
CS224W: Machine Learning with Graphs
Joshua Robinson and Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

CS224W: Machine Learning with Graphs
Joshua Robinson and Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS

• My email: joshrob@cs.stanford.edu
• Please reach out with any questions, etc.!

mailto:joshrob@cs.stanford.edu

¡ Homework 1 recitation session 1pm-3pm
tomorrow
§ Details on Ed

¡ Colab 2 will be released today by 9PM on our
course website
§ Due on Thursday, October 26 (2 weeks from now)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
PyG provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design

http://www.pyg.org/
https://github.com/snap-stanford/GraphGym

How powerful are GNNs?
¡ Many GNN models have been proposed (e.g.,

GCN, GAT, GraphSAGE, design space).

¡ What is the expressive power (ability to
distinguish different graph structures) of these
GNN models?

¡ How to design a maximally expressive GNN
model?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

(2) Aggregation

(1) Message

¡ We focus on message passing GNNs:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

𝐦!
(#) = MSG # 𝐡!

#%& , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡!
(#) = AGG # 𝐦%

, 𝑢 ∈ 𝑁 𝑣 ,𝐦!
#

¡ Many GNN models have been proposed:
§ GCN, GraphSAGE, GAT, Design Space etc.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Different GNN models use different
neural networks in the box

?

?

?

?

¡ GCN (mean-pool)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Element-wise mean pooling +
Linear + ReLU non-linearity

?

?

?

?

[Kipf and Welling ICLR 2017]

¡ GraphSAGE (max-pool)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

MLP + element-wise max-pooling

?

?

?

?

[Hamilton et al. NeurIPS 2017]

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

¡ We use node same/different colors to represent
nodes with same/different features.
§ For example, the graph below assumes all the nodes

share the same feature.

¡ Key question: How well can a GNN distinguish
different graph structures?

1 2

3

45

¡ We specifically consider local neighborhood
structures around each node in a graph.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

§ Example: Nodes 1 and 5
have different
neighborhood structures
because they have
different node degrees.

1 2

3

45

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

¡ We specifically consider local neighborhood
structures around each node in a graph.

1 2

3

45

§ Example: Nodes 1 and 4
both have the same node
degree of 2. However, they
still have different
neighborhood structures
because their neighbors
have different node degrees.

Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

¡ We specifically consider local neighborhood
structures around each node in a graph.

1 2

3

45

§ Example: Nodes 1 and 2
have the same
neighborhood structure
because they are
symmetric within the
graph.

Node 1 has neighbors of degrees 2 and 3.
Node 2 has neighbors of degrees 2 and 3.
And even if we go a step deeper to 2nd hop neighbors, both nodes
have the same degrees (Node 4 of degree 2)

¡ Key question: Can GNN node embeddings
distinguish different node’s local
neighborhood structures?
§ If so, when? If not, when will a GNN fail?

¡ Next: We need to understand how a GNN
captures local neighborhood structures.
§ Key concept: Computational graph

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

¡ In each layer, a GNN aggregates neighboring node
embeddings.

¡ A GNN generates node embeddings through a
computational graph defined by the neighborhood.
§ Ex: Node 1’s computational graph (2-layer GNN)

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

1 2

3

45

1

2 5

1 5 1 2 4

¡ Ex: Nodes 1 and 2’s computational graphs.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

¡ Ex: Nodes 1 and 2’s computational graphs.
¡ But GNN only sees node features (not IDs):

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

1 2

3

45

¡ A GNN will generate the same embedding for
nodes 1 and 2 because:
§ Computational graphs are the same.
§ Node features (colors) are identical.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

1 2

3

45

1 2

Note: GNN does not
care about node ids, it
just aggregates features
vectors of different nodes.

GNN won’t be able to distinguish nodes 1 and 2

¡ In general, different local neighborhoods
define different computational graphs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

3

4

3 5

¡ Computational graphs are identical to rooted
subtree structures around each node.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

Rooted subtree structures
(defined by recursively unfolding

neighboring nodes from the root nodes)

3

4

3 5

¡ GNN‘s node embeddings capture rooted
subtree structures.

¡ Most expressive GNN maps different rooted
subtrees into different node embeddings
(represented by different colors).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

3

4

5

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

Embedding

¡ Function 𝑓: 𝑋 → Y is injective if it maps
different elements into different outputs.

¡ Intuition: 𝑓 retains all the information about
input.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

𝑋 𝑌
1

2

3

D

B

C
A

𝑓

¡ Most expressive GNN should map subtrees to
the node embeddings injectively.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

3

4

5

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

ℝ!
Embedding space

Subtrees

¡ Key observation: Subtrees of the same depth
can be recursively characterized from the leaf
nodes to the root nodes.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

1

2 5

1 5 1 2 4

3 neighbors2 neighbors

(2 neighbors,
3 neighbors)

Input features
are uniform

Input features
are uniform

1 neighbor 3 neighbors

4

3 5

4 1 2 4

(1 neighbor,
3 neighbors)≠

From leaves
to the root

From leaves
to the root

¡ If each step of GNN’s aggregation can fully
retain the neighboring information, the
generated node embeddings can distinguish
different rooted subtrees.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

1

2 5

1 5 1 2 4

3 neighbors2 neighbors

(2 neighbors,
3 neighbors)

Input features
are uniform

Input features
are uniform

1 neighbor 3 neighbors

4

3 5

4 1 2 4

(1 neighbor,
3 neighbors)≠Fully retain

neighboring
information

Fully retain
neighboring
information

¡ In other words, most expressive GNN would
use an injective neighbor aggregation
function at each step.
§ Maps different neighbors to different embeddings.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

1

2 5

1 5 1 2 4
Input features
are uniform

Input features
are uniform

4

3 5

4 1 2 4

Injective
neighbor
aggregation

Injective
neighbor
aggregation

¡ Summary so far
§ To generate a node embedding, GNNs use a

computational graph corresponding to a subtree
rooted around each node.

§ GNN can fully distinguish different subtree
structures if every step of its neighbor
aggregation is injective.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

1 2

3

45

1

2 5

1 5 1 2 4

Input graph Computational
graph
= Rooted
subtree

Using injective
neighbor
aggregation
à distinguish
different
subtrees

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Key observation: Expressive power of GNNs
can be characterized by that of neighbor
aggregation functions they use.
§ A more expressive aggregation function leads to a

more expressive GNN.
§ Injective aggregation function leads to the most

expressive GNN.
¡ Next:
§ Theoretically analyze expressive power of

aggregation functions.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

¡ Observation: Neighbor aggregation can be
abstracted as a function over a multi-set (a
set with repeating elements).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

Neighbor
aggregation

Multi-set function

Equivalent
Examples of
multi-set

Same color indicates the
same features.

¡ Next: We analyze aggregation functions of
two popular GNN models
§ GCN (mean-pool) [Kipf & Welling, ICLR 2017]

§ Uses element-wise mean pooling over neighboring node
features

Mean(𝑥! !∈(()))
§ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Uses element-wise max pooling over neighboring node
features

Max(𝑥! !∈())

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Take element-wise mean, followed by linear
function and ReLU activation, i.e., max(0, 𝑥).

§ Theorem [Xu et al. ICLR 2019]

§ GCN’s aggregation function cannot distinguish different
multi-sets with the same color proportion.

¡ Why?
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Failure case

¡ For simplicity, we assume node features
(colors) are represented by one-hot encoding.
§ Example: If there are two distinct colors:

§ This assumption is sufficient to illustrate how GCN
fails.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

1
0

0
1

¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Failure case illustration

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

1
0

1
0

0
1

0
1

1
0

0
1

0.5
0.5

0.5
0.5

Linear + ReLU Linear + ReLU

Same outputs!

Element-wise-
mean-pool

¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Apply an MLP, then take element-wise max.
§ Theorem [Xu et al. ICLR 2019]

§ GraphSAGE’s aggregation function cannot distinguish
different multi-sets with the same set of distinct colors.

¡ Why?

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Failure case

¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Failure case illustration

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

MLP

1
0

0
1

For simplicity,
assume the one-
hot encoding
after MLP.

1
0

1
0

1
0

0
1

0
1

0
1

1
0

1
1

Element-wise-
max-pool

1
1

1
1

The same outputs!

¡ We analyzed the expressive power of GNNs.
¡ Main takeaways:
§ Expressive power of GNNs can be characterized by

that of the neighbor aggregation function.
§ Neighbor aggregation is a function over multi-sets

(sets with repeating elements)
§ GCN and GraphSAGE’s aggregation functions fail to

distinguish some basic multi-sets; hence not injective.
§ Therefore, GCN and GraphSAGE are not maximally

powerful GNNs.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

¡ Our goal: Design maximally powerful GNNs
in the class of message-passing GNNs.

¡ This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

¡ Here, we design a neural network that can
model injective multiset function.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed
as:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Φ 9
*∈+

𝑓(𝑥)

𝑆 : multi-set

Some non-
linear function

Some non-
linear function

Φ 𝑓 𝑓 𝑓+ +

Sum over multi-set

Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of
the one-hot encodings retains all the information about
the input multi-set.

Example:

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Φ 9
*∈+

𝑓(𝑥)

Φ 𝑓 𝑓 𝑓+ +

1
0

0
1

0
1

+ + = 1
2

One-hot

¡ How to model 𝜱 and 𝒇 in 𝜱 ∑𝒙∈𝑺 𝒇(𝒙) ?
¡ We use a Multi-Layer Perceptron (MLP).
¡ Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

§ 1-hidden-layer MLP with sufficiently-large hidden
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any
continuous function to an arbitrary accuracy.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

𝑾+ 𝑾,𝜎Input Output

¡ We have arrived at a neural network that can
model any injective multiset function.

§ In practice, MLP hidden dimensionality of 100 to
500 is sufficient.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

MLP, 9
*∈+

MLP-(𝑥)

¡ Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

§ Apply an MLP, element-wise sum, followed by
another MLP.

¡ Theorem [Xu et al. ICLR 2019]

§ GIN‘s neighbor aggregation function is injective.
¡ No failure cases!
¡ GIN is THE most expressive GNN in the class of

message-passing GNNs we have introduced!
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

MLP, 9
*∈+

MLP-(𝑥)

¡ So far: We have described the neighbor
aggregation part of GIN.

¡ We now describe the full model of GIN by
relating it to WL graph kernel (traditional way
of obtaining graph-level features).
§ We will see how GIN is a “neural network” version

of the WL graph kernel.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Recall: Color refinement algorithm in WL kernel.
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial color 𝑐 . 𝑣 to each node 𝑣.
§ Iteratively refine node colors by

𝑐 /0& 𝑣 = HASH 𝑐 / 𝑣 , 𝑐 / 𝑢 !∈() ,

where HASH maps different inputs to different colors.

§ After 𝐾 steps of color refinement, 𝑐 1 𝑣
summarizes the structure of 𝐾-hop neighborhood

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Example of color refinement given two graphs
§ Assign initial colors

§ Aggregate neighboring colors

11/14/23 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1 1

1

1 1

1

1 1

1

1 1

1

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs
§ Aggregated colors:

§ Injectively HASH the aggregated colors

11/14/23 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4 3

5

2 2

4

3 4

5

2 2

4

HASH table: Injective!
1,1
1,11
1,111
1,1111

-->
-->
-->
-->

2
3
4
5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs
¡ Process continues until a stable coloring is

reached
¡ Two graphs are considered isomorphic if they

have the same set of colors.

11/14/23 49Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

11 8

12

7 7

11

9 11

13

7 6

10≠

¡ GIN uses a neural network to model the
injective HASH function.

¡ Specifically, we will model the injective
function over the tuple:

(𝑐 $ 𝑣 , 𝑐 $ 𝑢 %∈& ')

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

𝑐 /0& 𝑣 = HASH 𝑐 / 𝑣 , 𝑐 / 𝑢 !∈()

Root node
features

Neighboring
node colors

Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Root node
feature

Neighboring
node features

MLP, 1 + 𝜖 ⋅ MLP-(𝑐 / (𝑣))) + 9
!∈()

MLP-(𝑐 / 𝑢)

(𝑐 / 𝑣 , 𝑐 / 𝑢 !∈())

¡ If input feature 𝑐 ((𝑣) is represented as one-
hot, direct summation is injective.

¡ We only need Φ to ensure the injectivity.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Φ + +

1
0

0
1

0
1

+ + = 1
2

Example:

GINConv 𝑐 ! 𝑣 , 𝑐 ! 𝑢 "∈$ % = MLP& 1 + 𝜖 ⋅ 𝑐 ! (𝑣) + E
"∈$ %

𝑐 ! 𝑢
Root node
features Neighboring node

features This MLP can provide “one-hot” input
feature for the next layer.

¡ GIN’s node embedding updates
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial vector 𝑐 . 𝑣 to each node 𝑣.
§ Iteratively update node vectors by

𝑐 /0& 𝑣 = GINConv 𝑐 / 𝑣 , 𝑐 / 𝑢 !∈() ,

where GINConv maps different inputs to different embeddings.

§ After 𝐾 steps of GIN iterations, 𝑐 1 𝑣 summarizes
the structure of 𝐾-hop neighborhood.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Differentiable color HASH function

¡ GIN can be understood as differentiable neural
version of the WL graph Kernel:

¡ Advantages of GIN over the WL graph kernel are:
§ Node embeddings are low-dimensional; hence, they can

capture the fine-grained similarity of different nodes.
§ Parameters of the update function can be learned for the

downstream tasks.
11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Update target Update function

WL Graph Kernel Node colors
(one-hot)

HASH

GIN Node embeddings
(low-dim vectors)

GINConv

¡ Because of the relation between GIN and the
WL graph kernel, their expressive is exactly the
same.
§ If two graphs can be distinguished by GIN, they can be

also distinguished by the WL kernel, and vice versa.
¡ How powerful is this?
§ WL kernel has been both theoretically and

empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

§ Hence, GIN is also powerful enough to distinguish
most of the real graphs!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Failure cases for mean and max pooling:

Ranking by discriminative power:

Jure Leskovec, Stanford University 56

Colors represent feature values

¡ Can the expressive power of GNNs be improved?
§ There are basic graph structures that existing GNN

framework cannot distinguish, such as difference in cycles.

§ GNNs’ expressive power can be improved to resolve
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]

§ Stay tuned for Lectures 13 and 14: Advanced Topics in GNNs,
Graph Transformers

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

𝑣'A 𝑣(B
Computational graphs
for nodes 𝑣" and 𝑣#:

¡ We design a neural network that can model
an injective multi-set function.

¡ We use the neural network for neighbor
aggregation function and arrive at GIN---the
most expressive GNN model.

¡ The key is to use element-wise sum pooling,
instead of mean-/max-pooling.

¡ GIN is closely related to the WL graph kernel.
¡ Both GIN and WL graph kernel can distinguish

most of the real graphs!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Data preprocessing is important:
§ Node attributes can vary a lot! Use normalization

§ E.g. probability ranges (0,1), but some inputs could have much
larger range, say (−1000, 1000)

¡ Optimizer: ADAM is relatively robust to learning rate
¡ Activation function

§ ReLU activation function often works well
§ Other good alternatives: LeakyReLU, PReLU
§ No activation function at your output layer
§ Include bias term in every layer

¡ Embedding dimensions:
§ 32, 64 and 128 are often good starting points

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html

¡ Debug issues: Loss/accuracy not converging
during training
§ Check pipeline (e.g. in PyTorch we need zero_grad)
§ Adjust hyperparameters such as learning rate
§ Pay attention to weight parameter initialization
§ Scrutinize loss function!

¡ Important for model development:
§ Overfit on (part of) training data:

§ With a small training dataset, loss should be essentially
close to 0, with an expressive neural network

§ Monitor the training & validation loss curve
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.init.html

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

Auto-differentiation frameworks

GraphGym:
Easy and flexible end-to-end GNN pipeline
based on PyTorch Geometric (PyG)

GNN frameworks:
Implements a variety
of GNN architectures

DGL GraphNets

https://www.dgl.ai/
https://github.com/deepmind/graph_nets

Tutorials and overviews:
§ Relational inductive biases and graph networks (Battaglia et al., 2018)
§ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
§ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
§ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
§ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling

(Ying et al., 2018, Zhang et al., 2018)
§ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
§ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
§ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
§ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
§ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
§ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
§ Pre-training Graph Neural Networks (Hu et al., 2019)
§ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

