Announcements:
• Please fill HW Survey
• Weekend Office Hours starting this weekend (Hangout only)
• Proposal: Can use 1 late period

Probabilistic Contagion and Models of Influence

CS224W: Analysis of Networks
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Models of Cascading Behavior

So far:

Decision Based Models

- Utility based
- Deterministic
- “Node” centric: A node observes decisions of its neighbors and makes its own decision
- Require us to know too much about the data

Next: Probabilistic Models

- Lets you do things by observing data
- We lose “why people do things”
Epidemic Model Based on Trees

Simple probabilistic model of cascades where we will learn about the reproductive number
Epidemic Model based on Random Trees

(a variant of a branching processes)
A patient meets \(d\) other people
With probability \(q > 0\) she infects each of them

Q: For which values of \(d\) and \(q\) does the epidemic run forever?

Run forever: \(\lim_{h \to \infty} P\left[\text{At least 1 infected node at depth } h\right] > 0\)

Die out: \(-- \| \| -- = 0\)
\(p_h = \text{prob. there is an infected node at depth } h \)

We need: \(\lim_{h \to \infty} p_h = ? \) (based on \(q \) and \(d \))

- We are reasoning about a behavior at the root of the tree. Once we get a level out, we are left with identical problem of depth \(h-1 \).

Need recurrence for \(p_h \)

\[
p_h = 1 - (1 - q \cdot p_{h-1})^d
\]

\(\lim_{h \to \infty} p_h = \text{result of iterating} \)

\[
f(x) = 1 - (1 - q \cdot x)^d
\]

- Starting at the root: \(x = 1 \) (since \(p_1 = 1 \))
Fixed Point: \(f(x) = 1 - (1 - qx)^d \)

- If we want to epidemic to die out, then iterating \(f(x) \) must go to zero.
- So, \(f(x) \) must be below \(y=x \)

Fixed point:
\(f(x) = x \)

This means that prob. there is an infected node at depth \(h \) is constant (>0)

- x … prob. there is an infected node at level \(h-1 \). We start at \(x=1 \) because \(p_1=1 \).
- \(f(x) \) … prob. there is an infected node at level \(h \)
- \(q \) … infection prob.
- \(d \) … degree

Going to the first fixed point

We iterate:
- \(x_1 = f(1) \)
- \(x_2 = f(x_1) \)
- \(x_3 = f(x_2) \)
Fixed Point: \(f(x) = 1 - (1 - qx)^d \)

What do we know about the shape of \(f(x) \)?

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 - (1 - q)^d < 1 \\
 f'(x) &= q \cdot d (1 - qx)^{d-1} \\
 f'(0) &= q \cdot d
\end{align*}
\]

\(f(x) \) is monotone: If \(g'(y) > 0 \) for all \(y \) then \(g(y) \) is monotone. In our case, \(0 \leq x, q \leq 1 \), \(d > 1 \) so \(f'(x) > 0 \) so \(f(x) \) is monotone.

\(f'(x) \) non-increasing: since term \((1-qx)^{d-1} \) in \(f'(x) \) is decreasing as \(x \) decreases.

\(f'(x) \) is monotone non-increasing on \([0,1]\)!
For the epidemic to die out, we need $f(x)$ to be below $y=x$!

So: $f'(0) = q \cdot d < 1$

$$\lim_{h \to \infty} p_h = 0 \text{ when } q \cdot d < 1$$

$q \cdot d = \text{expected # of people that get infected}$

Reproductive number $R_0 = q \cdot d$: There is an epidemic if $R_0 \geq 1$
Important Points

- Reproductive number $R_0 = q \cdot d$:
- There is an epidemic if $R_0 \geq 1$

- Only R_0 matters:
 - $R_0 \geq 1$: epidemic never dies and the number of infected people increases exponentially
 - $R_0 < 1$: Epidemic dies out exponentially quickly
Models of Disease Spreading

We will learn about the epidemic threshold
Virus Propagation: 2 Parameters:

- **(Virus) Birth rate β:**
 - Probability than an infected neighbor attacks

- **(Virus) Death rate δ:**
 - Probability that an infected node heals
More Generally: S+E+I+R Models

- **General scheme for epidemic models:**
 - Each node can go through phases:
 - Transition probs. are governed by the model parameters

![Diagram](attachment:image.png)
SIR Model

- **SIR model**: Node goes through phases

 - Susceptible
 - β → Infected
 - δ → Recovered

 - Models chickenpox or plague:
 - Once you heal, you can never get infected again

- **Assuming perfect mixing** (The network is a complete graph) the model dynamics is:

 \[
 \frac{dS}{dt} = -\beta SI \\
 \frac{dR}{dt} = \delta I \\
 \frac{dI}{dt} = \beta SI - \delta I
 \]
- Susceptible-Infective-Susceptible (SIS) model
- Cured nodes immediately become susceptible
- Virus “strength”: $s = \frac{\beta}{\delta}$
- Node state transition diagram:
SIS Model

- **Models flu:**
 - Susceptible node becomes infected
 - The node then heals and become susceptible again

- **Assuming perfect mixing (complete graph):**

\[
\begin{align*}
\frac{dS}{dt} &= -\beta SI + \delta I \\
\frac{dI}{dt} &= \beta SI - \delta I
\end{align*}
\]
Question: Epidemic threshold t

- **SIS Model:**
 Epidemic threshold of an arbitrary graph G is τ, such that:
 - If virus “strength” $s = \frac{\beta}{\delta} < \tau$ the epidemic cannot happen (it eventually dies out)

- Given a graph what is its epidemic threshold?
Fact: We have no epidemic if:

\[\frac{\beta}{\delta} < \tau = \frac{1}{\lambda_{1,A}} \]

(Virus) Death rate

(Virus) Birth rate

Epidemic threshold

\[\lambda_{1,A} \text{ alone captures the property of the graph!} \]
Experiments (AS graph)

\[\beta = 0.001 \]

10,900 nodes and 31,180 edges

- \(s = \frac{\beta}{\delta} > \tau \) (above threshold)
- \(s = \frac{\beta}{\delta} = \tau \) (at the threshold)
- \(s = \frac{\beta}{\delta} < \tau \) (below threshold)
Experiments

- Does it matter how many people are initially infected?

(a) Below the threshold, $s=0.912$

(b) At the threshold, $s=1.003$

(c) Above the threshold, $s=1.1$
Example: Ebola

Example: Ebola, $R_0 = 1.5 - 2.0$

Read an article about how to estimate R_0 of ebola.
Example: Ebola

[Gomes et al., 2014]
Independent Cascade Model
Initially some nodes S are active
Each edge (u,v) has probability (weight) p_{uv}

When node u becomes active/infected:
- It activates each out-neighbor v with prob. p_{uv}
- Activations spread through the network!
Independent Cascade Model

- **Independent cascade model** is simple but requires many parameters!
 - Estimating them from data is very hard
 - [Goyal et al. 2010]
- **Solution:** Make all edges have the same weight (which brings us back to the SIR model)
 - Simple, but too simple
- **Can we do something better?**
Exposures and Adoptions

- **From exposures to adoptions**
 - **Exposure**: Node’s neighbor exposes the node to the contagion
 - **Adoption**: The node acts on the contagion
Exposure Curves

- **Exposure curve:**
 - Probability of adopting new behavior depends on the total number of friends who have already adopted

- **What’s the dependence?**

 \[
 \text{Prob. of adoption} = \frac{k}{\text{number of friends adopting}}
 \]

 - **Diminishing returns:** Viruses, Information
 - **Critical mass:** Decision making
Exposure Curves

- **From exposures to adoptions**
 - **Exposure**: Node’s neighbor exposes the node to information
 - **Adoption**: The node acts on the information
- **Adoption curve:**

![Graphs showing exposure, infection probability, and resistance build-up over exposures.](#)
Marketing agency would like you to adopt/buy product X
They estimate the adoption curve

Should they expose you to X three times?
Or, is it better to expose you X, then Y and then X again?
Diffusion in Viral Marketing

- Senders and followers of recommendations receive discounts on products
 - 10% credit
 - 10% off

Data: Incentivized Viral Marketing program
- 16 million recommendations
- 4 million people, 500k products

[Leskovec et al., TWEB '07]
Exposure Curve: Validation

Probability of purchasing

recommendations received

DVD recommendations (8.2 million observations)
Group memberships spread over the network:
- **Red** circles represent existing group members
- **Yellow** squares may join

Question:
How does prob. of joining a group depend on the number of friends already in the group?
Exposure Curve: LiveJournal

- LiveJournal group membership

![Graph showing the probability of joining versus the number of friends in the group](image-url)
Twitter [Romero et al. ‘11]

- Aug ‘09 to Jan ’10, 3B tweets, 60M users

- Avg. exposure curve for the top 500 hashtags
- What are the most important aspects of the shape of exposure curves?
- Curve reaches peak fast, decreases after!
Persistence of P is the ratio of the area under the curve P and the area of the rectangle of height $\text{max}(P)$, width $\text{max}(D(P))$
- $D(P)$ is the domain of P
- Persistence measures the decay of exposure curves

Stickiness of P is $\text{max}(P)$
- Stickiness is the probability of usage at the most effective exposure
Manually identify 8 broad categories with at least 20 HTs in each

- Idioms and Music have lower persistence than that of a random subset of hashtags of the same size
- Politics and Sports have higher persistence than that of a random subset of hashtags of the same size
Exposure Curve: Stickiness

- Technology and Movies have lower stickiness than that of a random subset of hashtags
- Music has higher stickiness than that of a random subset of hashtags (of the same size)
Modeling Interactions Between Contagions
Information Diffusion

So far we considered pieces of information as independently propagating. **Do pieces of information interact?**

Did 1st cat video **decrease** adoption probability of 2nd cat video?

Did cat videos **increase** adoption probability of dog video?
Goal: Model interaction between many pieces of information

- Some pieces of information may help each other in adoption
- Other may compete for attention
The Model

The User

\[P(\text{adopt } c_3 | \text{exposed to } c_2, c_1, c_0) \]
You are reading posts on Twitter:

- You examine posts one by one
- Currently you are examining X
- How does your probability of reposting X depend on what you have seen in the past?

Contagions adopted by neighbors (X is exposed by them in order):

C_5 C_4 C_3 C_2 X

Adopt?

Time
The Model

- We assume K most recent exposures effect a user’s adoption:
 - $P(\text{adopt } X = c_0 \mid \text{exposed } Y_1 = c_1, Y_2 = c_2, \ldots, Y_K = c_k)$

Contagion the user is viewing now.

Contagions the user previously viewed.

Contagions adopted by neighbors:
We assume \(K \) most recent exposures effect a user’s adoption:

\[
P(\text{adopt } X=c_0 \mid \text{exposed } Y_1=c_1, Y_2=c_2, \ldots, Y_K=c_K)
\]

Contagion the user is viewing now.

Contagions the user previously viewed.

Contagions adopted by neighbors:
The Model: Problem

- We want to estimate: \(P(X \mid Y_1, \ldots, Y_5) \)
- What’s the problem?
 - What’s the size of probability table \(P(X \mid Y_1, \ldots, Y_5) \)?
 \[= (\text{Num. Contagions})^5 \approx 1.9 \times 10^{21} \]
- Simplification: Assume \(Y_i \) is independent of \(Y_j \)

\[
P(X \mid Y_1, \ldots, Y_K) = \frac{1}{P(X)^{K-1}} \prod_{k=1}^{K} P_k(X \mid Y_k)
\]

We apply Bayes theorem twice and use the independence assumption.
The Model

- **Goal:** Model $P(\text{adopt } X \mid Y_1, \ldots, Y_K)$

- **Assume:**

 $$P(X = u_j \mid Y_k = u_i) \approx P(X = u_j) + \Delta_{\text{cont.}}^{(k)}(u_i, u_j)$$

 - Prior infection prob.
 - Interaction term

- **Next, assume “topics”:**
 - $\Delta_{\text{cont.}}^{(k)}(u_i, u_j)$ models the change in infection prob. of u_j given that exposure k-steps ago was u_j
 - We estimate $P(X)$ and $\Delta^{(k)}(u_i, u_j)$ by simply counting
 - $P(X)$... fraction of people exposed to X that got infected by X
 - $\Delta^{(k)}(u_i, u_j)$... $P(X) – \text{fraction of people first exposed to } u_i \text{ and then to } u_j \text{ and then got infected by } u_j$.

Dataset: Twitter

- **Data from Twitter**
 - *Complete* data from Jan 2011: 3 billion tweets
 - All URLs tweeted by at least 50 users: 191k

- **Task:**
 Predict whether a user will post URL X

- **What do we learn from the model?**
How do Tweets Interact?

- How $P(\text{post } u_2| \text{ exp. } u_1)$ changes if ...
 - u_2 and u_1 are similar/different in the content?
 - LCS (low content similarity), HCS (high content similarity)
 - u_1 is highly viral? Prob. of infection $P(u)$:

Observations:
- If u_1 is not viral, this boost u_2
- If u_1 is highly viral, this kills u_2

BUT:
- Only if u_1 and u_2 are of low content similarity (LCS) else, u_1 helps u_2
Final Remarks

- **Modeling contagion interactions**
 - 71% of the adoption probability comes from the topic interactions!
R₀: Epidemics die out if R₀<1
 - R₀: reproductive number

Epidemic Threshold: Virus “strength” $s = \frac{\beta}{\delta} < \tau$ the epidemic can not happen (it eventually dies out)

Shape of the adoption curve:

Modeling interactions between contagions