
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ Deadline extension for Colab 1 and project
proposal
§ Colab 1 due date extended to Tuesday, October 17
§ Project proposal due date extended to Tuesday,

October 24
¡ Homework 1
§ Due Thursday, October 19 (1 week from now)
§ Recitation session on 1pm-3pm, Friday, October 13

§ Details on Ed
¡ Project information released on course

website

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

¡ Goal: create long-lasting resources for your
technical profiles + broader graph ML
community

¡ Three types of projects
§ 1) Real-world applications of GNNs
§ 2) Tutorial on PyG functionality
§ 3) Implementation of cutting-edge research

¡ We will publish your blog posts on our
course’s Medium page!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

https://medium.com/stanford-cs224w

¡ Goal: identify a specific use case and
demonstrate how GNNs and PyG can be used
to solve this problem

¡ Output: blog post, Google colab
¡ Example use cases
§ Fraud detection
§ Predicting drug interactions
§ Friend recommendation

¡ Check out the featured posts in the project
information doc on the course website

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

https://medium.com/stanford-cs224w/featured/home

¡ Goal: develop a tutorial that explains how to
use existing PyG functionality

¡ Output: blog post, Google colab
¡ Example topics for tutorials
§ PyG’s explainability module
§ Methods for graph sampling (e.g., negative

sampling, sampling on heterogeneous graphs)
§ Tutorial on GraphGym, a platform for designing

and evaluating GNNs
¡ Check out example tutorials from PyG

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html
https://medium.com/@pytorch_geometric/link-prediction-on-heterogeneous-graphs-with-pyg-6d5c29677c70

¡ Goal: implement interesting methods from a
recent research paper in graph ML

¡ Output: PR to PyG contrib, short blog post
¡ Project details
§ Implementation should include comprehensive

testing and documentation on new functionality
§ Try to build on existing PyG and PyTorch code

wherever possible
§ Note: this project is more manageable if you are

already comfortable with PyTorch and deep
learning. We also highly recommend group of 3.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

https://pytorch-geometric.readthedocs.io/en/latest/modules/contrib.html

¡ Project is worth 30% of your course grade
§ Project proposal (2 pages), due October 24
§ Project milestone, due November 9
§ Final reports, due December 14

¡ We recommend groups of 3, but groups of 2
are also allowed
§ Each group will be assigned a CA mentor who will

provide feedback
¡ Full project description is released on the

course website!
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

http://web.stanford.edu/class/cs224w/projects.html

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

𝐦!
(#) = MSG # 𝐡!

#%& , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡!
(#) = AGG # 𝐦%

, 𝑢 ∈ 𝑁 𝑣 ,𝐦!
#

¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

¡ Graph Feature manipulation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Degree distribution
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced can be used!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴*

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the

nodes in the graph
§ Suppose in a sparse graph, two nodes have

shortest path distance of 10
§ After adding the virtual node, all the nodes

will have a distance of 2
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message
passing in sparse graphs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

The virtual
node

¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s
neighborhood for message passing

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ For example, we can randomly choose 2
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Next time when we compute the embeddings,
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ In expectation, we can get embeddings similar
to the case where all the neighbors are used
§ Benefits: Greatly reduce computational cost
§ And in practice it works great!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

So far what we have covered

Output of a GNN: set of node embeddings
{𝐡!

" , ∀𝑣 ∈ 𝐺}

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks

¡ Idea: Different task levels require different
prediction heads

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

Node-level
prediction

Edge-level
prediction

Graph-level
prediction

¡ Node-level prediction: We can directly make
prediction using node embeddings!

¡ After GNN computation, we have 𝑑-dim node
embeddings: {𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺}
¡ Suppose we want to make 𝑘-way prediction
§ Classification: classify among 𝑘 categories
§ Regression: regress on 𝑘 targets

¡ ,𝒚𝒗 = Head%&'((𝐡!
") = 𝐖(*)𝐡!

(")

§ 𝐖(+) ∈ ℝ,×. : We map node embeddings from
𝐡/
(0) ∈ ℝ. to 7𝒚/ ∈ ℝ, so that we can compute the

loss
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

¡ Edge-level prediction: Make prediction using
pairs of node embeddings

¡ Suppose we want to make 𝑘-way prediction
¡ ,𝒚𝒖𝒗 = Head('-.(𝐡/

" , 𝐡!
")

¡ What are the options for Head('-.(𝐡/
" , 𝐡!

")?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

?
𝐡#
"

𝐡!
"

¡ Options for Head('-.(𝐡/
" , 𝐡!

"):
¡ (1) Concatenation + Linear
§ We have seen this in graph attention

§ 7𝒚𝒖𝒗 = Linear(Concat(𝐡!
0 , 𝐡/

0))
§ Here Linear(⋅) will map 2𝑑-dimensional

embeddings (since we concatenated embeddings)
to 𝑘-dim embeddings (𝑘-way prediction)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

𝐡!
(#$%)𝐡'

(#$%)

Concatenate Linear 7𝒚#!

¡ Options for Head!"#$(𝐡%
& , 𝐡'

&):
¡ (2) Dot product

§ +𝒚𝒖𝒗 = (𝐡%
())𝐡!

(

§ This approach only applies to 𝟏-way prediction (e.g.,
link prediction: predict the existence of an edge)

§ Applying to 𝒌-way prediction:
§ Similar to multi-head attention: 𝐖("), … ,𝐖($) trainable

+𝒚𝒖𝒗
(𝟏) = (𝐡(

))*𝐖(")𝐡+
)

…
+𝒚𝒖𝒗
(𝒌) = (𝐡(

))*𝐖($)𝐡+
)

+𝒚(+ = Concat(+𝒚𝒖𝒗
(𝟏), … , +𝒚𝒖𝒗

(𝒌)) ∈ ℝ$

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

¡ Graph-level prediction: Make prediction using
all the node embeddings in our graph

¡ Suppose we want to make 𝑘-way prediction
¡ ,𝒚0 = Head-1234({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Graph-level prediction

(2) Aggregation

(1) Message
¡ Head-1234(⋅) is similar to
AGG(⋅) in a GNN layer!

¡ Options for Head-1234({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (1) Global mean pooling
,𝒚0 = Mean({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ (2) Global max pooling

,𝒚0 = Max({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (3) Global sum pooling
,𝒚0 = Sum({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ These options work great for small graphs
¡ Can we do better for large graphs?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(2) Where does ground-truth come from?
- Supervised labels
- Unsupervised signals

¡ Supervised learning on graphs
§ Labels come from external sources

§ E.g., predict drug likeness of a molecular graph
¡ Unsupervised learning on graphs
§ Signals come from graphs themselves

§ E.g., link prediction: predict if two nodes are connected
¡ Sometimes the differences are blurry
§ We still have “supervision” in unsupervised learning

§ E.g., train a GNN to predict node clustering coefficient
§ An alternative name for “unsupervised” is “self-

supervised”

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

¡ Supervised labels come from the specific use
cases. For example:
§ Node labels 𝒚𝒗: in a citation network, which subject

area does a node belong to
§ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an

edge is fraudulent
§ Graph labels 𝒚*: among molecular graphs, the drug

likeness of graphs
¡ Advice: Reduce your task to node / edge / graph

labels, since they are easy to work with
§ E.g., we knew some nodes form a cluster. We can treat

the cluster that a node belongs to as a node label
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

¡ The problem: sometimes we only have a graph,
without any external labels

¡ The solution: “self-supervised learning”, we can
find supervision signals within the graph.
§ For example, we can let GNN predict the following:
§ Node-level 𝒚/. Node statistics: such as clustering

coefficient, PageRank, …
§ Edge-level 𝒚!/. Link prediction: hide the edge

between two nodes, predict if there should be a link
§ Graph-level 𝒚4 . Graph statistics: for example, predict

if two graphs are isomorphic
§ These tasks do not require any external labels!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(3) How do we compute the final loss?
- Classification loss
- Regression loss

¡ The setting: We have 𝑁 data points
§ Each data point can be a node/edge/graph

§ Node-level: prediction 7𝒚/
(5), label 𝒚/

(5)

§ Edge-level: prediction 7𝒚!/
(5), label 𝒚!/

(5)

§ Graph-level: prediction 7𝒚4
(5), label 𝒚4

(5)

§ We will use prediction 7𝒚(5), label 𝒚 5 to refer
predictions at all levels

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

¡ Classification: labels 𝒚 5 with discrete value
§ E.g., Node classification: which category does a

node belong to
¡ Regression: labels 𝒚 5 with continuous value
§ E.g., predict the drug likeness of a molecular graph

¡ GNNs can be applied to both settings
¡ Differences: loss function & evaluation

metrics

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

¡ As discussed in lecture 6, cross entropy (CE) is
a very common loss function in classification

¡ 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(5), 7𝒚(5) = −J
67&

8
𝒚6
(5) log(7𝒚𝒋

(𝒊))

where:
𝒚(5) 𝜖 ℝ8 = one-hot label encoding

7𝒚(5)𝜖 ℝ8 = prediction after Softmax(⋅)

¡ Total loss over all 𝑁 training examples
Loss =;

$%&

'
CE 𝒚($), >𝒚($)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g.

E.g.

¡ For regression tasks we often use Mean Squared
Error (MSE) a.k.a. L2 loss

¡ 𝐾-way regression for data point (i):

MSE 𝒚($), &𝒚($) =(
,%&

-
(𝒚,

($)− &𝒚,
$).

where:

𝒚(𝒊) 𝜖 ℝ/ = Real valued vector of targets
&𝒚(𝒊)𝜖 ℝ/ = Real valued vector of predictions

¡ Total loss over all 𝑁 training examples

Loss =;
-."

/

MSE 𝒚(-), +𝒚(-)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g.

E.g.

𝒊-th data point

𝒋-th target

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC

¡ We use standard evaluation metrics for GNN
§ (Content below can be found in any ML course)
§ In practice we will use sklearn for implementation
§ Suppose we make predictions for 𝑁 data points

¡ Evaluate regression tasks on graphs:
§ Root mean square error (RMSE)

;
$%&

' 𝒚($) − >𝒚($) .

𝑁

§ Mean absolute error (MAE)
∑$%&' 𝒚($) − >𝒚($)

𝑁
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

https://scikit-learn.org/stable/modules/model_evaluation.html

¡ Evaluate classification tasks on graphs:
¡ (1) Multi-class classification

§ We simply report the accuracy
1 argmax +𝒚(+) = 𝒚(+)

𝑁
¡ (2) Binary classification

§ Metrics sensitive to classification threshold
§ Accuracy
§ Precision / Recall
§ If the range of prediction is [0,1], we will use 0.5 as threshold

§ Metric Agnostic to classification threshold
§ ROC AUC

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

¡ Accuracy:
TP + TN

TP + TN + FP + FN
=
TP + TN
|Dataset|

¡ Precision (P):
TP

TP + FP
¡ Recall (R):

TP
TP + FN

¡ F1-Score:
2P ∗ R
P + R

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

¡ ROC Curve: Captures the tradeoff in TPR and
FPR as the classification threshold is varied
for a binary classifier.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line
represents performance of
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

¡ ROC AUC: Area under the ROC Curve.
¡ Intuition: The probability that a classifier will rank a

randomly chosen positive instance higher than a
randomly chosen negative one

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

¡ Fixed split: We will split our dataset once
§ Training set: used for optimizing GNN parameters
§ Validation set: develop model/hyperparameters
§ Test set: held out until we report final performance

¡ A concern: sometimes we cannot guarantee
that the test set will really be held out

¡ Random split: we will randomly split our
dataset into training / validation / test
§ We report average performance over different

random seeds

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

¡ Suppose we want to split an image dataset
§ Image classification: Each data point is an image
§ Here data points are independent

§ Image 5 will not affect our prediction on image 1

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Training

Validation

Test

3
2

45

1

6

¡ Splitting a graph dataset is different!
§ Node classification: Each data point is a node
§ Here data points are NOT independent

§ Node 5 will affect our prediction on node 1, because it will
participate in message passing à affect node 1’s embedding

¡ What are our options?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Training

Validation

Test

3
2

45

1

6

¡ Solution 1 (Transductive setting): The input
graph can be observed in all the dataset splits
(training, validation and test set).

¡ We will only split the (node) labels
§ At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels
§ At validation time, we compute embeddings using

the entire graph, and evaluate on node 3&4’s labels

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Training

Validation

Test

3
2

45

1

6

¡ Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs
§ Now we have 3 graphs that are independent. Node 5 will

not affect our prediction on node 1 any more
§ At training time, we compute embeddings using the

graph over node 1&2, and train using node 1&2’s labels
§ At validation time, we compute embeddings using the

graph over node 3&4, and evaluate on node 3&4’s labels

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Training

Validation

Test

3
2

45

1

6

¡ Transductive setting: training / validation / test
sets are on the same graph
§ The dataset consists of one graph
§ The entire graph can be observed in all dataset splits,

we only split the labels
§ Only applicable to node / edge prediction tasks

¡ Inductive setting: training / validation / test sets
are on different graphs
§ The dataset consists of multiple graphs
§ Each split can only observe the graph(s) within the split.

A successful model should generalize to unseen graphs
§ Applicable to node / edge / graph tasks

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

¡ Transductive node classification
§ All the splits can observe the entire graph structure, but

can only observe the labels of their respective nodes

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Training

Validation

Test

Training

Validation

Test

¡ Inductive node classification
§ Suppose we have a dataset of 3 graphs
§ Each split contains an independent graph

¡ Only the inductive setting is well defined for
graph classification
§ Because we have to test on unseen graphs
§ Suppose we have a dataset of 5 graphs. Each split

will contain independent graph(s).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

Training Validation Test

¡ Goal of link prediction: predict missing edges
¡ Setting up link prediction is tricky:
§ Link prediction is an unsupervised / self-supervised

task. We need to create the labels and dataset
splits on our own

§ Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

¡ For link prediction, we will split edges twice
¡ Step 1: Assign 2 types of edges in the original graph

§ Message edges: Used for GNN message passing
§ Supervision edges: Use for computing objectives
§ After step 1:

§ Only message edges will remain in the graph
§ Supervision edges are used as supervision for edge

predictions made by the model, will not be fed into GNN!
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

3
2

45

1

Original graph

Message edges Supervision edges

¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺! 𝐺" 𝐺#

¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph
§ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
§ Supervision edges are not the input to GNN

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

Training set Validation set

Message
edge

Supervision
edge

Test set

𝐺! 𝐺" 𝐺#

3
2

45

1 8
7

910

6 13
12

1415

11

¡ Option 2: Transductive link prediction split:
§ This is the default setting when people talk about

link prediction
§ Suppose we have a dataset of 1 graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

3
2

45

1

¡ Option 2: Transductive link prediction split:
§ By definition of “transductive”, the entire graph can

be observed in all dataset splits
§ But since edges are both part of graph structure and the

supervision, we need to hold out validation / test edges
§ To train the training set, we further need to hold out

supervision edges for the training set

§ Next: we will show the exact settings
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

3
2

45

1

¡ Option 2: Transductive link prediction split:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

3
2

45

1

The original graph

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

3
2

45

1 3
2

45

1

¡ Option 2: Transductive link prediction split:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

Why do we use growing number of edges?
After training, supervision edges are known to GNN.
Therefore, an ideal model should use supervision
edges in message passing at validation time.
The same applies to the test time.

3
2

45

13
2

45

1

¡ Summary: Transductive link prediction split:

§ Note: Link prediction settings are tricky and complex. You
may find papers do link prediction differently.

§ Luckily, we have full support in PyG and GraphGym

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

3
2

45

1

The original graph

3
2

45

1

Split Graph with
4 types of edges

Split
Training message edges
Training supervision edges
Validation edges
Test edges

https://github.com/snap-stanford/GraphGym

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/GraphGym

¡ We introduce a general GNN framework:
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ The over-smoothing problem
§ Solution: skip connections

§ Graph Augmentation:
§ Feature augmentation
§ Structure augmentation

§ Learning Objectives
§ The full training pipeline of a GNN

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 75

