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Note to other teachers and users of these slides: We would be delighted if you found our 
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify 
them to fit your own needs. If you make use of a significant portion of these slides in your own 
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu 

http://cs224w.stanford.edu/
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https://snap.stanford.edu/graphlearning-workshop-2023/ 

Feel free to join in person! Poster session will be great!

https://snap.stanford.edu/graphlearning-workshop-2023/


¡ Homework 1 due today
§ Gradescope submissions close at 11:59 PM

¡ Homework 2 will be released today by 9PM 
on our course website

¡ Homework 2:
§ Due Thursday, 11/02 (2 weeks from now)
§ TAs will hold a recitation session for HW 2:

§ Time: Friday (10/27), 1-3pm
§ Location: Zoom, link will be posted on Ed
§ Session will be recorded
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¡ Heterogeneous graphs: a graph with multiple 
relation types
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¡ Learn from a graph with multiple relation types
¡ Use different neural network weights for 

different relation types!

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

A

D

C

B

E

F

C

Neural networks

Aggregation

A

Target node

Input graph

𝑟!

𝑟!

𝑟" 𝑟"

𝑟#

𝑟#

𝑟!

C

B

E
F

D



Knowledge in graph form:
§ Capture entities, types, and relationships

¡ Nodes are entities
¡ Nodes are labeled with 
their types
¡ Edges between two nodes
capture relationships 
between entities
¡ KG is an example of a 
heterogeneous graph
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¡ Node types: paper, title, author, conference, 
year 

¡ Relation types: pubWhere, pubYear, hasTitle, 
hasAuthor, cite
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¡ Node types: drug, disease, adverse event, 
protein, pathways

¡ Relation types: has_func, causes, assoc, treats, 
is_a
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Examples of knowledge graphs
¡ Google Knowledge Graph 
¡ Amazon Product Graph
¡ Facebook Graph API 
¡ IBM Watson 
¡ Microsoft Satori 
¡ Project Hanover/Literome
¡ LinkedIn Knowledge Graph 
¡ Yandex Object Answer 
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¡ Serving information: 
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Image credit: Bing



¡ Question answering and conversation agents
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Image credit: Medium

https://medium.com/deeppavlov/building-a-knowledge-graph-based-dialogue-system-at-the-2nd-convai-summer-school-ec2d0aa060e5


¡ Publicly available KGs:
§ FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

¡ Common characteristics:
§ Massive: Millions of nodes and edges
§ Incomplete: Many true edges are missing
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Given a massive KG, 
enumerating all the 

possible facts is 
intractable!

Can we predict plausible 
BUT missing links?



¡ Freebase
§ ~80 million entities
§ ~38K relation types
§ ~3 billion facts/triples

¡ Datasets: FB15k/FB15k-237
§ A complete subset of Freebase, used by 

researchers to learn KG models
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93.8% of persons from Freebase 
have no place of birth and 78.5% 
have no nationality!

[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.
[2] Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies. 2013.
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Given an enormous KG, can we complete the KG?
§ For a given (head, relation), we predict missing tails.

§ (Note this is slightly different from link prediction task)
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Example task: predict the 
tail “Science Fiction” for 
(“J.K. Rowling”, “genre”)



¡ Simplest encoding approach: encoder is just 
an embedding-lookup
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Z = Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node
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¡ Edges in KG are represented as triples (ℎ, 𝑟, 𝑡)
§ head (ℎ) has relation 𝑟 with tail (𝑡)

¡ Key Idea: 
§ Model entities and relations in embedding space ℝ!

§ Associate entities and relations with shallow embeddings
§ Note we do not learn a GNN here!

§ Given a triple (ℎ, 𝑟, 𝑡), the goal is that the embedding 
of (ℎ, 𝑟) should be close to the embedding of 𝑡.
§ How to embed ℎ, 𝑟 ?
§ How to define score 𝑓$ ℎ, 𝑡 ?

§ Score 𝑓! is high if ℎ, 𝑟, 𝑡 exists, else 𝑓! is low
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¡ Many KG embedding Models:
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We are going to learn about different KG 
embedding models (shallow/transductive embs):
¡ Different models are… 
§ …based on different geometric intuitions
§ …capture different types of relations (have different 

expressivity)
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ! û ü ü ü û

TransR −‖
‖

𝑴"𝐡 + 𝐫
−𝑴"𝐭

𝐡, 𝐭 ∈ ℝ! ,
𝐫 ∈ ℝ# ,
𝑴" ∈ ℝ#×!

ü ü ü ü ü

DistMult < 𝐡, 𝐫, 𝐭 > 𝐡, 𝐭, 𝐫 ∈ ℝ! ü û û û ü

ComplEx Re(< 𝐡, 𝐫, ̅𝐭 >) 𝐡, 𝐭, 𝐫 ∈ ℂ! ü ü ü û ü



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



¡ Intuition: Translation
For a triple (ℎ, 𝑟, 𝑡), let 𝐡, 𝐫, 𝐭 ∈ ℝ!
be embedding vectors.

¡ TransE: 𝐡 + 𝐫 ≈ 𝐭 if the given link exists else 𝐡 +
𝐫 ≠ 𝐭

Entity scoring function: 𝑓" ℎ, 𝑡 = −||𝐡 + 𝐫 − 𝐭||
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𝐡
𝐭

𝐫 Obama
Nationality

U.S.A

embedding vectors 
will appear in 
boldface

Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.

https://hal.archives-ouvertes.fr/file/index/docid/920777/filename/bordes13nips.pdf


¡ Entity embeddings
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Initialize relations 𝑟 and entities 𝑒 
uniformly, then normalize.
γ is the margin.

Sample triplet (ℎ’, 𝑟, 𝑡)	that does 
not appear in the KG.

Contrastive loss: Favors lower distance (or higher 
score) for valid triplets, high distance (or lower score) 
for corrupted ones

positive 
sample

negative 
sample

𝑑 represents distance 
(negative of score)

𝑟
𝑟𝑟

𝑟𝑟𝑟𝑟
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¡ Relations in a heterogeneous KG have 
different properties:
§ Example:

§ Symmetry: If the edge (ℎ, "Roommate", 𝑡) exists in KG, 
then the edge (𝑡, "Roommate", ℎ) should also exist.

§ Inverse relation: If the edge (ℎ, "Advisor", 𝑡) exists in KG, 
then the edge 𝑡, "Advisee", ℎ should also exist.

¡ Can we categorize these relation patterns?
¡ Are KG embedding methods (e.g., TransE) 

expressive enough to model these patterns?
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¡ Symmetric (Antisymmetric) Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ (𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ)) ∀ℎ, 𝑡

§ Example: 
§ Symmetric: Family, Roommate
§ Antisymmetric: Hypernym (a word with a broader meaning: poodle vs. dog)

¡ Inverse Relations:
𝑟!(ℎ, 𝑡) ⇒ 𝑟"(𝑡, ℎ)

§ Example : (Advisor, Advisee)
¡ Composition (Transitive) Relations:

𝑟" 𝑥, 𝑦 ∧ 𝑟! 𝑦, 𝑧 ⇒ 𝑟# 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧
§ Example: My mother’s husband is my father.

¡ 1-to-N relations:
𝑟 ℎ, 𝑡" , 𝑟 ℎ, 𝑡! , … , 𝑟(ℎ, 𝑡$) are all True.

§ Example: 𝑟 is “StudentsOf” 
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¡ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

§ Example: Hypernym
¡ TransE can model antisymmetric relations ü
§ 𝐡 + 𝐫 = 𝐭, but 𝐭 + 𝐫 ≠ 𝐡
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𝐡
𝐫

𝐭

𝐫

(a word with a broader meaning: poodle vs. dog)



¡ Inverse Relations:
𝑟#(ℎ, 𝑡) ⇒ 𝑟$(𝑡, ℎ)

§ Example : (Advisor, Advisee)
¡ TransE can model inverse relations ü
§ 𝐡 + 𝐫𝟐 = 𝐭, we can set 𝐫" = −𝐫!
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¡ Composition (Transitive) Relations:
𝑟$ 𝑥, 𝑦 ∧ 𝑟# 𝑦, 𝑧 ⇒ 𝑟% 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

§ Example: My mother’s husband is my father.
¡ TransE can model composition relationsü

𝐫% = 𝐫$ + 𝐫#
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¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

§ Example: Family, Roommate
¡ TransE cannot model symmetric relations û

only if 𝐫 = 0, 𝐡 = 𝐭
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𝐡
𝐭𝐫

For all ℎ, 𝑡 that satisfy 𝑟(ℎ, 𝑡), 𝑟(𝑡, ℎ) is also 
True, which means 𝐡 + 𝐫 − 𝐭 = 0 and 
𝐭 + 𝐫 − 𝐡 = 0. Then 𝐫 = 0 and 𝐡 = 𝐭, 

however ℎ and 𝑡 are two different entities 
and should be mapped to different locations.



¡ 1-to-N Relations:
§ Example: (ℎ, 𝑟, 𝑡") and (ℎ, 𝑟, 𝑡!) both exist in the 

knowledge graph, e.g., 𝑟 is “StudentsOf”
¡ TransE cannot model 1-to-N relations û
§ 𝐭" and 𝐭! will map to the same vector, although 

they are different entities

¡ 𝐭$ = 𝐡 + 𝐫 = 𝐭#
¡ 𝐭$ ≠ 𝐭#
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𝐡

𝐭!
𝐭" 𝐫

𝐫contradictory!
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What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ! û ü ü ü û
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¡ TransE models translation of any relation in 
the same embedding space.

¡ Can we design a new space for each relation 
and do translation in relation-specific space?

¡ TransR: model entities as vectors in the entity 
space ℝ! and model each relation as vector 
in relation space 𝐫 ∈ ℝ& with 𝐌" ∈ ℝ&×! as 
the projection matrix.
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Lin et al., Learning entity and relation embeddings for knowledge graph completion, AAAI 2015

https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523/


¡ TransR: model entities as vectors in the entity 
space ℝ! and model each relation as vector in 
relation space 𝐫 ∈ ℝ" with 𝐌# ∈ ℝ"×! as the 
projection matrix.

¡ 𝐡: = 𝐌$𝐡, 𝐭: = 𝐌$𝐭
¡ Score function: 𝑓$ ℎ, 𝑡 = −||𝐡: + 𝐫 − 𝐭:||
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𝐡 𝐡:
𝐭:

𝐭

𝐫

Space of relation 𝒓: ℝ𝒌  Space of entities:	ℝ𝒅

Use 𝐌𝒓 to project from entity 
space ℝ𝒅 to relation space ℝ!!

𝐌𝒓 



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

§ Example: Family, Roommate
¡ TransR can model symmetric relations

𝐫 = 0, 𝐡( = 𝐌"𝐡 = 𝐌"𝐭 = 𝐭(ü
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𝐡 𝐭:, 𝐡:

𝐭

𝐌$

We can map 𝒉 and 𝒕 to the same location 
on the space of relations 𝒓. Then 𝒓 = 𝟎. 
𝒉 and 𝒕 are still different in the entity space, 
.

Space of relation 𝒓: ℝ𝒌  Space of entities:	ℝ𝒅

Note different 
symmetric 
relations may 
have different 𝐌𝒓



¡ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

§ Example: Hypernym
¡ TransR can model antisymmetric relations:

𝐫 ≠ 0,𝐌"𝐡 + 𝐫 = 𝐌"𝐭,
Then𝐌"𝐭 + 𝐫 ≠ 𝐌"𝐡ü
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𝐡 𝐡:

𝐭

𝐌$

Space of relation 𝒓: ℝ𝒌  Space of entities:	ℝ𝒅

𝐭:𝐫
𝐫



¡ 1-to-N Relations:
§ Example: If (ℎ, 𝑟, 𝑡") and (ℎ, 𝑟, 𝑡!) exist in the 

knowledge graph.
¡ TransR can model 1-to-N relations ü
§ We can learn 𝐌( so that 𝐭) = 𝐌(𝐭" = 𝐌(𝐭!
§ Note that 𝐭! does not need to be equal to 𝐭"!
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𝐡
𝐡:

𝐭:

𝐭!

𝐭"
𝐫

𝐌$



¡ Inverse Relations:
𝑟%(ℎ, 𝑡) ⇒ 𝑟&(𝑡, ℎ)

§ Example : (Advisor, Advisee)
¡ TransR can model inverse relations

𝐫% = −𝐫&, 𝐌#> = 𝐌#?
Then𝐌#>𝐭 + 𝐫𝟏 = 𝐌#>𝐡 and 𝐌#?𝐡 + 𝐫𝟐 = 𝐌#?𝐭ü
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𝐡 𝐡:

𝐭

𝐌$" = 𝐌$#

Space of relation 𝒓: ℝ𝒌  Space of entities:	ℝ𝒅

𝐭:
𝐫𝟏 𝐫𝟐



¡ Composition Relations:
𝑟$ 𝑥, 𝑦 ∧ 𝑟# 𝑦, 𝑧 ⇒ 𝑟% 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

§ Example: My mother’s husband is my father.
¡ TransR can model composition relations

High-level intuition: TransR models a triple with 
linear functions. Linear functions are chainable! 
¡ If f(x) and g(x) are linear, then f(g(x)) is also 

linear:
§ Let: f(x)=a·x+b, g(x)=c·x+d: then f(g(x))= a(c·x+d)+b.
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¡ Composition Relations:
𝑟$ 𝑥, 𝑦 ∧ 𝑟# 𝑦, 𝑧 ⇒ 𝑟% 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

Background: 
Def: Kernel space of a matrix 𝐌: 

𝐡 ∈ Ker 𝐌 , then 𝐌 ⋅ 𝐡 = 𝟎
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𝐡 𝐌

Ker 𝐌

𝟎



¡ Composition Relations:
𝑟" 𝑥, 𝑦 ∧ 𝑟! 𝑦, 𝑧 ⇒ 𝑟# 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

Assume 𝐌(3𝐠" = 𝐫" and 𝐌(4𝐠! = 𝐫!
¡ For 𝑟" 𝑥, 𝑦 :
𝑟" 𝑥, 𝑦 exists ⇒ 𝐌(3𝐱 + 𝐫𝟏 = 𝐌(3𝐲 ⇒ 𝐌(3 𝒚 − 𝒙 = 𝒓"

𝐲 − 𝐱 ∈ 𝐠" + Ker 𝐌(3 ⇒ 𝐲 ∈ 𝐱 + 𝐠𝟏 + Ker 𝐌(3

¡ Same for 𝑟! 𝑦, 𝑧 :
𝑟! 𝑦, 𝑧 exists ⇒ 𝐌(4𝐲 + 𝐫𝟐 = 𝐌(4𝐳 ⇒

𝐳 − 𝐲 ∈ 𝐠! + Ker 𝐌(4 ⇒ 𝐳 ∈ 𝐲 + 𝐠𝟐 + Ker 𝐌(4

¡ Then, we have 
𝐳 ∈ 𝐱 + 𝐠𝟏 + 𝐠𝟐 + Ker 𝐌(3 + Ker 𝐌(4
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¡ Composition Relations:
𝑟! 𝑥, 𝑦 ∧ 𝑟" 𝑦, 𝑧 ⇒ 𝑟# 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

We have 𝐳 ∈ 𝐱 + 𝐠𝟏 + 𝐠𝟐 + Ker 𝐌$" + Ker 𝐌$#
¡ Construct 𝐌$$, s.t.
Ker 𝐌$$ = Ker 𝐌$" + Ker 𝐌$#

¡ Since:
§ dim Ker 𝐌5( ≥ dim Ker 𝐌5)
§ 𝐌5( has the same shape as 𝐌56
we know 𝐌$$ exists!

¡ Set 𝐫# = 𝐌$$ 𝐠! + 𝐠"

¡ We have 𝐌$$𝐱 + 𝐫𝟑 = 𝐌$$𝐳
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What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ! û ü ü ü û

TransR −‖
‖

𝑴"𝐡 + 𝐫
−𝑴"𝐭

𝐡, 𝐭 ∈ ℝ! ,
𝐫 ∈ ℝ# ,
𝑴" ∈ ℝ#×!

ü ü ü ü ü
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¡ So far: The scoring function 𝑓"(ℎ, 𝑡) is negative 
of L1 / L2 distance in TransE and TransR

¡ Idea: Use bilinear modeling:
Score func)on: 𝑓# ℎ, 𝑡 = ℎ ⋅ 𝐴 ⋅ 𝑡
𝐡, 𝐭 ∈ ℝ& , 𝐀 ∈ ℝ&×&

¡ Problem: Too general and prone to overfitting
§ Matrix A is too expressive

¡ Fix: Limit A to be diagonal
§ This is called DistMult
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Yang et al, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, ICLR 2015

https://arxiv.org/pdf/1412.6575


¡ DistMult: Entities & relations are vectors in ℝ&
¡ Score funcYon:

𝑓" ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > =E
)

𝐡) ⋅ 𝐫) ⋅ 𝐭)

¡ 𝐡, 𝐫, 𝐭 ∈ ℝ&
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𝑓"(ℎ, 𝑡)

Sum

Product
𝐫

𝐡 𝐭

Yang et al, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, ICLR 2015

https://arxiv.org/pdf/1412.6575


¡ DistMult: Entities and relations using vectors in ℝ"
¡ Score func@on: 𝑓# ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > = ∑1 𝐡1 ⋅ 𝐫1 ⋅ 𝐭1

§ 𝐡, 𝐫, 𝐭 ∈ ℝ#
¡ Intuition of the score function: Can be viewed as a 

cosine similarity between 𝐡 ⋅ 𝐫 and 𝐭
where 𝐡 ⋅ 𝐫 is defined as 𝒉 ⋅ 𝒓 𝒊 = 𝒉𝒊 ⋅ 𝒓𝒊

¡ Example:
𝑓# ℎ, 𝑡& < 0, 𝑓# ℎ, 𝑡% > 0
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𝒉 ⋅ 𝒓

𝐭!

𝐭"

Hadamard product



¡ 1-to-N Relations:
§ Example: If (ℎ, 𝑟, 𝑡") and (ℎ, 𝑟, 𝑡!) exist in the 

knowledge graph
¡ DistMult can model 1-to-N relations ü

< 𝐡, 𝐫, 𝐭" >=< 𝐡, 𝐫, 𝐭# >
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𝐡 ⋅ 𝐫

𝐭!

𝐭"



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

§ Example: Family, Roommate
¡ DistMult can naturally model symmetric 

relations ü

𝑓" ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > =E
)

𝐡) ⋅ 𝐫) ⋅ 𝐭) =

< 𝐭, 𝐫, 𝐡 > = 𝑓"(𝑡, ℎ)
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Due to the commutative property 
of multiplication.



¡ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

§ Example: Hypernym

¡ DistMult cannot model antisymmetric relations
𝑓" ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > = < 𝐭, 𝐫, 𝐡 >= 𝑓"(𝑡, ℎ) û
§ 𝑟(ℎ, 𝑡) and 𝑟(𝑡, ℎ) always have same score!
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DistMult cannot differentiate between head entity and tail entity! This 
means that all relations are modelled as symmetric regardless, i.e., even 
anti-symmetric relations will be represented as symmetric.



¡ Inverse Relations:
𝑟#(ℎ, 𝑡) ⇒ 𝑟$(𝑡, ℎ)

§ Example : (Advisor, Advisee)
¡ DistMult cannot model inverse relations û
§ Assume DistMult does model inverse relations:
𝑓(* ℎ, 𝑡 =< 𝐡, 𝐫!, 𝐭 > = < 𝐭, 𝐫𝟏 , 𝐡 >= 𝑓(+ 𝑡, ℎ
§ For example, 𝐫! = 𝐫" solves this (there are also exist solutions 𝐫! ≠ 𝐫")

§ But semantically this does not make sense: The 
embedding of “Advisor” relation should not be the 
same as “Advisee” relation.
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¡ Composition Relations:
𝑟$ 𝑥, 𝑦 ∧ 𝑟# 𝑦, 𝑧 ⇒ 𝑟% 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

§ Example: My mother’s husband is my father.

¡ DistMult cannot model composition of 
relations û
§ Intuition: Because dot product is commutative (a·b= 

b·a) DistMult does not distinguish between head 
and tail entities, so it cannot model composition.
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What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ! û ü ü ü û

TransR −‖
‖

𝑴"𝐡 + 𝐫
−𝑴"𝐭

𝐡, 𝐭 ∈ ℝ! ,
𝐫 ∈ ℝ# ,
𝑴" ∈ ℝ#×!

ü ü ü ü ü

DistMult < 𝐡, 𝐫, 𝐭 > 𝐡, 𝐭, 𝐫 ∈ ℝ! ü û û û ü
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¡ Based on Distmult, ComplEx embeds entities 
and relations in Complex vector space

¡ ComplEx: model entities and relations using 
vectors in ℂ&
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𝐮 = 𝐚 + 𝐛𝑖

Re(𝐮)

Im(𝐮)

𝐮 ∈ ℂ!
𝐚 ∈ ℝ!
𝐛 ∈ ℝ!

@𝐮 = 𝐚 − 𝐛𝑖

Trouillon et al, Complex Embeddings for Simple Link Prediction, ICML 2016

@𝐮 is called a conjugate

Complex multiplication:

Example multiplication:
=-6+17i

http://proceedings.mlr.press/v48/trouillon16.pdf


¡ Based on Distmult, ComplEx embeds entities 
and relations in Complex vector space

¡ ComplEx: model entities and relations using 
vectors in ℂ&

¡ Score function 𝑓" ℎ, 𝑡 = Re ∑) 𝐡) ⋅ 𝐫) ⋅ ̅𝐭)
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𝑓"(ℎ, 𝑡)

Sum

Inner Product
𝐫

𝐡 ̅𝐭

= Re 𝐡K , Re 𝐫K , Re 𝐭K
+ Re 𝐡K , Im 𝐫K , Im 𝐭K
+ Im 𝐡K , Re 𝐫K , Im 𝐭K
− ⟨Im 𝐡K , Im 𝐫K , Re 𝐭K ⟩



𝑓5 ℎ, 𝑡 = Re 8
7

𝐡7 ⋅ 𝐫7 ⋅ ̅𝐭7

=8
7

Re(𝐡7 ⋅ 𝐫7 ⋅ 𝐭7)

=8
7

Re((Re 𝐡7 + 𝑖Im 𝐡7 ) ⋅ (Re 𝐫7 + 𝑖Im 𝐫7 ) ⋅ (Re 𝐭7 − 𝑖Im(𝐭7)))

=8
7

Re 𝐡7 Re 𝐫7 Re 𝐭7 + Re 𝐡7 Im 𝐫7 Im 𝐭7
+Im 𝐡7 Re 𝐫7 Im 𝐭7 − Im 𝐡7 Im 𝐫7 Re 𝐭7

= Re 𝐡7 , Re 𝐫7 , Re 𝐭7 + Re 𝐡7 , Im 𝐫7 , Im 𝐭7
+ Im 𝐡7 , Re 𝐫7 , Im 𝐭7 − ⟨Im 𝐡7 , Im 𝐫7 , Re 𝐭7 ⟩
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¡ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

§ Example: Hypernym
¡ ComplEx can model antisymmetric relations ü
§ The model is expressive enough to learn 

§ High 𝑓$ ℎ, 𝑡 = Re(∑K 𝐡K ⋅ 𝐫K ⋅ ̅𝐭K)
§ Low 𝑓$ 𝑡, ℎ = Re(∑K 𝒕K ⋅ 𝐫K ⋅ D𝒉K)
Due to the asymmetric modeling using complex conjugate.
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¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

§ Example: Family, Roommate
¡ ComplEx can model symmetric relations ü
§ When Im 𝐫 = 0, we have

§ 𝑓$ ℎ, 𝑡 = Re ∑K 𝐡K ⋅ 𝐫K ⋅ ̅𝐭K = ∑KRe 𝐫K ⋅ 𝐡K ⋅ ̅𝐭K
= ∑K 𝐫K ⋅ Re 𝐡K ⋅ ̅𝐭K =∑K 𝐫K ⋅ Re �̅�K ⋅ 𝐭K = ∑KReF
G

𝐫K ⋅ �̅�K ⋅
𝐭K =𝑓$(𝑡, ℎ)
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¡ Inverse Relations:
𝑟#(ℎ, 𝑡) ⇒ 𝑟$(𝑡, ℎ)

§ Example : (Advisor, Advisee)
¡ ComplEx can model inverse relations ü
§ 𝐫" = �̅�!
§ Complex conjugate of 
𝐫! = argmax

𝐫
Re(< 𝐡, 𝐫, ̅𝐭 >) is exactly 

𝐫" = argmax
𝐫

Re(< 𝐭, 𝐫, �̅� >).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60



¡ Composition Relations:
𝑟$ 𝑥, 𝑦 ∧ 𝑟# 𝑦, 𝑧 ⇒ 𝑟% 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

§ Example: My mother’s husband is my father.
¡ 1-to-N Relations:
§ Example: If (ℎ, 𝑟, 𝑡") and (ℎ, 𝑟, 𝑡!) exist in the 

knowledge graph
¡ ComplEx share the same property with 

DistMult
§ Cannot model composition relations
§ Can model 1-to-N relations
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1. Different KGs may have drastically different 
relation patterns!

2. There is not a general embedding that works 
for all KGs, use the table to select models

3. Try TransE for a quick run if the target KG does 
not have much symmetric relations

4. Then use more expressive models, e.g., 
ComplEx, RotatE (TransE in Complex space)
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Sun et al, RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space, ICLR 2019

https://openreview.net/forum?id=HkgEQnRqYQ&noteId=HJlFFR7167


¡ Link prediction / Graph completion is one of 
the prominent tasks on knowledge graphs

¡ Introduce TransE / TransR / DistMult / 
ComplEx models with different embedding
space and expressiveness

¡ Next: Reasoning in Knowledge Graphs
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