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ANNOUNCEMENTS

• My email: joshrob@cs.stanford.edu
• Please reach out with any questions, etc.! 

mailto:joshrob@cs.stanford.edu


¡ Homework 1 recitation session 1pm-3pm 
tomorrow
§ Details on Ed

¡ Colab 2 will be released today by 9PM on our 
course website
§ Due on Thursday, October 26 (2 weeks from now)
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(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Prediction 
head Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

Dataset split

Implementation resources:
PyG provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design

http://www.pyg.org/
https://github.com/snap-stanford/GraphGym


How powerful are GNNs?
¡ Many GNN models have been proposed (e.g., 

GCN, GAT, GraphSAGE, design space).

¡ What is the expressive power (ability to 
distinguish different graph structures) of these 
GNN models?

¡ How to design a maximally expressive GNN 
model?
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(2) Aggregation

(1) Message

¡ We focus on message passing GNNs:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors
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¡ Many GNN models have been proposed:
§ GCN,  GraphSAGE, GAT, Design Space etc.
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¡ GCN (mean-pool)
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[Kipf and Welling ICLR 2017]



¡ GraphSAGE (max-pool)
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¡ We use node same/different colors to represent 
nodes with same/different features.
§ For example, the graph below assumes all the nodes 

share the same feature.

¡ Key question: How well can a GNN distinguish 
different graph structures?

1 2

3

45



¡ We specifically consider local neighborhood 
structures around each node in a graph.
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§ Example: Nodes 1 and 5 
have different 
neighborhood structures 
because they have 
different node degrees.

1 2

3

45
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¡ We specifically consider local neighborhood 
structures around each node in a graph.

1 2

3

45

§ Example: Nodes 1 and 4 
both have the same node 
degree of 2. However, they 
still have different 
neighborhood structures 
because their neighbors 
have different node degrees.

Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.
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¡ We specifically consider local neighborhood 
structures around each node in a graph.

1 2

3

45

§ Example: Nodes 1 and 2 
have the same 
neighborhood structure 
because they are 
symmetric within the 
graph.

Node 1 has neighbors of degrees 2 and 3.
Node 2 has neighbors of degrees 2 and 3.
And even if we go a step deeper to 2nd hop neighbors, both nodes
have the same degrees (Node 4 of degree 2)



¡ Key question: Can GNN node embeddings 
distinguish different node’s local 
neighborhood structures?
§ If so, when? If not, when will a GNN fail?

¡ Next: We need to understand how a GNN 
captures local neighborhood structures.
§ Key concept: Computational graph
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¡ In each layer, a GNN aggregates neighboring node 
embeddings.

¡ A GNN generates node embeddings through a 
computational graph defined by the neighborhood.
§ Ex: Node 1’s computational graph (2-layer GNN)
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¡ Ex: Nodes 1 and 2’s computational graphs.
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¡ Ex: Nodes 1 and 2’s computational graphs.
¡ But GNN only sees node features (not IDs):
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¡ A GNN will generate the same embedding for 
nodes 1 and 2 because:
§ Computational graphs are the same.
§ Node features (colors) are identical.
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GNN won’t be able to distinguish nodes 1 and 2



¡ In general, different local neighborhoods 
define different computational graphs

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

3

4

3 5



¡ Computational graphs are identical to rooted 
subtree structures around each node.
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¡ GNN‘s node embeddings capture rooted 
subtree structures.

¡ Most expressive GNN maps different rooted 
subtrees into different node embeddings 
(represented by different colors).
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¡ Function 𝑓: 𝑋 → Y is injective if it maps 
different elements into different outputs. 

¡ Intuition: 𝑓 retains all the information about 
input.
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¡ Most expressive GNN should map subtrees to 
the node embeddings injectively.
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¡ Key observation: Subtrees of the same depth 
can be recursively characterized from the leaf 
nodes to the root nodes.
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¡ If each step of GNN’s aggregation can fully 
retain the neighboring information, the 
generated node embeddings can distinguish 
different rooted subtrees.
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¡ In other words, most expressive GNN would 
use an injective neighbor aggregation
function at each step.
§ Maps different neighbors to different embeddings.
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¡ Summary so far
§ To generate a node embedding, GNNs use a 

computational graph corresponding to a subtree 
rooted around each node.

§ GNN can fully distinguish different subtree 
structures if every step of its neighbor 
aggregation is injective.
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¡ Key observation: Expressive power of GNNs 
can be characterized by that of neighbor 
aggregation functions they use.
§ A more expressive aggregation function leads to a 

more expressive GNN.
§ Injective aggregation function leads to the most 

expressive GNN.
¡ Next:
§ Theoretically analyze expressive power of 

aggregation functions.
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¡ Observation: Neighbor aggregation can be 
abstracted as a function over a multi-set (a 
set with repeating elements). 
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¡ Next: We analyze aggregation functions of 
two popular GNN models 
§ GCN (mean-pool) [Kipf & Welling, ICLR 2017] 

§ Uses element-wise mean pooling over neighboring node 
features

Mean( 𝑥! !∈(()))
§ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Uses element-wise max pooling over neighboring node 
features

Max( 𝑥! !∈( ) )
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¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Take element-wise mean, followed by linear 
function and ReLU activation, i.e., max(0, 𝑥).

§ Theorem [Xu et al. ICLR 2019] 

§ GCN’s aggregation function cannot distinguish different 
multi-sets with the same color proportion. 

¡ Why?
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Failure case



¡ For simplicity, we assume node features 
(colors) are represented by one-hot encoding.
§ Example: If there are two distinct colors:

§ This assumption is sufficient to illustrate how GCN 
fails.
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¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Failure case illustration

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

1
0

1
0

0
1

0
1

1
0

0
1

0.5
0.5

0.5
0.5

Linear + ReLU Linear + ReLU

Same outputs!

Element-wise-
mean-pool



¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Apply an MLP, then take element-wise max.
§ Theorem [Xu et al. ICLR 2019] 

§ GraphSAGE’s aggregation function cannot distinguish 
different multi-sets with the same set of distinct colors. 

¡ Why?
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Failure case



¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Failure case illustration
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¡ We analyzed the expressive power of GNNs.
¡ Main takeaways: 
§ Expressive power of GNNs can be characterized by 

that of the neighbor aggregation function.
§ Neighbor aggregation is a function over multi-sets 

(sets with repeating elements) 
§ GCN and GraphSAGE’s aggregation functions fail to 

distinguish some basic multi-sets; hence not injective.
§ Therefore, GCN and GraphSAGE are not maximally 

powerful GNNs.
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¡ Our goal: Design maximally powerful GNNs 
in the class of message-passing GNNs.

¡ This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

¡ Here, we design a neural network that can 
model injective multiset function.
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Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed 
as:
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Φ 9
*∈+

𝑓(𝑥)

𝑆 : multi-set

Some non-
linear function

Some non-
linear function

Φ 𝑓 𝑓 𝑓+ +

Sum over multi-set



Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of 
the one-hot encodings retains all the information about 
the input multi-set.

Example:
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¡ How to model 𝜱 and 𝒇 in 𝜱 ∑𝒙∈𝑺 𝒇(𝒙) ?
¡ We use a Multi-Layer Perceptron (MLP).
¡ Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

§ 1-hidden-layer MLP with sufficiently-large hidden 
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any 
continuous function to an arbitrary accuracy.
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𝑾+ 𝑾,𝜎Input Output



¡ We have arrived at a neural network that can 
model any injective multiset function.

§ In practice, MLP hidden dimensionality of 100 to 
500 is sufficient.
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¡ Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

§ Apply an MLP, element-wise sum, followed by 
another MLP.

¡ Theorem [Xu et al. ICLR 2019] 

§ GIN‘s neighbor aggregation function is injective.
¡ No failure cases!
¡ GIN is THE most expressive GNN in the class of 

message-passing GNNs we have introduced!
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¡ So far: We have described the neighbor 
aggregation part of GIN.

¡ We now describe the full model of GIN by 
relating it to WL graph kernel (traditional way 
of obtaining graph-level features).
§ We will see how GIN is a “neural network” version 

of the WL graph kernel.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45



Recall: Color refinement algorithm in WL kernel.
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial color 𝑐 . 𝑣 to each node 𝑣.
§ Iteratively refine node colors by

𝑐 /0& 𝑣 = HASH 𝑐 / 𝑣 , 𝑐 / 𝑢 !∈( ) ,

where HASH maps different inputs to different colors.

§ After 𝐾 steps of color refinement, 𝑐 1 𝑣
summarizes the structure of 𝐾-hop neighborhood
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Example of color refinement given two graphs
§ Assign initial colors

§ Aggregate neighboring colors
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Example of color refinement given two graphs
§ Aggregated colors:

§ Injectively HASH the aggregated colors
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Example of color refinement given two graphs
¡ Process continues until a stable coloring is 

reached
¡ Two graphs are considered isomorphic if they 

have the same set of colors.
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¡ GIN uses a neural network to model the 
injective HASH function.

¡ Specifically, we will model the injective 
function over the tuple:

(𝑐 $ 𝑣 , 𝑐 $ 𝑢 %∈& ' )
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𝑐 /0& 𝑣 = HASH 𝑐 / 𝑣 , 𝑐 / 𝑢 !∈( )

Root node 
features

Neighboring 
node colors



Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.
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Root node 
feature

Neighboring 
node features

MLP, 1 + 𝜖 ⋅ MLP-(𝑐 / (𝑣))) + 9
!∈( )

MLP-(𝑐 / 𝑢 )

(𝑐 / 𝑣 , 𝑐 / 𝑢 !∈( ) )



¡ If input feature 𝑐 ( (𝑣) is represented as one-
hot, direct summation is injective.

¡ We only need Φ to ensure the injectivity.
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Example:

GINConv 𝑐 ! 𝑣 , 𝑐 ! 𝑢 "∈$ % = MLP& 1 + 𝜖 ⋅ 𝑐 ! (𝑣) + E
"∈$ %

𝑐 ! 𝑢
Root node 
features Neighboring node 

features This MLP can provide “one-hot” input 
feature for the next layer.



¡ GIN’s node embedding updates
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial vector 𝑐 . 𝑣 to each node 𝑣.
§ Iteratively update node vectors by

𝑐 /0& 𝑣 = GINConv 𝑐 / 𝑣 , 𝑐 / 𝑢 !∈( ) ,

where GINConv maps different inputs to different embeddings.

§ After 𝐾 steps of GIN iterations, 𝑐 1 𝑣 summarizes 
the structure of 𝐾-hop neighborhood.
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Differentiable color HASH function



¡ GIN can be understood as differentiable neural 
version of the WL graph Kernel:

¡ Advantages of GIN over the WL graph kernel are:
§ Node embeddings are low-dimensional; hence, they can 

capture the fine-grained similarity of different nodes.
§ Parameters of the update function can be learned for the 

downstream tasks.
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¡ Because of the relation between GIN and the 
WL graph kernel, their expressive is exactly the 
same.
§ If two graphs can be distinguished by GIN, they can be 

also distinguished by the WL kernel, and vice versa.
¡ How powerful is this?
§ WL kernel has been both theoretically and 

empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

§ Hence, GIN is also powerful enough to distinguish 
most of the real graphs!
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Failure cases for mean and max pooling:

Ranking by discriminative power:

Jure Leskovec, Stanford University 56

Colors represent feature values



¡ Can the expressive power of GNNs be improved?
§ There are basic graph structures that existing GNN 

framework cannot distinguish, such as difference in cycles.

§ GNNs’ expressive power can be improved to resolve 
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]

§ Stay tuned for Lectures 13 and 14: Advanced Topics in GNNs, 
Graph Transformers

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

𝑣'A 𝑣(B
Computational graphs 
for nodes 𝑣" and 𝑣#:



¡ We design a neural network that can model 
an injective multi-set function.

¡ We use the neural network for neighbor 
aggregation function and arrive at GIN---the 
most expressive GNN model.

¡ The key is to use element-wise sum pooling, 
instead of mean-/max-pooling.

¡ GIN is closely related to the WL graph kernel.
¡ Both GIN and WL graph kernel can distinguish 

most of the real graphs!
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¡ Data preprocessing is important: 
§ Node attributes can vary a lot! Use normalization

§ E.g. probability ranges (0,1), but some inputs could have much 
larger range, say (−1000, 1000)

¡ Optimizer: ADAM is relatively robust to learning rate
¡ Activation function

§ ReLU activation function often works well
§ Other good alternatives: LeakyReLU, PReLU
§ No activation function at your output layer 
§ Include bias term in every layer 

¡ Embedding dimensions:
§ 32, 64 and 128 are often good starting points
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https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html


¡ Debug issues: Loss/accuracy not converging 
during training
§ Check pipeline (e.g. in PyTorch we need zero_grad)
§ Adjust hyperparameters such as learning rate
§ Pay attention to weight parameter initialization
§ Scrutinize loss function!

¡ Important for model development:
§ Overfit on (part of) training data: 

§ With a small training dataset, loss should be essentially 
close to 0, with an expressive neural network

§ Monitor the training & validation loss curve
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Auto-differentiation frameworks

GraphGym:
Easy and flexible end-to-end GNN pipeline
based on PyTorch Geometric (PyG)

GNN frameworks:
Implements a variety 
of GNN architectures

DGL GraphNets

https://www.dgl.ai/
https://github.com/deepmind/graph_nets


Tutorials and overviews:
§ Relational inductive biases and graph networks (Battaglia et al., 2018)
§ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
§ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
§ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
§ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling 

(Ying et al., 2018,  Zhang et al., 2018)
§ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
§ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
§ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
§ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
§ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
§ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
§ Pre-training Graph Neural Networks (Hu et al., 2019)
§ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)
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