Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Announcements

- **New office hours format:**
 - 1 hour of general questions (group OH)
 - 1 hour of individual questions/help
 - See Ed announcement for more details

- **Deep learning review session:**
 - Monday, Oct 9, 9-11 AM PT on Zoom
 - Hosted by Anirudh during his Monday OH
 - Session will be recorded
 - See Ed announcement for more details
Course Logistics: Homework 1

- **Homework 1 will be released today by 9PM on our course website**
- **Homework 1:**
 - Due Thursday, 10/19 (2 weeks from now)
 - TAs will hold a recitation session for HW 1:
 - Time: Friday (10/13), specific time TBA
 - Location: Zoom, link will be posted on Ed
 - Session will be recorded
Output: Node embeddings. Also, we can embed subgraphs, graphs.
Idea: Node’s neighborhood defines a computation graph

Determine node computation graph
Propagate and transform information

Learn how to propagate information across the graph to compute node features
Intuition: Nodes aggregate information from their neighbors using neural networks.
Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!
Today: A General GNN Framework

(5) Learning objective

(2) Aggregation

GNN Layer 1

(1) Message

(3) Layer connectivity

GNN Layer 2

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

(1) Message

(2) Aggregation
A General GNN Framework (2)

Connect GNN layers into a GNN
- Stack layers sequentially
- Ways of adding skip connections

(3) Layer connectivity

J. You, R. Ying, J. Leskovec. *Design Space of Graph Neural Networks*, NeurIPS 2020
A General GNN Framework (3)

Idea: Raw input graph ≠ computational graph
- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation
How do we train a GNN:

- Supervised/Unsupervised objectives
- Node/Edge/Graph level objectives

(We will discuss all these later in the class)
(1) Message

(2) Aggregation

(3) Layer connectivity

(5) Learning objective

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. *Design Space of Graph Neural Networks*, NeurIPS 2020
Stanford CS224W: A Single Layer of a GNN

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
A GNN Layer

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

J. You, R. Ying, J. Leskovec. *Design Space of Graph Neural Networks*, NeurIPS 2020
A Single GNN Layer

- **Idea of a GNN Layer:**
 - Compress a set of vectors into a single vector
 - **Two-step process:**
 - (1) Message
 - (2) Aggregation

Node v

- (1) Message
- (2) Aggregation

Output node embedding $h_v^{(l)}$

l-th GNN Layer

Input node embedding $h_v^{(l-1)}$, $h_u^{(l-1)}_{u \in N(v)}$

(from node itself + neighboring nodes)
(1) Message computation

Message function: \(m^{(l)}_u = MSG^{(l)} \left(h^{(l-1)}_u \right) \)

- **Intuition**: Each node will create a message, which will be sent to other nodes later.

- **Example**: A Linear layer \(m^{(l)}_u = W^{(l)} h^{(l-1)}_u \)
 - Multiply node features with weight matrix \(W^{(l)} \)

(2) Aggregation

(1) Message
(2) Aggregation

Intuition: Each node will aggregate the messages from node \(v \)'s neighbors

\[
h_v^{(l)} = \text{AGG}^{(l)} \left(\{ m_u^{(l)}, u \in N(v) \} \right)
\]

Example: Sum(\(\cdot \)), Mean(\(\cdot \)) or Max(\(\cdot \)) aggregator

\[
h_v^{(l)} = \text{Sum}(\{ m_u^{(l)}, u \in N(v) \})
\]
Message Aggregation: Issue

- **Issue**: Information from node \(\nu \) itself **could get lost**
 - Computation of \(h^{(l)}_\nu \) does not directly depend on \(h^{(l-1)}_\nu \)
- **Solution**: Include \(h^{(l-1)}_\nu \) when computing \(h^{(l)}_\nu \)
 - **(1) Message**: compute message from node \(\nu \) itself
 - Usually, a **different message computation** will be performed

 \[
 m^{(l)}_u = W^{(l)} h^{(l-1)}_u \quad \text{for} \quad u \in N(\nu)
 \]

 \[
 m^{(l)}_\nu = B^{(l)} h^{(l-1)}_\nu
 \]

 - **(2) Aggregation**: After aggregating from neighbors, we can aggregate the message from node \(\nu \) itself
 - Via **concatenation or summation**

 \[
 h^{(l)}_\nu = \text{CONCAT} \left(\text{AGG} \left(\{ m^{(l)}_u, u \in N(\nu) \} \right), m^{(l)}_\nu \right)
 \]

 First aggregate from neighbors

 Then aggregate from node itself
A Single GNN Layer

- **Putting things together:**
 - **(1) Message:** each node computes a message
 \[m_u^{(l)} = MSG^{(l)} \left(h_u^{(l-1)} \right), u \in \{N(v) \cup v\} \]
 - **(2) Aggregation:** aggregate messages from neighbors
 \[h_v^{(l)} = AGG^{(l)} \left(\left\{ m_u^{(l)}, u \in N(v) \right\}, m_v^{(l)} \right) \]
 - **Nonlinearity (activation):** Adds expressiveness
 - Often written as \(\sigma(\cdot): \text{ReLU}(\cdot), \text{Sigmoid}(\cdot), \ldots \)
 - Can be added to message or aggregation
(1) Graph Convolutional Networks (GCN)

\[
h_v^{(l)} = \sigma\left(\sum_{u \in N(v)} \frac{h_u^{(l-1)}}{|N(v)|} W^{(l)} \right)
\]

How to write this as Message + Aggregation?

\[
h_v^{(l)} = \sigma\left(\sum_{u \in N(v)} W^{(l)} h_u^{(l-1)} \right)
\]

Message

Aggregation

(1) Message

(2) Aggregation
(1) Message:

- Each Neighbor:
 \[
 m_u^{(l)} = \frac{1}{|N(v)|} W^{(l)} h_u^{(l-1)}
 \]

(2) Aggregation:

- Sum over messages from neighbors, then apply activation

In GCN the input graph is assumed to have self-edges that are included in the summation.
(2) GraphSAGE

$$h_v^{(l)} = \sigma \left(W^{(l)} \cdot \text{CONCAT} \left(h_v^{(l-1)}, \text{AGG} \left(\{ h_u^{(l-1)}, \forall u \in N(v) \} \right) \right) \right)$$

How to write this as Message + Aggregation?

- **Message** is computed within the $\text{AGG}(\cdot)$
- **Two-stage aggregation**
 - **Stage 1:** Aggregate from node neighbors
 $$h_{N(v)}^{(l)} \leftarrow \text{AGG} \left(\{ h_u^{(l-1)}, \forall u \in N(v) \} \right)$$
 - **Stage 2:** Further aggregate over the node itself
 $$h_v^{(l)} \leftarrow \sigma \left(W^{(l)} \cdot \text{CONCAT}(h_v^{(l-1)}, h_{N(v)}^{(l)}) \right)$$
GraphSAGE Neighbor Aggregation

- **Mean**: Take a weighted average of neighbors
 \[\text{AGG} = \frac{\sum_{u \in N(v)} h_u^{(l-1)}}{|N(v)|} \]

- **Pool**: Transform neighbor vectors and apply symmetric vector function \text{Mean}(\cdot) or \text{Max}(\cdot)
 \[\text{AGG} = \text{Mean}(\{\text{MLP}(h_u^{(l-1)}), \forall u \in N(v)\}) \]

- **LSTM**: Apply LSTM to reshuffled of neighbors
 \[\text{AGG} = \text{LSTM}([h_u^{(l-1)}, \forall u \in \pi(N(v))]) \]
GraphSAGE: L₂ Normalization

- **L₂ Normalization:**

 - Optional: Apply L₂ normalization to \(h^{(l)}_v \) at every layer

 \[
 h^{(l)}_v \leftarrow \frac{h^{(l)}_v}{\|h^{(l)}_v\|_2} \quad \forall v \in V \text{ where } \|u\|_2 = \sqrt{\sum_i u_i^2} \text{ (L₂-norm)}
 \]

 - Without L₂ normalization, the embedding vectors have different scales (L₂-norm) for vectors

 - In some cases (not always), normalization of embedding results in performance improvement

 - After L₂ normalization, all vectors will have the same L₂-norm
(3) Graph Attention Networks

\[h_v^{(l)} = \sigma \left(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)} \right) \]

Attention weights

In GCN / GraphSAGE

- \(\alpha_{vu} = \frac{1}{|N(v)|} \) is the weighting factor (importance) of node \(u \)'s message to node \(v \)
- \(\Rightarrow \alpha_{vu} \) is defined explicitly based on the structural properties of the graph (node degree)
- \(\Rightarrow \) All neighbors \(u \in N(v) \) are equally important to node \(v \)
Graph Attention Networks

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h^{(l-1)}_u \right) \]

Attention weights

Not all node’s neighbors are equally important

- **Attention** is inspired by cognitive attention.
- The **attention** \(\alpha_{vu} \) focuses on the important parts of the input data and fades out the rest.
 - **Idea**: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.
Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{vu} to be learned?

- **Goal:** Specify *arbitrary importance* to different neighbors of each node in the graph
- **Idea:** Compute embedding $h_v^{(l)}$ of each node in the graph following an *attention strategy*:
 - Nodes attend over their neighborhoods’ message
 - Implicitly specifying different weights to different nodes in a neighborhood
Let α_{vu} be computed as a byproduct of an attention mechanism a:

1. Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$e_{vu} = a(W^{(l)} h_u^{(l-1)}, W^{(l)} h_v^{(l-1)})$$

- e_{vu} indicates the importance of u's message to node v

$$e_{AB} = a(W^{(l)} h_A^{(l-1)}, W^{(l)} h_B^{(l-1)})$$
Attention Mechanism (2)

- **Normalize** e_{vu} into the **final attention weight** α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:
 $$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

- **Weighted sum** based on the **final attention weight** α_{vu}:
 $$h_v^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)})$$

Weighted sum using $\alpha_{AB}, \alpha_{AC}, \alpha_{AD}$:
$$h_A^{(l)} = \sigma(\alpha_{AB} W^{(l)} h_B^{(l-1)} + \alpha_{AC} W^{(l)} h_C^{(l-1)} + \alpha_{AD} W^{(l)} h_D^{(l-1)})$$
What is the form of attention mechanism a?

The approach is agnostic to the choice of a

- E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

Parameters of a are trained jointly:

- Learn the parameters together with weight matrices (i.e., other parameter of the neural net $W^{(l)}$) in an end-to-end fashion
Multi-head attention: Stabilizes the learning process of attention mechanism

- Create multiple attention scores (each replica with a different set of parameters):

 \[
 h_v^{(l)}[1] = \sigma\left(\sum_{u \in N(v)} \alpha_{vu}^{1} W^{(l)} h_u^{(l-1)}\right)
 \]

 \[
 h_v^{(l)}[2] = \sigma\left(\sum_{u \in N(v)} \alpha_{vu}^{2} W^{(l)} h_u^{(l-1)}\right)
 \]

 \[
 h_v^{(l)}[3] = \sigma\left(\sum_{u \in N(v)} \alpha_{vu}^{3} W^{(l)} h_u^{(l-1)}\right)
 \]

- Outputs are aggregated:

 - By concatenation or summation

 \[
 h_v^{(l)} = \text{AGG}(h_v^{(l)}[1], h_v^{(l)}[2], h_v^{(l)}[3])
 \]
Benefits of Attention Mechanism

- **Key benefit:** Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors.

- **Computationally efficient:**
 - Computation of attentional coefficients can be parallelized across all edges of the graph.
 - Aggregation may be parallelized across all nodes.

- **Storage efficient:**
 - Sparse matrix operations do not require more than $O(V + E)$ entries to be stored.
 - Fixed number of parameters, irrespective of graph size.

- **Localized:**
 - Only attends over local network neighborhoods.

- **Inductive capability:**
 - It is a shared edge-wise mechanism.
 - It does not depend on the global graph structure.
Stanford CS224W: GNN Layers in Practice

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
In practice, these classic GNN layers are a great starting point

- We can often get better performance by considering a general GNN layer design
- Concretely, we can include modern deep learning modules that proved to be useful in many domains
Many modern deep learning modules can be incorporated into a GNN layer

- **Batch Normalization:**
 - Stabilize neural network training

- **Dropout:**
 - Prevent overfitting

- **Attention/Gating:**
 - Control the importance of a message

- **More:**
 - Any other useful deep learning modules

A suggested GNN Layer

1. Linear
2. BatchNorm
3. Dropout
4. Activation
5. Attention
6. Aggregation

Transformation
Batch Normalization

- **Goal**: Stabilize neural networks training
- **Idea**: Given a batch of inputs (node embeddings)
 - Re-center the node embeddings into zero mean
 - Re-scale the variance into unit variance

Input: $X \in \mathbb{R}^{N \times D}$

N node embeddings

Trainable Parameters: $\gamma, \beta \in \mathbb{R}^D$

Output: $Y \in \mathbb{R}^{N \times D}$

Normalized node embeddings

Step 1: Compute the mean and variance over N embeddings

- $\mu_j = \frac{1}{N} \sum_{i=1}^{N} X_{i,j}$
- $\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (X_{i,j} - \mu_j)^2$

Step 2: Normalize the feature using computed mean and variance

- $\hat{X}_{i,j} = \frac{X_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$
- $Y_{i,j} = \gamma_j \hat{X}_{i,j} + \beta_j$

Goal: Regularize a neural net to prevent overfitting.

Idea:
- **During training**: with some probability p, randomly set neurons to zero (turn off)
- **During testing**: Use all the neurons for computation
Dropout for GNNs

- In GNN, Dropout is applied to the linear layer in the message function
 - A simple message function with linear layer: \(m_u^{(l)} = W^{(l)} h_u^{(l-1)} \)

Visualization of a linear layer

(1) Message

(2) Aggregation

Dropout
Activation (Non-linearity)

Apply activation to \(i \)-th dimension of embedding \(\mathbf{x} \)

- **Rectified linear unit (ReLU)**

 \[
 \text{ReLU}(x_i) = \max(x_i, 0)
 \]

 - Most commonly used

- **Sigmoid**

 \[
 \sigma(x_i) = \frac{1}{1 + e^{-x_i}}
 \]

 - Used only when you want to restrict the range of your embeddings

- **Parametric ReLU**

 \[
 \text{PReLU}(x_i) = \max(x_i, 0) + a_i \min(x_i, 0)
 \]

 - \(a_i \) is a trainable parameter

 - Empirically performs better than ReLU
Summary: Modern deep learning modules can be included into a GNN layer for better performance.

Designing novel GNN layers is still an active research frontier!

Suggested resources: You can explore diverse GNN designs or try out your own ideas in GraphGym.
Stanford CS224W: Stacking Layers of a GNN
How to connect GNN layers into a GNN?

- Stack layers sequentially
- Ways of adding skip connections

(3) Layer connectivity

J. You, R. Ying, J. Leskovec. *Design Space of Graph Neural Networks*, NeurIPS 2020
How to construct a Graph Neural Network?

- **The standard way:** Stack GNN layers sequentially
- **Input:** Initial raw node feature \mathbf{x}_v
- **Output:** Node embeddings $\mathbf{h}_v^{(L)}$ after L GNN layers
The issue of stacking many GNN layers

- GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?
Receptive Field of a GNN

- **Receptive field**: the set of nodes that determine the embedding of a node of interest
 - In a K-layer GNN, each node has a receptive field of K-hop neighborhood
Receptive Field of a GNN

- Receptive field overlap for two nodes
 - The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!
We can explain over-smoothing via the notion of the receptive field

- We know the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
- Stack many GNN layers \rightarrow nodes will have highly-overlapped receptive fields \rightarrow node embeddings will be highly similar \rightarrow suffer from the over-smoothing problem

Next: how do we overcome over-smoothing problem?
What do we learn from the over-smoothing problem?

Lesson 1: Be cautious when adding GNN layers

- Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help.
- Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph.
- Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily large!

Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?
Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
 - Solution 1: Increase the expressive power within each GNN layer
 - In our previous examples, each transformation or aggregation function only include one linear layer
 - We can make aggregation / transformation become a deep neural network!

If needed, each box could include a 3-layer MLP

(1) Transformation
(2) Aggregation
- **How to make a shallow GNN more expressive?**

 - **Solution 2:** Add layers that do not pass messages

 - A GNN does not necessarily only contain GNN layers
 - E.g., we can add MLP layers (applied to each node) before and after GNN layers, as *pre-process layers* and *post-process layers*

 ![Diagram showing pre- and post-process layers in a GNN](image)

 Pre-processing layers: Important when encoding node features is necessary.
 E.g., when nodes represent images/text

 Post-processing layers: Important when reasoning / transformation over node embeddings are needed
 E.g., graph classification, knowledge graphs

In practice, adding these layers works great!
What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

- **Observation from over-smoothing:** Node embeddings in earlier GNN layers can sometimes better differentiate nodes

- **Solution:** We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN

Idea of skip connections:

Before adding shortcuts:

\[F(x) \]

After adding shortcuts:

\[F(x) + x \]
Why do skip connections work?

- **Intuition:** Skip connections create a mixture of models
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to N modules
- We automatically get a mixture of shallow GNNs and deep GNNs

All the possible paths: $2 \times 2 \times 2 = 2^3 = 8$

Path 1: include this module
(a) Conventional 3-block residual network

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016
Example: GCN with Skip Connections

- A standard GCN layer

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]

This is our \(F(x) \)

- A GCN layer with skip connection

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) + h^{(l-1)}_v \]

\[F(x) + x \]
Other Options of Skip Connections

- **Other options:** Directly skip to the last layer
 - The final layer directly aggregates from the all the node embeddings in the previous layers

Xu et al. *Representation learning on graphs with jumping knowledge networks*, ICML 2018
Stanford CS224W: Graph Manipulation in GNNs

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
General GNN Framework

Idea: Raw input graph ≠ computational graph

• Graph feature augmentation
• Graph structure manipulation

(4) Graph manipulation
Why Manipulate Graphs

Our assumption so far has been
- Raw input graph $=$ computational graph

Reasons for breaking this assumption
- Feature level:
 - The input graph \textit{lacks features} \Rightarrow feature augmentation
- Structure level:
 - The graph is \textit{too sparse} \Rightarrow inefficient message passing
 - The graph is \textit{too dense} \Rightarrow message passing is too costly
 - The graph is \textit{too large} \Rightarrow cannot fit the computational graph into a GPU
- It’s just \textit{unlikely that the input graph happens to be the optimal computation graph} for embeddings
Graph Manipulation Approaches

- **Graph Feature manipulation**
 - The input graph lacks features → feature augmentation

- **Graph Structure manipulation**
 - The graph is too sparse → Add virtual nodes / edges
 - The graph is too dense → Sample neighbors when doing message passing
 - The graph is too large → Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs
Why do we need feature augmentation?

- **(1) Input graph does not have node features**
 - This is common when we only have the adj. matrix
- **Standard approaches:**
 - a) Assign constant values to nodes
Why do we need feature augmentation?

- **(1) Input graph does not have node features**
 - This is common when we only have the adj. matrix

- **Standard approaches:**
 - b) Assign unique IDs to nodes
 - These IDs are converted into **one-hot vectors**

One-hot vector for node with ID=5

```
[0, 0, 0, 0, 1, 0]
```

ID = 5

Total number of IDs = 6
Feature Augmentation on Graphs

- **Feature augmentation:** constant vs. one-hot

<table>
<thead>
<tr>
<th></th>
<th>Constant node feature</th>
<th>One-hot node feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressive power</td>
<td>Medium. All the nodes are identical, but GNN can still learn from the graph structure</td>
<td>High. Each node has a unique ID, so node-specific information can be stored</td>
</tr>
<tr>
<td>Inductive learning (Generalize to unseen nodes)</td>
<td>High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN</td>
<td>Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn’t know how to embed unseen IDs</td>
</tr>
<tr>
<td>Computational cost</td>
<td>Low. Only 1 dimensional feature</td>
<td>High. High dimensional feature, cannot apply to large graphs</td>
</tr>
<tr>
<td>Use cases</td>
<td>Any graph, inductive settings (generalize to new nodes)</td>
<td>Small graph, transductive settings (no new nodes)</td>
</tr>
</tbody>
</table>
Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- **Example:** Cycle count feature
 - Can GNN learn the length of a cycle that \(v_1 \) resides in?
 - **Unfortunately, no**

\[v_1 \text{ resides in a cycle with length 3} \]
\[v_1 \text{ resides in a cycle with length 4} \]
- v_1 cannot differentiate which graph it resides in
 - Because all the nodes in the graph have degree of 2
 - The computational graphs will be the same binary tree

v_1 resides in a cycle with length 3

v_1 resides in a cycle with length 4

v_1 resides in a cycle with infinite length

The computational graphs for node v_1 are always the same
Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN

Solution:
- We can use cycle count as augmented node features

We start from cycle with length 0

Augmented node feature for \(v_1 \): [0, 0, 0, 1, 0, 0]

\(v_1 \) resides in a cycle with length 3

Augmented node feature for \(v_1 \): [0, 0, 0, 0, 1, 0]

\(v_1 \) resides in a cycle with length 4
Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Other commonly used augmented features:
 - Clustering coefficient
 - PageRank
 - Centrality
 - ...
- Any feature we have introduced in Lecture 1 can be used!
Motivation: Augment sparse graphs

(1) Add virtual edges

Common approach: Connect 2-hop neighbors via virtual edges

Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$

Use cases: Bipartite graphs

Author-to-papers (they authored)

2-hop virtual edges make an author-author collaboration graph
Add Virtual Nodes / Edges

- **Motivation:** Augment sparse graphs
- (2) Add virtual nodes
 - The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, **all the nodes will have a distance of 2**
 - Node A – Virtual node – Node B
 - **Benefits:** Greatly **improves message passing in sparse graphs**
Previously:
- All the nodes are used for message passing

New idea: (Randomly) sample a node’s neighborhood for message passing

Hamilton et al. *Inductive Representation Learning on Large Graphs*, NeurIPS 2017
For example, we can randomly choose 2 neighbors to pass messages

- Only nodes B and D will pass message to A
Next time when we compute the embeddings, we can sample different neighbors

- Only nodes C and D will pass message to A
In expectation, we can get embeddings similar to the case where all the neighbors are used.

- **Benefits:** Greatly reduce computational cost
- And in practice it works great!
Recap: A general perspective for GNNs

- **GNN Layer:**
 - Transformation + Aggregation
 - Classic GNN layers: GCN, GraphSAGE, GAT

- **Layer connectivity:**
 - Deciding number of layers
 - Skip connections

- **Graph Manipulation:**
 - Feature augmentation
 - Structure manipulation

Next: GNN objectives, GNN in practice