Stanford CS224W: Node Embeddings

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Feature engineering (node-level, edge-level, graph-level features)

Downstream prediction task
Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning -- Automatically learn the features

Downstream prediction task
Goal: Efficient task-independent feature learning for machine learning with graphs!

Feature representation, embedding

\[f: u \rightarrow \mathbb{R}^d \]
Task: map nodes into an embedding space

- Similarity of embeddings between nodes indicates their similarity in the network. For example:
 - Both nodes are close to each other (connected by an edge)
- Encode network information
- Potentially used for many downstream predictions

Tasks
- Node classification
- Link prediction
- Graph classification
- Anomalous node detection
- Clustering
- ….
Example Node Embedding

- 2D embedding of nodes of the Zachary’s Karate Club network:

Stanford CS224W: Node Embeddings: Encoder and Decoder
Assume we have a graph G:

- V is the vertex set.
- A is the adjacency matrix (assume binary).
- For simplicity: no node features or extra information is used.

V: \{1, 2, 3, 4\}

$A = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$
Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph.
Goal:

Define \(\text{similarity}(u, v) \) in the original network

\[\approx z_v^T z_u \]

Similarity of the embedding

\[z_u \]

\[z_v \]

Encode nodes

Original network

Embedding space

Need to define!
Learning Node Embeddings

1. **Encoder** maps from nodes to embeddings
2. Define a node similarity function (i.e., a measure of similarity in the original network)
3. **Decoder** \(\text{DEC} \) maps from embeddings to the similarity score
4. Optimize the parameters of the encoder so that:

\[
\text{similarity}(u, v) \approx \mathbf{z}_v^T \mathbf{z}_u
\]

in the original network \quad \text{Similarity of the embedding}
Two Key Components

- **Encoder**: maps each node to a low-dimensional vector
 \[
 \text{ENC}(v) = z_v
 \]
 node in the input graph

- **Similarity function**: specifies how the relationships in vector space map to the relationships in the original network
 \[
 \text{similarity}(u, v) \approx z_v^T z_u
 \]
 Similarity of \(u \) and \(v \) in the original network

 Decoder

- dot product between node embeddings
“Shallow” Encoding

Simplest encoding approach: **Encoder is just an embedding-lookup**

\[
ENC(\nu) = z_\nu = Z \cdot \nu
\]

Matrix $Z \in \mathbb{R}^{d \times |\mathcal{V}|}$

- Each column is a node embedding [what we learn / optimize]

Indicator vector $\nu \in \mathbb{I}^{|\mathcal{V}|}$

- All zeroes except a one in column indicating node ν
“Shallow” Encoding

Simplest encoding approach: **encoder is just an embedding-lookup**

$Z = \text{embedding matrix}$

$\text{embedding vector for a specific node}$

Dimension/size of embeddings

one column per node
Simplest encoding approach: **Encoder is just an embedding-lookup**

Each node is assigned a unique embedding vector
(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec
Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize: \mathbf{Z} which contains node embeddings \mathbf{z}_u for all nodes $u \in V$
- We will cover deep encoders (GNNs) in Lecture 6

Decoder: based on node similarity.

Objective: maximize $\mathbf{z}_v^T \mathbf{z}_u$ for node pairs (u, v) that are similar
Key choice of methods is **how they define node similarity**.

Should two nodes have a similar embedding if they...
- are linked?
- share neighbors?
- have similar “structural roles”?

We will now learn node similarity definition that uses **random walks**, and how to optimize embeddings for such a similarity measure.
Note on Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings
 - We are not utilizing node labels
 - We are not utilizing node features
 - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved
- These embeddings are task independent
 - They are not trained for a specific task but can be used for any task.
Stanford CS224W: Random Walk Approaches for Node Embeddings

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Notation

- Vector \mathbf{z}_u:
 - The embedding of node u (what we aim to find).

- Probability $P(\nu \mid \mathbf{z}_u)$:
 - The (predicted) probability of visiting node ν on random walks starting from node u.

Non-linear functions used to produce predicted probabilities

- **Softmax** function
 - Turns vector of K real values (model predictions) into K probabilities that sum to 1: $\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$.

- **Sigmoid** function:
 - S-shaped function that turns real values into the range of $(0, 1)$. Written as $S(x) = \frac{1}{1+e^{-x}}$.
Random Walk

Given a graph and a starting point, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this point at random, and move to it, etc. The (random) sequence of points visited this way is a random walk on the graph.
Random-Walk Embeddings

\[Z_u^T Z_v \approx \]

probability that \(u \) and \(v \) co-occur on a random walk over the graph
Random-Walk Embeddings

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics:

 Similarity in embedding space (Here: dot product=$\cos(\theta)$) encodes random walk “similarity”
1. **Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information

 Idea: if random walk starting from node \(u \) visits \(v \) with high probability, \(u \) and \(v \) are similar (high-order multi-hop information)

2. **Efficiency:** Do not need to consider all node pairs when training; **only need to consider pairs** that co-occur on random walks
Unsupervised Feature Learning

- **Intuition:** Find embedding of nodes in d-dimensional space that preserves similarity.

- **Idea:** Learn node embedding such that nearby nodes are close together in the network.

- **Given a node u, how do we define nearby nodes?**
 - $N_R(u)$... neighbourhood of u obtained by some random walk strategy R.
Feature Learning as Optimization

- Given $G = (V, E)$,
- Our goal is to learn a mapping $f: u \rightarrow \mathbb{R}^d$: $f(u) = z_u$
- Log-likelihood objective:
 $$\max_f \sum_{u \in V} \log P(N_R(u) | z_u)$$
 - $N_R(u)$ is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_R(u)$
1. Run **short fixed-length random walks** starting from each node \(u \) in the graph using some random walk strategy \(R \).

2. For each node \(u \) collect \(N_R(u) \), the multiset* of nodes visited on random walks starting from \(u \).

3. Optimize embeddings according to: **Given** node \(u \), predict its neighbors \(N_R(u) \)

\[
\max_f \sum_{u \in V} \log P(N_R(u) | z_u) \quad \Rightarrow \quad \text{Maximum likelihood objective}
\]

*\(N_R(u) \) can have repeat elements since nodes can be visited multiple times on random walks.
Random Walk Optimization

Equivalently,

\[\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|z_u)) \]

- **Intuition**: Optimize embeddings \(z_u \) to maximize the likelihood of random walk co-occurrences

- **Parameterize** \(P(v|z_u) \) **using softmax**:

\[
P(v|z_u) = \frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)}
\]

Why softmax?
We want node \(v \) to be most similar to node \(u \) (out of all nodes \(n \)).
Intuition: \(\sum_{i} \exp(x_i) \approx \max \exp(x_i) \)
Putting it all together:

\[\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_n^T z_n)} \right) \]

- Sum over all nodes \(u \)
- Sum over nodes \(v \) seen on random walks starting from \(u \)
- Predicted probability of \(u \) and \(v \) co-occurring on random walk

\[\text{Optimizing random walk embeddings = } \]

\[\text{Finding embeddings } z_u \text{ that minimize } \mathcal{L} \]
But doing this naively is too expensive!

\[\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right) \]

Nested sum over nodes gives \(O(|V|^2) \) complexity!
Random Walk Optimization

But doing this naively is too expensive!

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)
\]

The normalization term from the softmax is the culprit... can we approximate it?
Negative Sampling

- Solution: Negative sampling

\[
\log\left(\frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)} \right)
\]

\[
\approx \log \left(\sigma(\mathbf{z}_u^T \mathbf{z}_v) \right) - \sum_{i=1}^{k} \log \left(\sigma(\mathbf{z}_u^T \mathbf{z}_{n_i}) \right), n_i \sim P_V
\]

Why is the approximation valid?
Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node \(v \) from nodes \(n_i \) sampled from background distribution \(P_v \).

Instead of normalizing w.r.t. all nodes, just normalize against \(k \) random “negative samples” \(n_i \).
Negative Sampling

\[
\log\left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)}\right)
\approx \log\left(\sigma(z_u^T z_v)\right) - \sum_{i=1}^{k} \log\left(\sigma(z_u^T z_{n_i})\right), n_i \sim P_V
\]

- Sample \(k \) negative nodes each with prob. proportional to its degree

- Two considerations for \(k \) (# negative samples):
 1. Higher \(k \) gives more robust estimates
 2. Higher \(k \) corresponds to higher bias on negative events

In practice \(k = 5-20 \)
After we obtained the objective function, how do we optimize (minimize) it?

\[\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|z_u)) \]

Gradient Descent: a simple way to minimize \(\mathcal{L} \):

- Initialize \(z_i \) at some randomized value for all \(i \).
- Iterate until convergence.
 - For all \(i \), compute the derivative \(\frac{\partial \mathcal{L}}{\partial z_i} \).
 - For all \(i \), make a step towards the direction of derivative: \(z_i \leftarrow z_i - \eta \frac{\partial \mathcal{L}}{\partial z_i} \).

\(\eta \): learning rate
Stochastic Gradient Descent

- **Stochastic Gradient Descent**: Instead of evaluating gradients over all examples, evaluate it for each individual training example.

- Initialize z_i at some randomized value for all i.

- Iterate until convergence:

 $$
 \mathcal{L}^{(u)} = \sum_{v \in N_R(u)} -\log(P(v|z_u))
 $$

 - Sample a node i, for all j calculate the derivative $\frac{\partial \mathcal{L}^{(i)}}{\partial z_j}$.

 - For all j, update: $z_j \leftarrow z_j - \eta \frac{\partial \mathcal{L}^{(i)}}{\partial z_j}$.
1. Run **short fixed-length** random walks starting from each node on the graph

2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u

3. Optimize embeddings using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log(P(v|z_u))$$

We can efficiently approximate this using negative sampling!
How should we randomly walk?

- So far we have described how to optimize embeddings given a random walk strategy R

- **What strategies should we use to run these random walks?**

 - Simplest idea: *Just run fixed-length, unbiased random walks starting from each node* (i.e., [DeepWalk from Perozzi et al., 2013](http://kdd.))

 - The issue is that such notion of similarity is too constrained

- **How can we generalize this?**

Reference: Perozzi et al. 2014. [DeepWalk: Online Learning of Social Representations](http://kdd.), *KDD.*
Overview of node2vec

- **Goal:** Embed nodes with similar network neighborhoods close in the feature space.

- We frame this goal as a maximum likelihood optimization problem, independent to the downstream prediction task.

- **Key observation:** Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings

- Develop biased 2nd order random walk R to generate network neighborhood $N_R(u)$ of node u

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
node2vec: Biased Walks

Idea: use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016).

![Node2vec Diagram](image)
node2vec: Biased Walks

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

Walk of length 3 ($N_R(u)$ of size 3):

$N_{BFS}(u) = \{s_1, s_2, s_3\}$ \hspace{1cm} \text{Local microscopic view}

$N_{DFS}(u) = \{s_4, s_5, s_6\}$ \hspace{1cm} \text{Global macroscopic view}
BFS vs. DFS

BFS: Micro-view of neighbourhood

DFS: Macro-view of neighbourhood
Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - **Return parameter p:**
 - Return back to the previous node
 - **In-out parameter q:**
 - Moving outwards (DFS) vs. inwards (BFS)
 - Intuitively, q is the “ratio” of BFS vs. DFS
Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk just traversed edge \((s_1, w)\) and is now at \(w\)
- **Insight:** Neighbors of \(w\) can only be:

```
    s_2
   /   |
  s_1   W
   \
     /|
    \\ |
     s_3
```

- **Idea:** Remember where the walk came from

\(s_1\) is the starting point, \(s_2\) and \(s_3\) are neighbors at the same distance, and \(u\) and another neighbor are farther from \(s_1\).
Biased Random Walks

- Walker came over edge \((s_1, w)\) and is at \(w\). Where to go next?

![Diagram showing transition probabilities](attachment:image.png)

- \(p, q\) model transition probabilities
 - \(p\) ... return parameter
 - \(q\) ... “walk away” parameter

\[\frac{1}{p}, \frac{1}{q}, 1\] are unnormalized probabilities
Walker came over edge \((s_1, w)\) and is at \(w\).

Where to go next?

- **BFS-like** walk: Low value of \(p\)
- **DFS-like** walk: Low value of \(q\)

\(N_R(u)\) are the nodes visited by the biased walk
node2vec algorithm

1) Compute random walk probabilities
2) Simulate r random walks of length l starting from each node u
3) Optimize the node2vec objective using Stochastic Gradient Descent

- Linear-time complexity
- All 3 steps are individually parallelizable
Other Random Walk Ideas

- **Different kinds of biased random walks:**
 - Based on node attributes ([Dong et al., 2017](#)).
 - Based on learned weights ([Abu-El-Haija et al., 2017](#)).

- **Alternative optimization schemes:**
 - Directly optimize based on 1-hop and 2-hop random walk probabilities (as in [LINE from Tang et al. 2015](#)).

- **Network preprocessing techniques:**
 - Run random walks on modified versions of the original network (e.g., [Ribeiro et al. 2017’s struct2vec](#), [Chen et al. 2016’s HARP](#)).
Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.

Different notions of node similarity:
- Naïve: similar if 2 nodes are connected
- Neighborhood overlap (covered in Lecture 2)
- Random walk approaches (covered today)
So what method should I use..?

No one method wins in all cases....

- E.g., node2vec performs better on node classification while alternative methods perform better on link prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more efficient

In general: Must choose definition of node similarity that matches your application!
Stanford CS224W: Embedding Entire Graphs

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Goal: Want to embed a subgraph or an entire graph G. Graph embedding: Z_G.

Tasks:
- Classifying toxic vs. non-toxic molecules
- Identifying anomalous graphs
Simple idea 1:

- Run a standard graph embedding technique on the (sub)graph G
- Then just sum (or average) the node embeddings in the (sub)graph G

$$Z_G = \sum_{v \in G} Z_v$$

- Used by Duvenaud et al., 2016 to classify molecules based on their graph structure
Approach 2

- **Idea 2:** Introduce a “virtual node” to represent the (sub)graph and run a standard graph embedding technique.

- Proposed by [Li et al., 2016](http://cs224w.stanford.edu) as a general technique for subgraph embedding.
States in **anonymous walks** correspond to the index of the **first time** we visited the node in a random walk.

2/14/21

Approach 3: Anonymous Walk Embeddings

- Agnostic to the identity of the nodes visited (hence anonymous)
- Example RW1:
 - Step 1: node A → node 1
 - Step 2: node B → node 2 (different from node 1)
 - Step 3: node C → node 3 (different from node 1, 2)
 - Step 4: node B → node 2 (same as the node in step 2)
 - Step 5: node C → node 3 (same as the node in step 3)

- Note: RW2 gives the same anonymous walk
Number of anonymous walks grows exponentially:

- There are 5 anon. walks w_i of length 3:
 - $w_1 = 111$, $w_2 = 112$, $w_3 = 121$, $w_4 = 122$, $w_5 = 123$
Simple Use of Anonymous Walks

- Simulate anonymous walks w_i of l steps and record their counts
- Represent the graph as a probability distribution over these walks

For example:
- Set $l = 3$
- Then we can represent the graph as a 5-dim vector
 - Since there are 5 anonymous walks w_i of length 3: 111, 112, 121, 122, 123
 - $Z_G[i] = \text{probability of anonymous walk } w_i \text{ in } G$
Sampling anonymous walks: Generate independently a set of \(m \) random walks

Represent the graph as a probability distribution over these walks

How many random walks \(m \) do we need?

- We want the distribution to have error of more than \(\varepsilon \) with prob. less than \(\delta \):

\[
m = \left\lceil \frac{2}{\varepsilon^2} (\log(2^\eta - 2) - \log(\delta)) \right\rceil
\]

where: \(\eta \) is the total number of anon. walks of length \(l \).

For example:
There are \(\eta = 877 \) anonymous walks of length \(l = 7 \). If we set \(\varepsilon = 0.1 \) and \(\delta = 0.01 \) then we need to generate \(m=122,500 \) random walks
Rather than simply represent each walk by the fraction of times it occurs, we learn embedding z_i of anonymous walk w_i

- Learn a graph embedding Z_G together with all the anonymous walk embeddings Z_i

$Z = \{z_i: i = 1 \ldots \eta\}$, where η is the number of sampled anonymous walks.

How to embed walks?

- **Idea:** Embed walks s.t. the next walk can be predicted
Learn Walk Embeddings

- A vector parameter z_G for input graph
 - The embedding of entire graph to be learned
- Starting from node 1: Sample anonymous random walks, e.g.

- Learn to predict walks that co-occur in Δ-size window (e.g. predict w_2 given w_1, w_3 if $\Delta = 1$)
- Objective:
 $$\max \sum_{t=\Delta}^{T-\Delta} \log P(w_t|w_{t-\Delta}, \ldots, w_{t+\Delta}, z_G)$$
- Sum the objective over all nodes in the graph
Learn Walk Embeddings

- Run T different random walks from u each of length l:
 \[N_R(u) = \{w_1^u, w_2^u, ..., w_T^u\} \]

- Learn to predict walks that co-occur in Δ-size window

- Estimate embedding z_i of anonymous walk w_i

 Let η be number of all possible walk embeddings

 \[
 \text{Objective: } \max_{\mathcal{Z}, d} \frac{1}{T} \sum_{t=\Delta}^{T-\Delta} \log P(w_t | \{w_{t-\Delta}, ..., w_{t+\Delta}, Z_G\})
 \]

 \[
 P(w_t | \{w_{t-\Delta}, ..., w_{t+\Delta}, Z_G\}) = \frac{\exp(y(w_t))}{\sum_{i=1}^{\eta} \exp(y(w_i))}
 \]

 \[
 y(w_t) = b + U \cdot \left(\text{cat}\left(\frac{1}{2\Delta} \sum_{i=-\Delta}^{\Delta} z_i, Z_G\right) \right)
 \]

 - $\text{cat}\left(\frac{1}{2\Delta} \sum_{i=-\Delta}^{\Delta} z_i, Z_G\right)$ means an average of anonymous walk embeddings in window, concatenated with the graph embedding Z_G

 - $b, U \in \mathbb{R}, U \in \mathbb{R}^D$ are learnable parameters. This represents a linear layer.

Learn Walk Embeddings

- We obtain the graph embedding z_G (learnable parameter) after optimization
- Use z_G to make predictions (e.g. graph classification)
 - **Option1**: Inner product Kernel $z_{G1}^T z_{G2}$ (Lecture 2)
 - **Option2**: Use a neural network that takes z_G as input to classify
We discussed 3 ideas to graph embeddings

- **Approach 1:** Embed nodes and sum/avg them
- **Approach 2:** Create super-node that spans the (sub) graph and then embed that node
- **Approach 3:** Anonymous Walk Embeddings
 - Idea 1: Sample the anon. walks and represent the graph as fraction of times each anon walk occurs
 - Idea 2: Embed anonymous walks, concatenate their embeddings to get a graph embedding
We will discuss more advanced ways to obtain graph embeddings in Lecture 8.

We can **hierarchically** cluster nodes in graphs, and **sum/avg** the node embeddings according to these clusters.
How to Use Embeddings

- **How to use embeddings** z_i **of nodes:**
 - **Clustering/community detection:** Cluster points z_i
 - **Node classification:** Predict label of node i based on z_i
 - **Link prediction:** Predict edge (i, j) based on (z_i, z_j)
 - Where we can: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(z_i, z_j) = g([z_i, z_j])$
 - Hadamard: $f(z_i, z_j) = g(z_i \ast z_j)$ (per coordinate product)
 - Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
 - Distance: $f(z_i, z_j) = g(||z_i - z_j||_2)$
 - **Graph classification:** graph embedding z_G via aggregating node embeddings or anonymous random walks. Predict label based on graph embedding z_G
Today’s Summary

We discussed graph representation learning, a way to learn node and graph embeddings for downstream tasks, without feature engineering.

- **Encoder-decoder framework:**
 - Encoder: embedding lookup
 - Decoder: predict score based on embedding to match node similarity

- **Node similarity measure:** (biased) random walk
 - Examples: DeepWalk, Node2Vec

- **Extension to Graph embedding:** Node embedding aggregation and Anonymous Walk Embeddings