We ask you to develop a tutorial/case-study on applying state-of-the-art graph ML to a real-world problem using PyG.

- Someone can then follow your tutorial and learn how to apply ML to a real-world problem.

The project is open-ended: You can choose models and problems to work on.

- In the instruction doc, we provide some examples of models and datasets.

The final product will be a draft blog post that you share with us privately.

- With your permission we would publish best ones at PyG.org.

Groups of 3 students are strongly recommended; groups of 1-2 also permitted.
Why Blog Posts?

- A great exercise for you to understand and implement *graph ML models applied to real-world problems*.
- A great lasting resource for the broader community to study graph ML.
 - Blog posts are more accessible than technical reports.
 - We will publicize selected blog posts from you!
What are Good Blog Posts?

- **Good blog posts should include**
 - **Step-by-step explanation of graph ML techniques**
 - Assume your readers are
 - familiar with ML, deep learning, and Pytorch
 - not familiar with graph ML and PyG
 - **Visualization**
 - To explain techniques and results, Gifs > Images > Text
 - The more visualization, the better.
 - **Code snippets of PyG/Pytorch**
 - **Link to Google Colab to reproduce your results**
 - Your Colab should be readable and include enough documentations.
Application Domains

Application domains of graph ML includes:

- Recommender systems
- Molecule classification
- Paper classification in citation networks
- Knowledge graph completion
- Product classification in co-purchasing graphs
- Fraud detection in transaction networks
- Protein function prediction in protein-protein interaction networks
- Friend recommendation in social networks
Finding Graph ML Models

- **OGB Leaderboard**
 - https://ogb.stanford.edu/docs/leader_overview/

- **Top ML conference papers:**
 - KDD
 - ICLR
 - ICML
 - NeurIPS
 - WWW
 - WSDM

Tips: Narrow down relevant papers by searching titles (e.g., containing “graph”).
By October 19, 11:59pm PT
The proposal should include the following:

- **Application domain**
 - Which dataset are you planning to use?
 - Describe the dataset, prediction tasks, and metric.
 - Why did you choose the dataset?

- **Graph ML technique that you want to apply**
 - Graph ML model you plan to use
 - Describe the model (using figures and equations)
 - Why the model is appropriate for the dataset?
Special OH this week dedicated to project

- Jure’s OH: 1-3pm on Wed 10/13
 - 10 min slots: https://calendly.com/cs224w-oh/jure-project
- Weihua’s OH: 10am-12pm on Thu 10/14
 - 15 min slots: https://calendly.com/cs224w-oh/weihua-project
 - This will be recurring every Thursday

How to sign up

- One person from the group should sign up and add their group members under "Guest emails"
- Zoom link will be in the invite – you will be let off the waiting room when it is your turn, be on time!
Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Recap: Deep Graph Encoders

Output: Node embeddings. Also, we can embed subgraphs, graphs.
Idea: Node’s neighborhood defines a computation graph

Learn how to propagate information across the graph to compute node features
Intuition: Nodes aggregate information from their neighbors using neural networks.
Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!
Why GNNs generalize other NNs?

- Defined notions of permutation invariance and equivariance.

- How does GNNs compare to prominent architectures such as Convolutional Neural Nets, and Transformers?
Convolutional Neural Network

Convolutional neural network (CNN) layer with 3x3 filter:

\[
h_v^{(l+1)} = \sigma(\sum_{u \in N(v) \cup \{v\}} W_u^l h_u^{(l)}), \quad \forall l \in \{0, ..., L - 1\}
\]

\(N(v)\) represents the 8 neighbor pixels of \(v\).
GNN vs. CNN

Convolutional neural network (CNN) layer with 3x3 filter:

- GNN formulation (previous slide): $h_v^{(l+1)} = \sigma(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)}), \forall l \in \{0, ..., L - 1\}$
- CNN formulation:
 - if we rewrite:
 $h_v^{(l+1)} = \sigma(\sum_{u \in N(v) \cup \{v\}} W_l^u h_u^{(l)}), \forall l \in \{0, ..., L - 1\}$
 $h_v^{(l+1)} = \sigma(\sum_{u \in N(v)} W_l^u h_u^{(l)} + B_l h_v^{(l)}), \forall l \in \{0, ..., L - 1\}$
GNN vs. CNN

Convolutional neural network (CNN) layer with 3x3 filter:

GNN formulation: \(h^{(l+1)}_v = \sigma(W_l \sum_{u \in N(v)} \frac{h^{(l)}_u}{|N(v)|} + B_l h^{(l)}_v), \forall l \in \{0, \ldots, L - 1\} \)

CNN formulation: \(h^{(l+1)}_v = \sigma(\sum_{u \in N(v)} W^u_l h^{(l)}_u + B_l h^{(l)}_v), \forall l \in \{0, \ldots, L - 1\} \)

Key difference: We can learn different \(W^u_l \) for different “neighbor” \(u \) for pixel \(v \) on the image. The reason is we can pick an order for the 9 neighbors using relative position to the center pixel: \{(-1,-1), (-1,0), (-1, 1), ..., (1, 1)\}
Convolutional neural network (CNN) layer with 3x3 filter:

- CNN can be seen as a special GNN with fixed neighbor size and ordering:
 - The size of the filter is pre-defined for a CNN.
 - The advantage of GNN is it processes arbitrary graphs with different degrees for each node.

Key difference: We can learn different W^u for different “neighbor” u for pixel v on the image. The reason is we can pick an order for the 9 neighbors using relative position to the center pixel: \{(-1,-1), (-1,0), (-1, 1), …, (1, 1)\}
GNN vs. CNN

Convolutional neural network (CNN) layer with 3x3 filter:

- CNN can be seen as a special GNN with fixed neighbor size and ordering.
- CNN is not permutation equivariant.
- Switching the order of pixels will lead to different outputs.

Key difference: We can learn different W^u_i for different “neighbor” u for pixel v on the image. The reason is we can pick an order for the 9 neighbors using relative position to the center pixel: {(-1,-1), (-1,0), (-1, 1), ..., (1, 1)}
Transformer is one of the most popular architectures that achieves great performance in many sequence modeling tasks.

Key component: self-attention
- Every token/word attends to all the other tokens/words via matrix calculation.
Transformer layer can be seen as a special GNN that runs on a fully-connected “word” graph!

Since each word attends to all the other words, the computation graph of a transformer layer is identical to that of a GNN on the fully-connected “word” graph.
Stanford CS224W: A General Perspective on Graph Neural Networks
A General GNN Framework (1)

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
A General GNN Framework (2)

Connect GNN layers into a GNN
- Stack layers sequentially
- Ways of adding skip connections

(3) Layer connectivity

J. You, R. Ying, J. Leskovec. *Design Space of Graph Neural Networks*, NeurIPS 2020
A General GNN Framework (3)

Idea: Raw input graph ≠ computational graph
- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation
How do we train a GNN

- Supervised/Unsupervised objectives
- Node/Edge/Graph level objectives

(We will discuss all of these later in class)
GNN Framework: Summary

(1) Message

(2) Aggregation

(3) Layer connectivity

(4) Graph augmentation

(5) Learning objective

TARGET NODE

INPUT GRAPH

D
E
B
A
C

GNN Layer 1

GNN Layer 2

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
Stanford CS224W: A Single Layer of a GNN

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
A GNN Layer

GNN Layer = Message + Aggregation

• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, ...

GNN Layer 1

(1) Message

(2) Aggregation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
Idea of a GNN Layer:

- Compress a set of vectors into a single vector
- **Two-step process:**
 - (1) Message
 - (2) Aggregation

Node v:

- **(1) Message**
- **(2) Aggregation**

GNN Layer

- **Input node embedding $h_v^{(l-1)}$, $h_u^{(l-1)}_{u \in N(v)}$**
- **Output node embedding $h_v^{(l)}$**

- **l-th GNN Layer**
(1) Message computation

Message function: \(m_u^{(l)} = MSG^{(l)}(h_u^{(l-1)}) \)

- **Intuition:** Each node will create a message, which will be sent to other nodes later

- **Example:** A Linear layer \(m_u^{(l)} = W^{(l)}h_u^{(l-1)} \)
 - Multiply node features with weight matrix \(W^{(l)} \)

(2) Aggregation

TARGET NODE

Node \(\nu \)

INPUT GRAPH

(1) Message
(2) Aggregation

Intuition: Each node will aggregate the messages from node \(v \)'s neighbors

\[h_v^{(l)} = AGG^{(l)} \left(\left\{ m_u^{(l)}, u \in N(v) \right\} \right) \]

Example: \(\text{Sum}(\cdot), \text{Mean}(\cdot) \) or \(\text{Max}(\cdot) \) aggregator

\[h_v^{(l)} = \text{Sum}(\{ m_u^{(l)}, u \in N(v) \}) \]
Message Aggregation: Issue

- **Issue:** Information from node \(v \) itself **could get lost**
 - Computation of \(h_v^{(l)} \) does not directly depend on \(h_v^{(l-1)} \)
- **Solution:** Include \(h_v^{(l-1)} \) when computing \(h_v^{(l)} \)
 - (1) **Message:** compute message from node \(v \) itself
 - Usually, a **different message computation** will be performed
 \[
 m_u^{(l)} = W^{(l)} h_u^{(l-1)} \quad m_v^{(l)} = B^{(l)} h_v^{(l-1)}
 \]
 - (2) **Aggregation:** After aggregating from neighbors, we can aggregate the message from node \(v \) itself
 - Via **concatenation** or **summation**
A Single GNN Layer

- Putting things together:
 - **(1) Message**: each node computes a message
 \[m_u^{(l)} = \text{MSG}^{(l)} \left(h_u^{(l-1)} \right), u \in \{N(v) \cup v\} \]
 - **(2) Aggregation**: aggregate messages from neighbors
 \[h_v^{(l)} = \text{AGG}^{(l)} \left(\{ m_u^{(l)}, u \in N(v) \} , m_v^{(l)} \right) \]
 - **Nonlinearity (activation)**: Adds expressiveness
 - Often written as \(\sigma(\cdot) \): ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation
Classical GNN Layers: GCN (1)

- (1) Graph Convolutional Networks (GCN)

\[h^{(l)}_v = \sigma \left(W^{(l)} \sum_{u \in N(v)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]

- How to write this as Message + Aggregation?

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]
Classical GNN Layers: GCN (2)

- **(1) Graph Convolutional Networks (GCN)**

 \[
 h_v^{(l)} = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h_u^{(l-1)}}{|N(v)|} \right)
 \]

- **Message:**
 - Each Neighbor: \(m_u^{(l)} = \frac{1}{|N(v)|} W^{(l)} h_u^{(l-1)} \)

- **Aggregation:**
 - Sum over messages from neighbors, then apply activation
 - \(h_v^{(l)} = \sigma \left(\text{Sum} \left(\{m_u^{(l)}, u \in N(v)\} \right) \right) \)

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

In GCN graph is assumed to have self-edges that are included in the summation.
(2) GraphSAGE

\[h_v^{(l)} = \sigma \left(W^{(l)} \cdot \text{CONCAT} \left(h_v^{(l-1)}, \text{AGG} \left(\{ h_u^{(l-1)}, \forall u \in N(v) \} \right) \right) \right) \]

- **How to write this as Message + Aggregation?**
 - **Message** is computed within the \(\text{AGG}(\cdot) \)
 - **Two-stage aggregation**
 - **Stage 1:** Aggregate from node neighbors
 \[h_{N(v)}^{(l)} \leftarrow \text{AGG} \left(\{ h_u^{(l-1)}, \forall u \in N(v) \} \right) \]
 - **Stage 2:** Further aggregate over the node itself
 \[h_v^{(l)} \leftarrow \sigma \left(W^{(l)} \cdot \text{CONCAT}(h_v^{(l-1)}, h_{N(v)}^{(l)}) \right) \]
GraphSAGE Neighbor Aggregation

- **Mean:** Take a weighted average of neighbors
 \[
 AGG = \frac{\sum_{u \in N(v)} h_u^{(l-1)}}{|N(v)|}
 \]

- **Pool:** Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)
 \[
 AGG = \text{Mean}(\{\text{MLP}(h_u^{(l-1)}), \forall u \in N(v)\})
 \]

- **LSTM:** Apply LSTM to reshuffled of neighbors
 \[
 AGG = \text{LSTM}([h_u^{(l-1)}, \forall u \in \pi(N(v))])
 \]
GraphSAGE: L₂ Normalization

- **L₂ Normalization:**
 - Optional: Apply L₂ normalization to $h_v^{(l)}$ at every layer

 $h_v^{(l)} \leftarrow \frac{h_v^{(l)}}{\|h_v^{(l)}\|_2}$ \quad \forall v \in V$ where $\|u\|_2 = \sqrt{\sum_i u_i^2}$ (L₂-norm)

- Without L₂ normalization, the embedding vectors have different scales (L₂-norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After L₂ normalization, all vectors will have the same L₂-norm
(3) Graph Attention Networks

\[h_v^{(l)} = \sigma \left(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)} \right) \]

In GCN / GraphSAGE

- \(\alpha_{vu} = \frac{1}{|N(v)|} \) is the \textbf{weighting factor (importance)} of node \(u \)'s message to node \(v \)
- \(\Rightarrow \alpha_{vu} \) is defined \textit{explicitly} based on the structural properties of the graph (node degree)
- \(\Rightarrow \) All neighbors \(u \in N(v) \) are equally important to node \(v \)
(3) Graph Attention Networks

$$h_v^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)})$$

Not all node’s neighbors are equally important

- **Attention** is inspired by cognitive attention.
- The **attention** α_{vu} focuses on the important parts of the input data and fades out the rest.
 - **Idea**: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.
Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{vu} to be learned?

- **Goal:** Specify **arbitrary importance** to different neighbors of each node in the graph.

- **Idea:** Compute embedding $h^{(l)}_v$ of each node in the graph following an **attention strategy**:
 - Nodes attend over their neighborhoods’ message.
 - Implicitly specifying different weights to different nodes in a neighborhood.

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]
Let α_{vu} be computed as a byproduct of an attention mechanism a:

1. Let a compute **attention coefficients** e_{vu} across pairs of nodes u, v based on their messages:

\[e_{vu} = a(W^{(l)}h_u^{(l-1)}, W^{(l)}h_v^{(l-1)}) \]

- e_{vu} indicates the importance of u's message to node v
Attention Mechanism (2)

- **Normalize** e_{vu} into the **final attention weight** α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:
 $$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

- **Weighted sum** based on the **final attention weight** α_{vu}
 $$h_v^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)})$$

 Weighted sum using α_{AB}, α_{AC}, α_{AD}:
 $$h_A^{(l)} = \sigma(\alpha_{AB} W^{(l)} h_B^{(l-1)} + \alpha_{AC} W^{(l)} h_C^{(l-1)} + \alpha_{AD} W^{(l)} h_D^{(l-1)})$$

What is the form of attention mechanism a?

The approach is agnostic to the choice of a

- E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

Parameters of a are trained jointly:

- Learn the parameters together with weight matrices (i.e., other parameter of the neural net $W^{(l)}$) in an end-to-end fashion
Attention Mechanism (4)

- **Multi-head attention**: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):
 - $h_v^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^1 W^{(l)} h_u^{(l-1)})$
 - $h_v^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^2 W^{(l)} h_u^{(l-1)})$
 - $h_v^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^3 W^{(l)} h_u^{(l-1)})$
 - Outputs are aggregated:
 - By concatenation or summation
 - $h_v^{(l)} = AGG(h_v^{(l)}[1], h_v^{(l)}[2], h_v^{(l)}[3])$
Benefits of Attention Mechanism

- **Key benefit:** Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors

- **Computationally efficient:**
 - Computation of attentional coefficients can be parallelized across all edges of the graph
 - Aggregation may be parallelized across all nodes

- **Storage efficient:**
 - Sparse matrix operations do not require more than $O(V + E)$ entries to be stored
 - **Fixed** number of parameters, irrespective of graph size

- **Localized:**
 - Only attends over local network neighborhoods

- **Inductive capability:**
 - It is a shared *edge-wise* mechanism
 - It does not depend on the global graph structure
Stanford CS224W: GNN Layers in Practice
In practice, these classic GNN layers are a great starting point.

- We can often get better performance by considering a general GNN layer design.
- Concretely, we can include modern deep learning modules that proved to be useful in many domains.

A suggested GNN Layer:
- Linear
- BatchNorm
- Dropout
- Activation
- Attention
- Aggregation
- Transformation
Many modern deep learning modules can be incorporated into a GNN layer

- **Batch Normalization:**
 - Stabilize neural network training

- **Dropout:**
 - Prevent overfitting

- **Attention/Gating:**
 - Control the importance of a message

- **More:**
 - Any other useful deep learning modules
Batch Normalization

- **Goal**: Stabilize neural networks training
- **Idea**: Given a batch of inputs (node embeddings)
 - Re-center the node embeddings into zero mean
 - Re-scale the variance into unit variance

Input: \(X \in \mathbb{R}^{N \times D} \)
\(N \) node embeddings

Trainable Parameters: \(\gamma, \beta \in \mathbb{R}^D \)

Output: \(Y \in \mathbb{R}^{N \times D} \)
Normalized node embeddings

Step 1:
Compute the mean and variance over \(N \) embeddings

\[
\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j} \\
\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2
\]

Step 2:
Normalize the feature using computed mean and variance

\[
\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}} \\
y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j
\]

Goal: Regularize a neural net to prevent overfitting.

Idea:

- **During training**: with some probability p, randomly set neurons to zero (turn off)
- **During testing**: Use all the neurons for computation

Srivastava et al. [Dropout: A Simple Way to Prevent Neural Networks from Overfitting](http://jmlr.org/papers/v15/srivastava14a.html), JMLR 2014

10/12/21
In GNN, Dropout is applied to the linear layer in the message function.

A simple message function with linear layer:

$$m_u^{(l)} = W^{(l)}h_u^{(l-1)}$$
Activation (Non-linearity)

Apply activation to i-th dimension of embedding x

- **Rectified linear unit (ReLU)**
 \[
 \text{ReLU}(x_i) = \max(x_i, 0)
 \]
 - Most commonly used

- **Sigmoid**
 \[
 \sigma(x_i) = \frac{1}{1 + e^{-x_i}}
 \]
 - Used only when you want to restrict the range of your embeddings

- **Parametric ReLU**
 \[
 \text{PReLU}(x_i) = \max(x_i, 0) + a_i \min(x_i, 0)
 \]
 - a_i is a trainable parameter
 - Empirically performs better than ReLU
Summary: Modern deep learning modules can be included into a GNN layer for better performance.

Designing novel GNN layers is still an active research frontier!

Suggested resources: You can explore diverse GNN designs or try out your own ideas in GraphGym.
Stanford CS224W: Stacking Layers of a GNN
How to connect GNN layers into a GNN?

• Stack layers sequentially
• Ways of adding skip connections

(3) Layer connectivity

GNN Layer 1

GNN Layer 2

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
Stacking GNN Layers

How to construct a Graph Neural Network?

- The standard way: Stack GNN layers sequentially
- Input: Initial raw node feature \(\mathbf{x}_v \)
- Output: Node embeddings \(\mathbf{h}_v^{(L)} \) after \(L \) GNN layers

\[
\mathbf{h}_v^{(0)} = \mathbf{x}_v
\]
The Over-smoothing Problem

- **The Issue of stacking many GNN layers**
 - GNN suffers from the over-smoothing problem
- **The over-smoothing problem:** all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?
Receptive Field of a GNN

Receptive field: the set of nodes that determine the embedding of a node of interest

- In a K-layer GNN, each node has a receptive field of K-hop neighborhood

![Receptive field for 1-layer GNN](image1)

![Receptive field for 2-layer GNN](image2)

![Receptive field for 3-layer GNN](image3)
Receptive Field of a GNN

- **Receptive field overlap** for two nodes
 - The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!
We can explain over-smoothing via the notion of receptive field

- We knew the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
- Stack many GNN layers → nodes will have highly-overlapped receptive fields → node embeddings will be highly similar → suffer from the over-smoothing problem

Next: how do we overcome over-smoothing problem?
What do we learn from the over-smoothing problem?

Lesson 1: Be cautious when adding GNN layers

- Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help.

Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph.

Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. **Do not set L to be unnecessarily large!**

Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?
How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within each GNN layer

- In our previous examples, each transformation or aggregation function only include one linear layer
- We can make aggregation / transformation become a deep neural network!

If needed, each box could include a 3-layer MLP
How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

- A GNN does not necessarily only contain GNN layers
 - E.g., we can add **MLP layers** (applied to each node) before and after GNN layers, as **pre-process layers** and **post-process layers**

Pre-processing layers: Important when encoding node features is necessary. E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed. E.g., graph classification, knowledge graphs

In practice, adding these layers works great!
What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

Observation from over-smoothing: Node embeddings in earlier GNN layers can sometimes better differentiate nodes

Solution: We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN

Idea of skip connections:

Before adding shortcuts: $F(x)$

After adding shortcuts: $F(x) + x$
Why do skip connections work?

- **Intuition:** Skip connections create a mixture of models
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to N modules
- We automatically get a mixture of shallow GNNs and deep GNNs

Path 1: include this module
(a) Conventional 3-block residual network

Path 2: skip this module
(b) Unraveled view of (a)

All the possible paths: $2 \times 2 \times 2 = 2^3 = 8$
Example: GCN with Skip Connections

- **A standard GCN layer**

 \[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]

 This is our \(F(x) \)

- **A GCN layer with skip connection**

 \[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) + h^{(l-1)}_v \]

 \[F(x) + x \]
Other Options of Skip Connections

- **Other options**: Directly skip to the last layer
 - The final layer directly aggregates from the all the node embeddings in the previous layers