, i)$ when outbreak i contaminates node u

Goal: Select a subset of nodes S that maximizes the expected **reward**:

$$ \max_{S \subseteq V} f(S) = \sum_{i} P(i) f_i(S) $$

subject to: $\text{cost}(S) < B$

$P(i)$... probability of outbreak i occurring.
$f(i)$... reward for detecting outbreak i using sensors S.
Two Parts to the Problem

- **Reward (one of the following three):**
 - (1) Minimize time to detection
 - (2) Maximize number of detected propagations
 - (3) Minimize number of infected people

- **Cost (context dependent):**
 - Reading big blogs is more time consuming
 - Placing a sensor in a remote location is expensive

Monitoring **blue** node saves more people than monitoring the **green** node

\(f(S) \)
Objective functions:

1) **Time to detection** (DT)
 - How long does it take to detect a contamination?
 - **Penalty for detecting at time** t: $\pi_i(t) = t$

2) **Detection likelihood** (DL)
 - How many contaminations do we detect?
 - **Penalty for detecting at time** t: $\pi_i(t) = 0, \pi_i(\infty) = 1$
 - Note, this is binary outcome: we either detect or not

3) **Population affected** (PA)
 - How many people drank contaminated water?
 - **Penalty for detecting at time** t: $\pi_i(t) = \{\# \text{ of infected nodes in outbreak } i \text{ by time } t\}$.

Observation:

In all cases detecting sooner does not hurt!
We define $f_i(S)$ as penalty reduction:

$$f_i(S) = \pi_i(\emptyset) - \pi_i(T(S, i))$$

- **Observation:** **Diminishing returns**

Placement $S=\{x_1, x_2\}$

Adding s' helps a lot

New sensor:

Placement $S'=\{x_1, x_2, x_3, x_4\}$

Adding s' helps very little
Objective functions are Submodular

- **Claim:** For all $A \subseteq B \subseteq V$ and sensors $s \in V \setminus B$
 \[f(A \cup \{x\}) - f(A) \geq f(B \cup \{x\}) - f(B) \]

- **Proof:** All our objectives are submodular
 - Fix cascade/outbreak i
 - Show $f_i(A) = \pi_i(\infty) - \pi_i(T(A, i))$ is submodular
 - Consider $A \subseteq B \subseteq V$ and sensor $x \in V \setminus B$
 - When does node s detect cascade i?
 - We analyze 3 cases based on when x detects outbreak i
 - (1) $T(B, i) < T(A, i) < T(x, i)$: x detects late, nobody benefits:
 \[f_i(A \cup \{x\}) = f_i(A), \text{ also } f_i(B \cup \{x\}) = f_i(B) \text{ and so} \]
 \[f_i(A \cup \{x\}) - f_i(A) = 0 = f_i(B \cup \{x\}) - f_i(B) \]
Objective functions are Submodular

- **Proof (contd.):**
 - (2) $T(B, i) \leq T(x, i) \leq T(A, i)$: x detects after B but before A
x detects sooner than any node in A but after all in B.
So x only helps improve the solution A (but not B)

\[
f_i(A \cup \{x\}) - f_i(A) \geq 0 = f_i(B \cup \{x\}) - f_i(B)
\]

- (3) $T(x, i) < T(B, i) < T(A, i)$: x detects early

\[
f_i(A \cup \{x\}) - f_i(A) = [\pi_i(\infty) - \pi_i(T(x, i))] - f_i(A) \geq
[\pi_i(\infty) - \pi_i(T(x, i))] - f_i(B) = f_i(B \cup \{x\}) - f_i(B)
\]

- Inequality is due to non-decreasingness of $f_i(\cdot)$, i.e., $f_i(A) \leq f_i(B)$

- **So, $f_i(\cdot)$ is submodular!**
- **So, $f(\cdot)$ is also submodular**

\[
f(S) = \sum_i P(i) f_i(S)
\]
What do we know about optimizing submodular functions?

- Hill-climbing (i.e., greedy) is near optimal: \((1 - \frac{1}{e}) \cdot OPT\)

But:

- (1) This only works for unit cost case! (each sensor costs the same)
 - For us each sensor \(s\) has cost \(c(s)\)
- (2) Hill-climbing algorithm is slow
 - At each iteration we need to re-evaluate marginal gains of all nodes
 - Runtime \(O(|V| \cdot K)\) for placing \(K\) sensors
CELF: Algorithm for optimizing submodular functions under cost constraints
Consider the following algorithm to solve the outbreak detection problem:

Hill-climbing that ignores cost
- Ignore sensor cost $c(s)$
- Repeatedly select sensor with highest marginal gain
- Do this until the budget is exhausted

Q: How well does this work?

A: It can fail arbitrarily badly! 😞
- There exists a problem setting where the hill-climbing solution is arbitrarily far from OPT
- Next we come up with an example
Problem 1: Ignoring Cost

- **Bad example when we ignore cost:**
 - n sensors, budget B
 - s_1: reward r, cost B
 - $s_2 \ldots s_n$: reward $r - \varepsilon$, $c = 1$
 - Hill-climbing always prefers more expensive sensor s_1 with reward r (and exhausts the budget).
 It never selects cheaper sensors with reward $r - \varepsilon$
 \[\rightarrow\text{For variable cost it can fail arbitrarily badly!}\]
- **Idea:** What if we optimize benefit-cost ratio?

\[
s_i = \arg \max_{s \in V} \frac{f(A_{i-1} \cup \{s\}) - f(A_{i-1})}{c(s)}
\]

Greedily pick sensor s_i that maximizes benefit to cost ratio.
Problem 2: Benefit-Cost

- Benefit-cost ratio can also fail arbitrarily badly!
- **Consider**: budget B:
 - 2 sensors s_1 and s_2:
 - Costs: $c(s_1) = \varepsilon$, $c(s_2) = B$
 - Benefit (only 1 cascade): $f(s_1) = 2\varepsilon$, $f(s_2) = B$
 - **Then benefit-cost ratio is**:
 - $f(s_1)/c(s_1) = 2$ and $f(s_2)/c(s_2) = 1$
 - So, we first select s_1 and then can not afford s_2
 - \Rightarrow We get reward 2ε instead of B! Now send $\varepsilon \to 0$
 and we get an **arbitrarily bad solution**!

This algorithm incentivizes choosing nodes with very low cost, even when slightly more expensive ones can lead to much better global results.
Solution: CELF Algorithm

- **CELF** (Cost-Effective Lazy Forward-selection)
 A two pass greedy algorithm:
 - Set (solution) S': Use benefit-cost greedy
 - Set (solution) S'': Use unit-cost greedy
 - Final solution: $S = \arg \max (f(S'), f(S''))$

- **How far is CELF from (unknown) optimal solution?**

- **Theorem:** CELF is near optimal [Krause&Guestrin, ‘05]
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation!

This is surprising: We have two clearly suboptimal solutions, but taking best of the two is guaranteed to give a near-optimal solution.
Speeding-up Hill-Climbing: Lazy Evaluations
What do we know about optimizing submodular functions?

- Hill-climbing (i.e., greedy) is near optimal (that is, $(1 - \frac{1}{e}) \cdot OPT$)

But:

- (2) Hill-climbing algorithm is slow!
 - At each iteration we need to re-evaluate marginal gains of all nodes
 - Runtime $O(|V| \cdot K)$ for placing K sensors
Speeding up Hill-Climbing

- **In round $i + 1$:** So far we picked $S_i = \{s_1, \ldots, s_i\}$
 - Now pick $s_{i+1} = \arg \max_u f(S_i \cup \{u\}) - f(S_i)$
 - This our old friend – greedy hill-climbing algorithm.
 It maximizes the “marginal gain”
 $$\delta_i(u) = f(S_i \cup \{u\}) - f(S_i)$$

- **By submodularity property:**
 $$f(S_i \cup \{u\}) - f(S_i) \geq f(S_j \cup \{u\}) - f(S_j) \text{ for } i < j$$

- **Observation: By submodularity:**
 For every u
 $$\delta_i(u) \geq \delta_j(u) \text{ for } i < j \text{ since } S_i \subset S_j$$

 Marginal benefits $\delta_i(u)$ only shrink!
 (as i grows)

Activating node u in step i helps more than activating it at step j ($j > i$)
Idea:

- Use δ_i as upper-bound on δ_j ($j > i$)

Lazy hill-climbing:

- Keep an ordered list of marginal benefits δ_i from previous iteration
- Re-evaluate δ_i only for top node
- Re-order and prune

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T) \quad S \subseteq T$$

Marginal gain

- $S_1 = \{a\}$
- a
- b
- c
- d
- e
Lazy Hill Climbing

- **Idea:**
 - Use δ_i as upper-bound on δ_j ($j > i$)

- **Lazy hill-climbing:**
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i **only** for top node
 - Re-order and prune

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T) \quad S \subseteq T$$
Lazy Hill Climbing

- **Idea:**
 - Use δ_i as upper-bound on δ_j ($j > i$)
- **Lazy hill-climbing:**
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-order and prune

\[
f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T) \quad S \subseteq T\]
CELF: Scalability

- CELF (using Lazy evaluation) runs 700 times faster than greedy hill-climbing algorithm

- CELF... raw CELF
- CELF+bounds ... CELF together with computing the data-dependent solution quality bound
Data Dependent Bound on the Solution Quality
Back to the solution quality!

The \((1-1/e)\) bound for submodular functions is the worst case bound (worst over all possible inputs)

Data dependent bound:
- Value of the bound depends on the input data
 - On “easy” data, hill climbing may do better than 63%
- Can we say something about the solution quality when we know the input data?
Data Dependent Bound

- Suppose S is some solution to $f(S)$ s.t. $|S| \leq k$
 - $f(S)$ is monotone & submodular
- Let $OPT = \{t_1, ..., t_k\}$ be the OPT solution
- For each u let $\delta(u) = f(S \cup \{u\}) - f(S)$
- Order $\delta(u)$ so that $\delta(1) \geq \delta(2) \geq \cdots$
- Then: $f(OPT) \leq f(S) + \sum_{i=1}^{k} \delta(i)$

- Note:
 - This is a data dependent bound ($\delta(i)$ depends on input data)
 - Bound holds for any algorithm
 - Makes no assumption about how S was computed
 - For some inputs it can be very “loose” (worse than 63%)
Claim:

- For each u let $\delta(u) = f(S \cup \{u\}) - f(S)$
- Order $\delta(u)$ so that $\delta(1) \geq \delta(2) \geq \cdots$

Then: $f(OPT) \leq f(S) + \sum_{i=1}^{k} \delta(i)$

Proof:

- $f(OPT) \leq f(OPT \cup S)$
- $= f(S) + f(OPT \cup S) - f(S)$
- $\leq f(S) + \sum_{i=1}^{k} [f(S \cup \{t_i\}) - f(S)]$
- $= f(S) + \sum_{i=1}^{k} \delta(t_i)$

Instead of taking $t_i \in OPT$ (of benefit $\delta(t_i)$), we take the best possible element ($\delta(i)$)

$\leq f(S) + \sum_{i=1}^{k} \delta(i) \Rightarrow f(OPT) \leq f(S) + \sum_{i=1}^{k} \delta(i)$
Case Study: Water distribution network & blogs
Case Study: Water Network

- Real metropolitan area water network
 - $V = 21,000$ nodes
 - $E = 25,000$ pipes

- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (random locations, random days, random time of the day)
Bounds on the Optimal Solution

Data-dependent bound is much tighter (gives more accurate estimate of alg. performance)
Water: Heuristic Placement

- Placement heuristics perform much worse

<table>
<thead>
<tr>
<th>Author</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELF</td>
<td>26</td>
</tr>
<tr>
<td>Sandia</td>
<td>21</td>
</tr>
<tr>
<td>U Exter</td>
<td>20</td>
</tr>
<tr>
<td>Bentley systems</td>
<td>19</td>
</tr>
<tr>
<td>Technion (1)</td>
<td>14</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>12</td>
</tr>
<tr>
<td>U Cyprus</td>
<td>11</td>
</tr>
<tr>
<td>U Guelph</td>
<td>7</td>
</tr>
<tr>
<td>U Michigan</td>
<td>4</td>
</tr>
<tr>
<td>Michigan Tech U</td>
<td>3</td>
</tr>
<tr>
<td>Malcolm</td>
<td>2</td>
</tr>
<tr>
<td>Proteo</td>
<td>2</td>
</tr>
<tr>
<td>Technion (2)</td>
<td>1</td>
</tr>
</tbody>
</table>

Battle of Water Sensor Networks competition
Different objective functions give different sensor placements

Population affected

Detection likelihood
Here CELF is much faster than greedy hill-climbing!

- (But there might be datasets/inputs where the CELF will have the same running time as greedy hill-climbing)
Question...

= I have 10 minutes. Which news sites should I read to be most up to date?

= Who are the most influential news sites?
Detecting Information Outbreaks

Detect blue & yellow soon but miss red.

Want to read things before others do.

Detect all stories but late.
Case study 2: Cascades in blogs

- Crawled 45,000 blogs for 1 year
- Obtained 10 million news posts
- And identified 350,000 cascades
- Cost of a blog is the number of posts it has
Online bound turns out to be much tighter!

Based on the plot below: 87% instead of 32.5%
Heuristics perform much worse!
One really needs to perform the optimization
Blogs: Cost of a Blog

- CELF has 2 sub-algorithms. Which wins?
- **Unit cost:**
 - CELF picks large popular blogs
- **Cost-benefit:**
 - Cost proportional to the number of posts
- We can do much better when considering costs
Blogs: Cost of a Blog

- **Problem:** Then CELF picks *lots of small blogs* that participate in few cascades
- We pick best solution that interpolates between the costs
- We can get good solutions with *few blogs and few posts*

Each curve represents a set of solutions S with the same final reward f(S)
We want to generalize well to future (unknown) cascades

Limiting selection to bigger blogs improves generalization!
Blogs: Scalability

- **CELF** runs **700** times faster than simple hill-climbing algorithm

[Leskovec et al., KDD ‘07]
Outbreak detection problem in networks

Different ways to formalize objective functions
 All are submodular

Lazy-Greedy algorithm for optimizing submodular functions

CELF algorithm that combines 2 versions of Lazy-Greedy

Data-dependent bound on the solution quality