
CS 224W – Influence Maximization Jessica Su

1 Problem definition

In this handout, we will consider the problem of how people influence each other to do things.
For example, if your friend signs up for Facebook, you might want to sign up too, depending
on how you are feeling that day and which friend it is.

We may think of this in terms of “activating” nodes in a social graph. A node that is
“activated” adopts some behavior, like signing up for Facebook or buying an iPhone. Once
each node is activated, it has the opportunity to activate each of its neighbors with a certain
probability. This probability may depend on the edge and is usually given as an edge weight.

Example: Your mom really loves you, so whenever you sign up for a service, she signs up
for it too. We can say that the edge from you to your mom has weight 1, and that once you
are activated, she is guaranteed to be activated as well.

Example: Your friend Mary doesn’t put much stock in your opinions, so the edge from you
to Mary only has weight 0.1. If you sign up for Facebook, she has a 1 in 10 chance of signing
up for Facebook because of you. However, Mary does think highly of your mom’s opinions,
and the edge from your mom to Mary has weight 0.8. So if your mom gets activated, then
your mom will activate Mary with an 80% probability. And if both you and your mom
get activated, then Mary gets two chances to be activated – one activation succeeds with
probability 0.1, and the second activation succeeds with probability 0.8.

1.0.1 Influence maximization

How many nodes eventually get activated depends on which nodes were activated to begin
with. (It’s better to send an alpha version of your software to a tech journalist than a random
guy on the street.) The influence maximization problem asks you to choose a “starting
set” S of k nodes to activate that maximizes the expected number of nodes f(S) that will
eventually get activated in the network. These nodes are considered the most “influential”
nodes in the graph.

1.0.2 Deterministic influence maximization

To solve this problem, we consider a version of the influence maximization problem where
all the edge weights are guaranteed to be 0 or 1. (That is, we already know exactly what
set of nodes an active node will activate.) We will see that we can use the solution to
the deterministic influence maximization problem to solve the real influence maximization
problem.

2 Influence maximization is NP-hard

As it turns out, even the deterministic influence maximization problem is NP-hard.
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To prove it is NP-hard, we must find an example of an NP-hard problem that can be reduced
to influence maximization. This would show that if we had a solution to the influence
maximization problem, we could easily translate that into a solution to a problem that is
known to be hard, which means influence maximization is a hard problem.

The NP-hard problem we will use is called Set Cover.

Set Cover: Given a universe of elements U and m subsets X1, . . . , Xm of U , and a parameter
k:

• Return YES if there exists a collection of k subsets whose union is U .

• Return NO otherwise.

To perform the reduction, we pretend we have a solution to the influence maximization
problem. Then we start with an arbitrary instance of the Set Cover problem, and show that
our solution can be used to solve the problem.

Reduction: Suppose we have an instance of the Set Cover problem, where the sets are
X1, . . . , Xm, and each set Xi is composed of elements ui1, ui2, . . . , uini

. We can then create
a bipartite graph, where the sets are on the left and the items are on the right, and there
is an edge from Xi to uj of weight 1 if uj is contained in set Xi. We then aim to maximize
influence on this bipartite graph.

Observe that there exists a size k set cover in the Set Cover problem if and only if there
exists a set S of size k that influences at least k + n nodes in the corresponding influence
maximization problem. Note that the optimal way to choose S would always involve picking
nodes from the left side of the graph, since if we picked nodes from the right side of the
graph, choosing its corresponding left hand neighbor instead could only increase the number
of nodes influenced. And if you choose k left hand nodes and influence k + n nodes, those
left hand nodes correspond to a collection of sets that contain all the items u.

Therefore, by applying influence maximization to the graph with parameter k, we can solve
the Set Cover problem with parameter k, and influence maximization is NP-hard.
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3 Greedy approximation algorithm

We’ve discovered that it’s hard to solve the influence maximization problem (even in the
deterministic case). However, we can find an approximation algorithm for the influence
maximization problem, that produces a set S that influences close to the optimal number of
nodes.

(Let’s switch back to discussing the probabilistic version of the influence maximization prob-
lem, since we’ve spent long enough discussing the deterministic version.)

Let f(S) be the expected number of nodes influenced by set S, and f(OPT ) be the expected
number of nodes influenced by the optimal set of nodes of size k. Then there is a greedy
algorithm that finds a set S where

f(S) ≥ (1− 1/e)f(OPT )

Note that S does not have to be an optimal solution, but our theorem guarantees that the
performance of S is close to the performance of the optimal solution, in expectation.

3.1 Algorithm

Build up our set S one node at a time, each time adding the node that increases f(S) the
most. Note that this doesn’t mean we should always add the most well-connected nodes – it’s
more important to add nodes whose neighborhoods haven’t been touched by other activations
yet.

Notation: Let Si denote the set S at iteration i (where Si = ∅).

3.2 f is submodular

We will later show that our method works for all monotone, submodular functions f . How-
ever, first we should show that f is monotone and submodular, and to do that we should
first define what those terms mean.

Definition (Monotone): If S is a subset of T , then f(S) ≤ f(T ) and f(∅) = 0. (This just
means that if you start off with influencing a set of nodes T , then you’ll end up influencing
at least as many people as if you had influenced a subset of those nodes.)

Definition (Submodular): If S is a subset of T , then for any node u,

f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T )

This means that adding a node to a set has less impact (“marginal gain”) than adding the
same node to a smaller subset of that set.
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3.3 Proof that f is submodular

3.3.1 f can be written as a combination of simpler functions

Observe that since f(S) is an expected value (i.e. the expected number of nodes influenced
by set S), we can find it by simulating the activation process a bunch of times, counting
the number of nodes activated, and taking the average of the results. In order to simulate
the activation process, we can flip one (unfair) coin for each edge of the graph, and color
the edge red if the coin comes up heads. After doing this, the nodes that are activated are
precisely the ones reachable via red edges from the starting set S. (Note that we can flip all
the coins prior to knowing what S is, if we want to.)

Let i ∈ I be a combination of coin flips, and fi(S) be the number of nodes that are activated
by S given the outcome of those coin flips. Then f(S) = 1

|I|
∑

i∈I fi(S).

3.3.2 Each function fi is submodular

Observe that each function fi(S) is submodular. This is because fi(S) can be expressed
as | ∪v∈S X i

v|, where X i
v is the set of nodes that are reachable from node v along the red

paths from coin-flip combination i, and adding another set to this union (i.e. adding another
element to S) will give you a smaller marginal gain than if you had added the same set to a
subset of that union.

3.3.3 f is submodular

Because f is a positive linear combination of submodular functions, f is submodular.1

3.4 Proof that submodular functions work

Now we show that because f is monotone and submodular, after our greedy procedure we
will have f(S) ≥ (1− 1/e)f(OPT ).

3.4.1 Lemma: If B = {b1, . . . , bk}, then f(A ∪B)− f(A) ≤
∑k

j=1[f(A ∪ {bj})− f(A)]

Let Bi be the set containing the first i elements of B, i.e. {b1, . . . , bi} (and B0 = ∅). Now
we have k such sets, B1, B2, . . . , Bk.

Now we can write f(A ∪B)− f(A) as a telescoping sum, i.e.

(f(A ∪B1)− f(A)) + (f(A ∪B2)− f(A ∪B1)) + · · ·+ (f(A ∪Bk)− f(A ∪Bk−1))

1See https://en.wikipedia.org/wiki/Submodular set function#Properties
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Observe that because f is submodular, f(A∪Bi−1∪{bi})−f(A∪Bi−1) ≤ f(A∪{bi})−f(A).
Therefore, we have

f(A ∪B)− f(A) =
k∑

i=1

[f(A ∪Bi)− f(A ∪Bi−1)]

=
k∑

i=1

[f(A ∪Bi−1 ∪ {bi})− f(A ∪Bi−1)]

≤
k∑

i=1

[f(A ∪ {bi}]− f(A)]

proving the lemma.

3.4.2 δi+1 ≥ (1/k)(f(OPT )− f(Si)))

Define δi to be the marginal gain at step i, i.e. δi = f(Si) − f(Si−1). Then we want to get
a lower bound on δi, so we can sum up all the δ’s and get a lower bound on how good our
greedy approach is. We adopt an analysis strategy where we replace elements of the optimal
solution with elements of the greedy solution and see how that affects the marginal gain.

Suppose the optimal solution OPT is {t1, t2, . . . , tk}. Then

f(OPT ) ≤ f(Si ∪OPT ) (monotonicity)

= f(Si ∪OPT )− f(Si) + f(Si) (adding and subtracting terms)

≤
k∑

j=1

[f(Si ∪ {tj})− f(Si)] + f(Si) (by previous lemma)

≤
k∑

j=1

[f(Si+1)− f(Si)] + f(Si)

because Si+1 is produced by choosing the element that maximizes the marginal gain. So we
have f(OPT ) ≤

∑k
j=1 δi+1 + f(Si) = f(Si) + kδi+1, and

δi+1 ≥
1

k
[f(OPT )− f(Si)]
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3.4.3 f(Si+1) ≥ (1− 1/k)f(Si) + (1/k)f(OPT )

We have

f(Si+1) = f(Si) + δi+1

≥ f(Si) +
1

k
[f(OPT )− f(Si)]

≥
(

1− 1

k

)
f(Si) +

1

k
f(OPT )

3.4.4 f(Si) ≥ [1− (1− 1/k)i]f(OPT ) for all i

We proceed by induction.

Base case: For i = 0, f(S0) = f(∅) = 0, and the right hand side is also 0.

Inductive step: Assume the statement is true for Si, and prove it is true for Si+1. At i+ 1
we have

f(Si+1) ≥
(

1− 1

k

)
f(Si) +

1

k
f(OPT )

≥
(

1− 1

k

)(
1−

(
1− 1

k

)i
)
f(OPT ) +

1

k
f(OPT ) by the induction hypothesis

=

[
1−

(
1− 1

k

)i+1
]
f(OPT )

which proves the lemma.

3.4.5 f(Sk) ≥ (1− 1/e)f(OPT )

From the previous lemma, we get that f(S) = f(Sk) ≥ [1− (1− 1/k)k]f(OPT ).

Now we can apply the inequality 1 + x ≤ ex. We have x = −1/k, so (1− 1/k)k ≤ (e−1/k)k =
1/e. Substituting this in, we get that f(S) ≥ (1− 1/e)f(OPT ).

4 Conclusion

Therefore, we have found a lower bound on the efficacy of our greedy approach. The greedy
approach works pretty well in practice compared to other sensible methods of influence
maximization.
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