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¡ Deadline extension for Colab 1 and project 
proposal
§ Colab 1 due date extended to Tuesday, October 17
§ Project proposal due date extended to Tuesday, 

October 24
¡ Homework 1
§ Due Thursday, October 19 (1 week from now)
§ Recitation session on 1pm-3pm, Friday, October 13

§ Details on Ed
¡ Project information released on course 

website
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¡ Goal: create long-lasting resources for your 
technical profiles + broader graph ML 
community

¡ Three types of projects
§ 1) Real-world applications of GNNs
§ 2) Tutorial on PyG functionality
§ 3) Implementation of cutting-edge research

¡ We will publish your blog posts on our 
course’s Medium page!
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https://medium.com/stanford-cs224w


¡ Goal: identify a specific use case and 
demonstrate how GNNs and PyG can be used 
to solve this problem

¡ Output: blog post, Google colab
¡ Example use cases
§ Fraud detection
§ Predicting drug interactions
§ Friend recommendation

¡ Check out the featured posts in the project 
information doc on the course website
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¡ Goal: develop a tutorial that explains how to 
use existing PyG functionality

¡ Output: blog post, Google colab
¡ Example topics for tutorials
§ PyG’s explainability module
§ Methods for graph sampling (e.g., negative 

sampling, sampling on heterogeneous graphs)
§ Tutorial on GraphGym, a platform for designing 

and evaluating GNNs
¡ Check out example tutorials from PyG

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html
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¡ Goal: implement interesting methods from a 
recent research paper in graph ML 

¡ Output: PR to PyG contrib, short blog post 
¡ Project details
§ Implementation should include comprehensive 

testing and documentation on new functionality
§ Try to build on existing PyG and PyTorch code 

wherever possible
§ Note: this project is more manageable if you are 

already comfortable with PyTorch and deep 
learning. We also highly recommend group of 3.
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¡ Project is worth 30% of your course grade
§ Project proposal (2 pages), due October 24
§ Project milestone, due November 9
§ Final reports, due December 14

¡ We recommend groups of 3, but groups of 2 
are also allowed
§ Each group will be assigned a CA mentor who will 

provide feedback
¡ Full project description is released on the 

course website!
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GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation
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¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in 
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the 
final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf


¡ Graph Feature manipulation
§ The input graph lacks features à feature 

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when 

doing message passing
§ The graph is too large à Sample subgraphs to 

compute embeddings 
§ Will cover later in lecture: Scaling up GNNs
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Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Degree distribution
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced can be used!
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¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via 

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN 

computation, use 𝐴 + 𝐴*
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§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author 

collaboration graph



¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the 

nodes in the graph
§ Suppose in a sparse graph, two nodes have 

shortest path distance of 10
§ After adding the virtual node, all the nodes 

will have a distance of 2 
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message 
passing in sparse graphs
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The virtual 
node



¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s 
neighborhood for message passing
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Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


¡ For example, we can randomly choose 2 
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴
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¡ Next time when we compute the embeddings, 
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴
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¡ In expectation, we can get embeddings similar 
to the case where all the neighbors are used
§ Benefits: Greatly reduce computational cost
§ And in practice it works great!
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Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf
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So far what we have covered

Output of a GNN: set of node embeddings
{𝐡!

" , ∀𝑣 ∈ 𝐺}
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(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks



¡ Idea: Different task levels require different 
prediction heads
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Node-level 
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¡ Node-level prediction: We can directly make 
prediction using node embeddings!

¡ After GNN computation, we have 𝑑-dim node 
embeddings: {𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺}
¡ Suppose we want to make 𝑘-way prediction
§ Classification: classify among 𝑘 categories
§ Regression: regress on 𝑘 targets

¡ ,𝒚𝒗 = Head%&'((𝐡!
" ) = 𝐖(*)𝐡!

(")

§ 𝐖(+) ∈ ℝ,×. : We map node embeddings from 
𝐡/
(0) ∈ ℝ. to 7𝒚/ ∈ ℝ, so that we can compute the 

loss
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¡ Edge-level prediction: Make prediction using 
pairs of node embeddings

¡ Suppose we want to make 𝑘-way prediction
¡ ,𝒚𝒖𝒗 = Head('-.(𝐡/

" , 𝐡!
" )

¡ What are the options for Head('-.(𝐡/
" , 𝐡!

" )?
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¡ Options for Head('-.(𝐡/
" , 𝐡!

" ):
¡ (1) Concatenation + Linear
§ We have seen this in graph attention

§ 7𝒚𝒖𝒗 = Linear(Concat(𝐡!
0 , 𝐡/

0 ))
§ Here Linear(⋅) will map 2𝑑-dimensional 

embeddings (since we concatenated embeddings) 
to 𝑘-dim embeddings (𝑘-way prediction)
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𝐡!
(#$%)𝐡'

(#$%)

Concatenate Linear 7𝒚#!



¡ Options for Head!"#$(𝐡%
& , 𝐡'

& ):
¡ (2) Dot product

§ +𝒚𝒖𝒗 = (𝐡%
( ))𝐡!

(

§ This approach only applies to 𝟏-way prediction (e.g., 
link prediction: predict the existence of an edge)

§ Applying to 𝒌-way prediction: 
§ Similar to multi-head attention: 𝐖("), … ,𝐖($) trainable

+𝒚𝒖𝒗
(𝟏) = (𝐡(

) )*𝐖(")𝐡+
)

…
+𝒚𝒖𝒗
(𝒌) = (𝐡(

) )*𝐖($)𝐡+
)

+𝒚(+ = Concat(+𝒚𝒖𝒗
(𝟏), … , +𝒚𝒖𝒗

(𝒌)) ∈ ℝ$
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¡ Graph-level prediction: Make prediction using 
all the node embeddings in our graph

¡ Suppose we want to make 𝑘-way prediction
¡ ,𝒚0 = Head-1234({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
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Graph-level prediction

(2) Aggregation

(1) Message
¡ Head-1234(⋅) is similar to 
AGG(⋅) in a GNN layer!



¡ Options for Head-1234({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (1) Global mean pooling
,𝒚0 = Mean({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ (2) Global max pooling

,𝒚0 = Max({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (3) Global sum pooling
,𝒚0 = Sum({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ These options work great for small graphs
¡ Can we do better for large graphs?
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K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf
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(2) Where does ground-truth come from? 
- Supervised labels
- Unsupervised signals



¡ Supervised learning on graphs
§ Labels come from external sources

§ E.g., predict drug likeness of a molecular graph
¡ Unsupervised learning on graphs
§ Signals come from graphs themselves 

§ E.g., link prediction: predict if two nodes are connected
¡ Sometimes the differences are blurry
§ We still have “supervision” in unsupervised learning

§ E.g., train a GNN to predict node clustering coefficient
§ An alternative name for “unsupervised” is “self-

supervised”
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¡ Supervised labels come from the specific use 
cases. For example:
§ Node labels 𝒚𝒗: in a citation network, which subject 

area does a node belong to
§ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an 

edge is fraudulent
§ Graph labels 𝒚*: among molecular graphs, the drug 

likeness of graphs
¡ Advice: Reduce your task to node / edge / graph 

labels, since they are easy to work with
§ E.g., we knew some nodes form a cluster. We can treat 

the cluster that a node belongs to as a node label
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¡ The problem: sometimes we only have a graph, 
without any external labels

¡ The solution: “self-supervised learning”, we can 
find supervision signals within the graph.
§ For example, we can let GNN predict the following:
§ Node-level 𝒚/. Node statistics: such as clustering 

coefficient, PageRank, …
§ Edge-level 𝒚!/. Link prediction: hide the edge 

between two nodes, predict if there should be a link
§ Graph-level 𝒚4 . Graph statistics: for example, predict 

if two graphs are isomorphic
§ These tasks do not require any external labels!
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(3) How do we compute the final loss?
- Classification loss
- Regression loss



¡ The setting: We have 𝑁 data points
§ Each data point can be a node/edge/graph

§ Node-level: prediction 7𝒚/
(5), label 𝒚/

(5)

§ Edge-level: prediction 7𝒚!/
(5), label 𝒚!/

(5)

§ Graph-level: prediction 7𝒚4
(5), label 𝒚4

(5)

§ We will use prediction 7𝒚(5), label 𝒚 5 to refer 
predictions at all levels
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¡ Classification: labels 𝒚 5 with discrete value
§ E.g., Node classification: which category does a 

node belong to
¡ Regression: labels 𝒚 5 with continuous value
§ E.g., predict the drug likeness of a molecular graph

¡ GNNs can be applied to both settings
¡ Differences: loss function & evaluation 

metrics
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¡ As discussed in lecture 6, cross entropy (CE) is 
a very common loss function in classification

¡ 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(5), 7𝒚(5) = −J
67&

8
𝒚6
(5) log(7𝒚𝒋

(𝒊))

where:
𝒚(5) 𝜖 ℝ8 = one-hot label encoding

7𝒚(5)𝜖 ℝ8 = prediction after Softmax(⋅)

¡ Total loss over all 𝑁 training examples
Loss =;

$%&

'
CE 𝒚($), >𝒚($)
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E.g. 

E.g. 



¡ For regression tasks we often use Mean Squared 
Error (MSE) a.k.a. L2 loss

¡ 𝐾-way regression for data point (i):

MSE 𝒚($), &𝒚($) =(
,%&

-
(𝒚,

($)− &𝒚,
$ ).

where:

𝒚(𝒊) 𝜖 ℝ/ = Real valued vector of targets
&𝒚(𝒊)𝜖 ℝ/ = Real valued vector of predictions

¡ Total loss over all 𝑁 training examples

Loss =;
-."

/

MSE 𝒚(-), +𝒚(-)
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(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC



¡ We use standard evaluation metrics for GNN
§ (Content below can be found in any ML course)
§ In practice we will use sklearn for implementation
§ Suppose we make predictions for 𝑁 data points

¡ Evaluate regression tasks on graphs:
§ Root mean square error (RMSE)

;
$%&

' 𝒚($) − >𝒚($) .

𝑁

§ Mean absolute error (MAE)
∑$%&' 𝒚($) − >𝒚($)

𝑁
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https://scikit-learn.org/stable/modules/model_evaluation.html


¡ Evaluate classification tasks on graphs:
¡ (1) Multi-class classification

§ We simply report the accuracy
1 argmax +𝒚(+) = 𝒚(+)

𝑁
¡ (2) Binary classification

§ Metrics sensitive to classification threshold
§ Accuracy
§ Precision / Recall
§ If the range of prediction is [0,1], we will use 0.5 as threshold

§ Metric Agnostic to classification threshold
§ ROC AUC
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¡ Accuracy:
TP + TN

TP + TN + FP + FN
=
TP + TN
|Dataset|

¡ Precision (P):
TP

TP + FP
¡ Recall (R):

TP
TP + FN

¡ F1-Score:
2P ∗ R
P + R
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Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html


¡ ROC Curve: Captures the tradeoff in TPR and 
FPR as the classification threshold is varied 
for a binary classifier. 
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TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line 
represents performance of 
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


¡ ROC AUC: Area under the ROC Curve. 
¡ Intuition: The probability that a classifier will rank a 

randomly chosen positive instance higher than a 
randomly chosen negative one
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Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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(5) How do we split our dataset 
into train / validation / test set?

Dataset split



¡ Fixed split: We will split our dataset once
§ Training set: used for optimizing GNN parameters
§ Validation set: develop model/hyperparameters
§ Test set: held out until we report final performance

¡ A concern: sometimes we cannot guarantee 
that the test set will really be held out

¡ Random split: we will randomly split our 
dataset into training / validation / test
§ We report average performance over different 

random seeds
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¡ Suppose we want to split an image dataset
§ Image classification: Each data point is an image
§ Here data points are independent

§ Image 5 will not affect our prediction on image 1
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¡ Splitting a graph dataset is different!
§ Node classification: Each data point is a node
§ Here data points are NOT independent

§ Node 5 will affect our prediction on node 1, because it will 
participate in message passing à affect node 1’s embedding

¡ What are our options?
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¡ Solution 1 (Transductive setting): The input 
graph can be observed in all the dataset splits 
(training, validation and test set). 

¡ We will only split the (node) labels
§ At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels
§ At validation time, we compute embeddings using 

the entire graph, and evaluate on node 3&4’s labels
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¡ Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs
§ Now we have 3 graphs that are independent. Node 5 will 

not affect our prediction on node 1 any more
§ At training time, we compute embeddings using the 

graph over node 1&2, and train using node 1&2’s labels
§ At validation time, we compute embeddings using the 

graph over node 3&4, and evaluate on node 3&4’s labels
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¡ Transductive setting: training / validation / test 
sets are on the same graph
§ The dataset consists of one graph
§ The entire graph can be observed in all dataset splits, 

we only split the labels
§ Only applicable to node / edge prediction tasks

¡ Inductive setting: training / validation / test sets 
are on different graphs
§ The dataset consists of multiple graphs
§ Each split can only observe the graph(s) within the split. 

A successful model should generalize to unseen graphs
§ Applicable to node / edge / graph tasks
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¡ Transductive node classification
§ All the splits can observe the entire graph structure, but 

can only observe the labels of their respective nodes
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§ Each split contains an independent graph



¡ Only the inductive setting is well defined for 
graph classification
§ Because we have to test on unseen graphs
§ Suppose we have a dataset of 5 graphs. Each split 

will contain independent graph(s).
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¡ Goal of link prediction: predict missing edges
¡ Setting up link prediction is tricky:
§ Link prediction is an unsupervised / self-supervised 

task. We need to create the labels and dataset 
splits on our own

§ Concretely, we need to hide some edges from the 
GNN and the let the GNN predict if the edges exist
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¡ For link prediction, we will split edges twice
¡ Step 1: Assign 2 types of edges in the original graph

§ Message edges: Used for GNN message passing
§ Supervision edges: Use for computing objectives
§ After step 1:

§ Only message edges will remain in the graph
§ Supervision edges are used as supervision for edge 

predictions made by the model, will not be fed into GNN!
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¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
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¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
§ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
§ Supervision edges are not the input to GNN
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¡ Option 2: Transductive link prediction split:
§ This is the default setting when people talk about 

link prediction
§ Suppose we have a dataset of 1 graph
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¡ Option 2: Transductive link prediction split:
§ By definition of “transductive”, the entire graph can 

be observed in all dataset splits
§ But since edges are both part of graph structure and the 

supervision, we need to hold out validation / test edges
§ To train the training set, we further need to hold out 

supervision edges for the training set

§ Next: we will show the exact settings
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¡ Option 2: Transductive link prediction split:
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¡ Option 2: Transductive link prediction split:
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¡ Summary: Transductive link prediction split:

§ Note: Link prediction settings are tricky and complex. You 
may find papers do link prediction differently. 

§ Luckily, we have full support in PyG and GraphGym
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https://github.com/snap-stanford/GraphGym
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Implementation resources:
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/GraphGym


¡ We introduce a general GNN framework:
§ GNN Layer: 

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity: 
§ The over-smoothing problem
§ Solution: skip connections

§ Graph Augmentation:
§ Feature augmentation
§ Structure augmentation

§ Learning Objectives
§ The full training pipeline of a GNN
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