Small-World Phenomena and Decentralized Search
Recap: Small-World:

- Real networks: low diameter, high clustering
- But G_{np} is low diameter, no clustering
- How can we at the same time have high clustering and small diameter?

- Clustering implies edge “locality”
- Randomness enables “shortcuts”
Small-World Model [Watts-Strogatz ‘98]

Two components to the model:

1. **Start with a low-dimensional regular lattice**
 - (In our case we are using a ring as a lattice)
 - Has high clustering coefficient

2. **Now introduce randomness ("shortcuts")**

(2) **Rewire:**
 - Add/remove edges to create shortcuts to join remote parts of the lattice
 - For each edge with prob. p, move the other end to a random node
Could a network with high clustering be at the same time a small world?

\[h = \frac{N}{2k} \quad C = \frac{3}{4} \]

\[h = \frac{\log N}{\log \alpha} \quad C = \frac{k}{N} \]
The Small-World Model

Intuition: It takes a lot of randomness to ruin the clustering, but a very small amount to create shortcuts.

Parameter region of high clustering and low path length

\[C = \frac{1}{n} \sum \frac{C_i}{C} \]

mean vertex-vertex distance

clustering coefficient
Alternative formulation of the model:

- Start with a square grid
- Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

There are already 12 triangles in the grid and the long-range edge can only close more.

What’s the diameter?
It is $O(\log(n))$
Why?

\[
C_i = \frac{2 \cdot e_i}{k_i(k_i - 1)} \geq \frac{2 \cdot 12}{9 \cdot 8} \geq 0.33
\]
Diameter of the Watts-Strogatz

Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes.
- Now we have 4 long-range edges sticking out of each supernode.
 - 4-regular random graph!
- Thm. about G_{np} tell us we have short paths between super nodes.
- We can turn this into a path in the original graph by adding at most 2 steps per long range edge (by having to traverse internal nodes).

\Rightarrow Diameter of the model is $O(2 \log n)$

Note that this analysis ignores edges between neighbors of super-nodes, but this does not matter since those edges would make the diameter only go further down.
Could a network with high clustering be at the same time a small world?

- Yes! You don’t need more than a few random links

The Watts Strogatz Model:

- Provides insight on the interplay between clustering and the small-world
- Captures the structure of many realistic networks
- Accounts for the high clustering of real networks
- Does not lead to the correct degree distribution
- Does not enable navigation (next)
How to Navigate the Network?

- (1) What is the structure of a social network?
- (Today) What strategies do people use to route and find the target?

How would you go about finding the path?
The setting:

- s only knows locations of its friends and location of the target t
- s does not know links of anyone else but itself
- **Geographic Navigation:** s “navigates” to a node geographically closest to t
- **Search time T:** Number of steps to reach t
Overview of the Results

Searchable

Search time T:

\[
O\left((\log n)^\beta \right)
\]

Kleinberg’s model

\[
O\left((\log n)^2 \right)
\]

Not searchable

Search time T:

\[
O\left(n^\alpha \right)
\]

Watts-Strogatz

\[
O\left(n^{\frac{2}{3}} \right)
\]

Erdős–Rényi

\[
O\left(n \right)
\]

Note: We know these graphs have diameter $O(\log n)$. So in Kleinberg’s model search time is polynomial in $\log n$, while in Watts-Strogatz it is exponential (in $\log n$).
- **Model:** 2-dim grid where each node has 1 random edge
 - This is a small-world!
 - (Small-world = diameter $O(\log n)$)

- **Fact:** A decentralized search algorithm in Watts-Strogatz model needs $n^{2/3}$ steps to reach t in expectation
 - **Note:** Even though paths of $O(\log n)$ steps exist

- **Note:** All our calculations are asymptotic, i.e., we are interested in what happens as $n \to \infty$
Let’s do the proof for 1-dimensional case

Want to show Watts-Strogatz is NOT searchable

- Bound the search time from below

About the proof:

- **Setting:** n nodes on a ring plus one random directed edge per node.
- Search time is $T \geq O(\sqrt{n})$
 - For d-dim. lattice: $T \geq O(n^{d/(d+1)})$
- **Proof strategy:** Principle of deferred decision
 - Doesn’t matter when a random decision is made if you haven’t seen it yet
 - Assume random long range link is only created once you get to the node
How long we have to walk before we jump? Overview of the proof:

- **Reason about event E**
 - $E = \text{event that any of the first } k \text{ nodes visited by the alg. has a link to } I \text{ of width } 2 \cdot x \text{ nodes (for some } x \text{) around target } t$

- **We obtain:** $P(E) \leq \frac{2kx}{n}$

- If E does not occur, then we walked at least k steps
 - $E[\text{Search time}] \geq P(\text{not } E) \cdot k$
 - **So let’s pick** $k = x = \frac{1}{2} \sqrt{n}$ **then** $P(E) \leq \frac{1}{2}$
 - $E[\text{Search time}] \geq \frac{1}{2} \cdot k = \frac{1}{2} \cdot \frac{1}{2} \sqrt{n} = O(\sqrt{n})$

(next 4 slides give a detailed proof)
Proof: Search time is $\geq O(n^{1/2})$

- We reason about the time needed to get into interval I
- Let: $E_i =$ event that long link out of node i points to some node in interval I of width $2 \cdot x$ nodes (for some x) around target t
- Then: $P(E_i) = \frac{2x}{n-1} \approx \frac{2x}{n}$ (in the limit of large n)
 (haven’t seen node i yet, but can assume random edge generation)
Proof: Search time is $\geq O(n^{1/2})$

- $E =$ event that any of the first k nodes search algorithm visits has a link to I

- Then: $P(E) = P\left(\bigcup_{i=1}^{k} E_i\right) \leq \sum_{i=1}^{k} P(E_i) = k \frac{2x}{n}$

- Let’s choose $k = x = \frac{1}{2} \sqrt{n}$

Then:

$$P(E) \leq 2 \left(\frac{1}{2} \sqrt{n}\right)^2 = \frac{1}{2}$$

Note: Our alg. is deterministic and will choose to travel via a long- or short-range links using some deterministic rule.

The principle of deferred decision tells us that it does not really matter how we reached node i. Its prob. of linking to interval I is: $2x/n$.

10/4/17

Proof: Search time is $\geq O(n^{1/2})$

$P(E) = P(\text{in } \frac{1}{2}\sqrt{n} \text{ steps we jump inside } \frac{1}{2}\sqrt{n} \text{ of } t) \leq \frac{1}{2}$

- **Suppose** initial s is outside I and event E does not happen (first k visited nodes don’t point to I)
- **Then** the search algorithm must take $T \geq \min(k, x)$ steps to get to t
 - (1) Right after we visit k nodes a good long-range link may occur
 - (2) x and k “overlap”, due to E not happening we have to walk at least x steps
Proof: Search time is $\geq O(n^{1/2})$

- **Claim:** Getting from s to t takes $\geq \frac{1}{4} \sqrt{n}$ steps
- **Search time:** $\geq P(E) \times (#\text{steps}) + P(\text{not } E) \times \min(x,k)$
- **Proof:** We just need to put together the facts

 - We already showed that for $x = k = \frac{1}{2} \sqrt{n}$
 - E does not happen with prob. $\frac{1}{2}$
 - If E does not happen, we must traverse $\geq \frac{1}{2} \sqrt{n}$ steps to get to t
 - **The expected time to get to t is then**
 $$\geq P(E \text{ doesn't occur}) \cdot \min\{x,k\} =$$
 $$= \frac{1}{2} \times \frac{1}{2} \sqrt{n} = \frac{1}{4} \sqrt{n}$$
Watts-Strogatz graphs are not searchable

How do we make a searchable small-world graph?

Intuition:
- Our long range links are not random
- They follow geography!

Saul Steinberg, “View of the World from 9th Avenue”
Variation of the Model

- **Model** [Kleinberg, Nature ‘01]
 - Nodes still on a grid
 - Node has one long range link
 - Prob. of long link to node \(v \):
 \[
 P(u \rightarrow v) \sim d(u,v)^{-\alpha}
 \]
 - \(d(u,v) \) ... grid distance between \(u \) and \(v \)
 - \(\alpha \) ... parameter \(\geq 0 \)

\[
P(u \rightarrow v) = \frac{d(u,v)^{-\alpha}}{\sum_{w \neq u} d(u,w)^{-\alpha}}
\]

\(\alpha = 0 \)

\(\alpha = 1 \)

\(\alpha >> 1 \)
Why Does It Work?
We analyze 1-dim case:

- **Claim:** For $\alpha = 1$ we can get from s to t in $O(\log(n)^2)$ steps in expectation.

- **Assume:** For some node v: $d(v, t) = d$

- **Set interval:** $I = d$

- **Fact:** (next two slides give a proof of this fact)

\[
P\left(\begin{array}{l}
\text{Long range link from } v \\
\text{points to a node in } I
\end{array}\right) = O\left(\frac{1}{\ln n}\right)
\]

Why is this cool? As d gets bigger, I gets wider, but the prob. is independent of d. [Diagram with points s and t and line segments representing $d/2$ and d, with interval $I = d$.]
Kleinberg’s Model in 1-D

- First we need: \(P(v \text{ points to } w) = \)
 \[
P(v \to w) = \frac{d(v, w)^{-1}}{\sum_{u \neq v} d(v, u)^{-1}}
 \]

- What is the normalizing const?
 \[
 \sum_{u \neq v} d(u, v)^{-1} = \sum_{\text{all possible distances } d} \frac{1}{d} = 2 \sum_{d=1}^{n/2} \frac{1}{d} \leq 2 \ln n
 \]

Note:
\[
\sum_{d=1}^{n/2} \frac{1}{d} \leq 1 + \int_{1}^{n/2} \frac{dx}{x} = 1 + \ln\left(\frac{n}{2}\right) = \ln n
\]
Next we need: $P(v \text{ points to } I) =$

$$P(v \text{ points to } I) = \sum_{w \in I} P(v \rightarrow w) \geq \sum_{w \in I} \frac{d(v, w)^{-1}}{2 \ln n}$$

$$= \frac{1}{2 \ln n} \sum_{w \in I} \frac{1}{d(v, w)} \geq \frac{1}{2 \ln n} \frac{2}{3d} = \frac{1}{3 \ln n}$$

What’s the smallest of these terms?

All terms $\geq 2/(3d)$

$$= O\left(\frac{1}{\ln n}\right)$$

Note: $d(v, x) = 3d/2$
Kleinberg’s Model in 1-D

- So, we have:
 - I ... interval of $d/2$ around t (where $d = d(v,t)$)
 - P (long link of v points to I) $= 1/\ln(n)$
- In expected # of steps $\leq \ln(n)$ you get into I, and thus you halve the distance to t
- How many times do we have to walk $\ln(n)$ steps?
 - Distance can be halved at most $\log_2(n)$ times
 - So expected time to reach t: $O(\log_2(n)^2)$
Overview of the Results

<table>
<thead>
<tr>
<th>Searchable</th>
<th>Not searchable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search time T:</td>
<td>Search time T:</td>
</tr>
<tr>
<td>$O((\log n)^{\beta})$</td>
<td>$O(n^\alpha)$</td>
</tr>
<tr>
<td>Kleinberg’s model</td>
<td>Watts-Strogatz</td>
</tr>
<tr>
<td>$O((\log n)^2)$</td>
<td>$O(n^{\frac{2}{3}})$</td>
</tr>
<tr>
<td>Erdős–Rényi</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Note: We know these graphs have diameter $O(\log n)$. So in Kleinberg’s model search time is polynomial in $\log n$, while in Watts-Strogatz it is exponential (in $\log n$).
We know:

- $\alpha = 0$ (i.e., Watts-Strogatz): We need $O(\sqrt{n})$ steps
- $\alpha = 1$: We need $O(\log(n)^2)$ steps
Intuition: Why Search Takes Long

Small α: too many long links

Big α: too many short links
How does the argument change for 2-d grid:

- $P(u \text{ points to I}) > 1/Z \cdot \#\text{nodes}(I) \cdot P(u \rightarrow v)$

 $$\ln n \quad d^2 \quad d^{-2} \Rightarrow \alpha = 2$$

Why $P(u \rightarrow v) \sim d(u,v)^{-\dim}$ works?

- Approx uniform over all “scales of resolution”
- # nodes at distance d grows as d^{\dim}, prob. $d^{-\dim}$ of each edge \rightarrow const. prob. of a link, independent of d

Number of nodes is $\propto d^2$

Prob. of linking each is $\propto d^{-2}$
Different Model: Hierarchies

- **Nodes are in the leaves of a tree:**
 - Departments, topics, ...

- **Create k edges out of every node v**
 - Create each edge out of v by choosing $v \to w$ with prob. $\sim b^{-h(v,w)}$
 - $h(u,v) =$ tree-distance (height of the least common ancestor)

- **Start at s, want to go to t**
 - Only see out links of the current node
 - But you know the hierarchy

- **Claim 1:**
 - For any direct subtree T' one of v's links points to T'

- **Claim 2:**
 - Claim 1 guarantees efficient search
 - You will prove C1 & C2 in HW1!
Different Model: Hierarchies

- **Extension:**
 - Multiple hierarchies – geography, profession, ...
 - Generate separate random graph in each hierarchy
 - Superimpose the graphs
- **Search algorithm:**
 - Choose a link that gets closest in any hierarchy
- **Q: How to analyze the model?**
 - **Simulations:**
 - Search works for a range of alphas
 - Biggest range of searchable alphas for 2 or 3 hierarchies
 - Too many hierarchies hurts
Search in P2P Networks
Algorithmic consequence of small-world:

How to find files in Peer-to-Peer networks?
Client – Server
P2P: Only Clients
Napster

- Napster existed from June ‘99 and July ‘01
- Hybrid between P2P and a centralized network
- Once lawyers got the central server to shut down, the network fell apart
Protocol Chord maps key (filename) to a node:

- **Keys** are files we are searching for
- Computer that keeps the **key** can then point to the true location of the file

Keys and nodes have \(m \)-bit IDs assigned to **them**:

- Node ID is a hash-code of the IP address (32-bit)
- Key ID is a hash-code of the file
Example: Chord on a Cycle

- Cycle with node ids 0 to 2^{m-1}
- File (key) k is assigned to a node $a(k)$ with ID $\geq k$
Assume we have \(N \) nodes and \(K \) keys (files)

How many keys does each node have?

When a node joins/leaves the system it only needs to talk to its immediate neighbors

- When node \(N+1 \) joins or leaves, then only \(O\left(\frac{K}{N}\right) \) keys need to be rearranged

Each node knows the IP address of its immediate neighbors
If every node knows its immediate neighbor then use sequential search

Search time is $O(N)$!
Faster Search:

- A node maintains a table of $m=\log(N)$ entries
- i-th entry of a node n contains the address of (2^i)-th neighbor
 - i-th entry points to first node with ID $\geq n+2^i$
- **Problem:** When a node joins we violate long range pointers of all other nodes
 - Many papers about how to make this work

Search algorithm:

- Take the longest link that does not overshoot
 - With each step we **halve** the distance to the target!
i-th entry of N has the address of $(N+2^i)$-th node

\begin{align*}
N_{8+1} &= N_{14} \\
N_{8+2} &= N_{14} \\
N_{8+4} &= N_{14} \\
N_{8+8} &= N_{21} \\
N_{8+16} &= N_{32} \\
N_{8+32} &= N_{42}
\end{align*}
Start at N8, find key with ID 54

N8+1 = N14
N8+2 = N14
N8+4 = N14
N8+8 = N21
N8+16 = N32
N8+32 = N42

N42+1 = N48
N42+2 = N48
N42+4 = N48
N42+8 = N51
N42+16 = N1
N42+32 = N14
How Long Does It Take to Find a Key?

- **Claim**: Search for any key in the network of \(N \) nodes visits \(O(\log N) \) nodes.

- Assume that node \(n \) queries for key \(k \).
- Let the key \(k \) reside at node \(t \).
- How many steps do we need to reach \(t \)?
O(log N) steps. Proof:

- We start the search at node n
- Let i be a number such that t is contained in interval $[n+2^{i-1}, n+2^i]$ (for some i)
- Then the table at node n contains a pointer to node x that is the first node past node id $n+2^{i-1}$
- **Claim:** Node x is closer to t than n

So, in one step we **halved** the distance to t

- We can do this at most $\log_2 N$ times
- Thus, we find t in $O(\log_2 N)$ steps
Empirical Studies of Navigation in Small-World Networks
Small-World in HP Labs

- **Adamic-Adar 2005:**
 - HP Labs email logs (436 people)
 - Link if u, v exchanged >5 emails each way
 - Map of the organization hierarchy
 - How many edges cross groups?
 - Finding: $P(u \rightarrow v) \sim 1 / (\text{size of the smallest group containing } u, v)$

- **Differences from the hierarchical model:**
 - Weighted edges
 - People on non-leaf nodes
 - Not b-ary or uniform depth
Liben-Nowell et al. ’05:
- LiveJournal data
 - Bloggers + zip codes
- Link prob.: $P(u,v) = \delta^{-\alpha}$
- $\alpha = ?$

Problem:
- Non-uniform population density

Solution: Rank based friendship

Link length in a network of bloggers (0.5 million bloggers, 4 million links)
Improved Model

\[\text{rank}_u(v) := \left| \{ w : d(u, w) < d(u, v) \} \right| \]

- \(P(u \rightarrow v) = \text{rank}_u(v)^{-\alpha} \)
- **What is best \(\alpha \)?**
 - For equally spaced pairs: \(\alpha = \text{dim. of the space} \)
 - In this special case \(\alpha = 1 \) is best for search
Rank Based Friendships

- Close to theoretical optimum of $\alpha = -1$

[Liben-Nowell et al. '05]
Geographic Navigation

- Decentralized search in a LiveJournal network
 - 12% searches finish, average 4.12 hops
Q: Why do searchable networks arise?

- **Why is rank exponent close to -1?**
 - Why in any network? Why online?
 - How robust/reproducible?
- **Mechanisms** that get $\alpha = 1$ purely through local “rearrangements” of links
- **Conjecture** [Sandbeng-Clark]
 - Nodes on a ring with random edges
 - Process of morphing links:
 - **Update step**: Randomly choose s, t, run decentral. search alg.
 - **Path compression**: each node on path updates long range link to go directly to t with some small prob.
- **Conjecture from simulation**: $P(u \rightarrow v) \sim \text{dist}^{-1}$
How the Class Fits Together

Observations
- Small diameter, Edge clustering
- Patterns of signed edge creation
- Viral Marketing, Blogosphere, Memetracking
- Scale-Free
- Densification power law, Shrinking diameters
- Strength of weak ties, Core-periphery

Models
- Erdös-Renyi model, Small-world model
- Structural balance, Theory of status
- Independent cascade model, Game theoretic model
- Preferential attachment, Copying model
- Microscopic model of evolving networks
- Kronecker Graphs

Algorithms
- Decentralized search
- Models for predicting edge signs
- Influence maximization, Outbreak detection, LIM
- PageRank, Hubs and authorities
- Link prediction, Supervised random walks
- Community detection: Girvan-Newman, Modularity