UPCOMING

• Project proposals due **today** (10/19)
• Colab 2 due on **Thursday** (10/21)

Stanford CS224W: Setting-up GNN Prediction Tasks
COURSE FEEDBACK

• Thank you for providing thoughtful course feedback!
• Highlights: enjoying lectures, homeworks, Colabs, and responsiveness from teaching staff
• Improvements
 • Future homeworks: submitting PDF instead of writing on Gradescope, more coordination between TAs
 • OH: allowing students to join general room with 1:1 breakout rooms for TA & student
 • Lectures: more time for questions, slightly slower pacing
(5) How do we split our dataset into train / validation / test set?
Dataset Split: Fixed / Random Split

- **Fixed split:** We will split our dataset once
 - Training set: used for optimizing GNN parameters
 - Validation set: develop model/hyperparameters
 - Test set: held out until we report final performance

- **A concern:** sometimes we cannot guarantee that the test set will really be held out

- **Random split:** we will randomly split our dataset into training / validation / test
 - We report average performance over different random seeds
Why Splitting Graphs is Special

- Suppose we want to split an image dataset
 - Image classification: Each data point is an image
 - Here data points are independent
 - Image 5 will not affect our prediction on image 1
Splitting a graph dataset is different!

- **Node classification**: Each data point is a node
- Here **data points are NOT independent**
 - Node 5 will affect our prediction on node 1, because it will participate in message passing \(\rightarrow\) affect node 1’s embedding

What are our options?
Solution 1 (Transductive setting): The input graph can be observed in all the dataset splits (training, validation and test set).

We will only split the (node) labels

- **At training time**, we compute embeddings **using the entire graph**, and train **using node 1&2's labels**
- **At validation time**, we compute embeddings **using the entire graph**, and evaluate on node 3&4's labels
Solution 2 (Inductive setting): We break the edges between splits to get multiple graphs

- Now we have 3 graphs that are independent. Node 5 will not affect our prediction on node 1 any more
- At training time, we compute embeddings using the graph over node 1&2, and train using node 1&2’s labels
- At validation time, we compute embeddings using the graph over node 3&4, and evaluate on node 3&4’s labels
Transductive / Inductive Settings

- **Transductive setting**: training / validation / test sets are **on the same graph**
 - The dataset consists of one graph
 - The entire graph can be observed in all dataset splits, we only split the labels
 - Only applicable to **node / edge** prediction tasks

- **Inductive setting**: training / validation / test sets are **on different graphs**
 - The dataset consists of multiple graphs
 - Each split can only observe the graph(s) within the split. A successful model should **generalize to unseen graphs**
 - Applicable to **node / edge / graph** tasks
Example: Node Classification

- **Transductive node classification**
 - All the splits can observe the entire graph structure, but can only observe the labels of their respective nodes

- **Inductive node classification**
 - Suppose we have a dataset of 3 graphs
 - Each split contains an independent graph
Only the **inductive setting** is well defined for graph classification

- Because **we have to test on unseen graphs**
- Suppose we have a dataset of 5 graphs. Each split will contain independent graph(s).
Example: Link Prediction

- **Goal of link prediction**: predict missing edges
- **Setting up link prediction is tricky:**
 - Link prediction is an unsupervised / self-supervised task. We need to create the labels and dataset splits on our own
 - Concretely, we need to hide some edges from the GNN and let the GNN predict if the edges exist
Setting up Link Prediction

- For link prediction, we will split edges twice
- **Step 1:** Assign 2 types of edges in the original graph
 - **Message edges:** Used for GNN message passing
 - **Supervision edges:** Use for computing objectives
- After step 1:
 - Only message edges will remain in the graph
 - Supervision edges are used as supervision for edge predictions made by the model, will not be fed into GNN!
Setting up Link Prediction

- **Step 2:** Split edges into train / validation / test
- **Option 1:** Inductive link prediction split
 - Suppose we have a dataset of 3 graphs. Each inductive split will contain an independent graph

![Diagram showing three graphs: G1, G2, and G3, split into training, validation, and test sets.](image-url)
Setting up Link Prediction

- **Step 2**: Split edges into train / validation / test
- **Option 1**: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs. Each inductive split will contain an independent graph
 - In **train** or **val** or **test** set, each graph will have 2 types of edges: message edges + supervision edges
 - **Supervision edges** are not the input to GNN

![Diagram showing three graphs: G₁, G₂, and G₃, with edge types and sets labeled.](image-url)
Option 2: Transductive link prediction split:

- This is the default setting when people talk about link prediction
- Suppose we have a dataset of 1 graph
Option 2: Transductive link prediction split:

- By definition of “transductive”, the entire graph can be observed in all dataset splits
 - But since edges are both part of graph structure and the supervision, we need to hold out validation / test edges
 - To train the training set, we further need to hold out supervision edges for the training set

Next: we will show the exact settings
Option 2: Transductive link prediction split:

(1) At training time: Use **training message edges** to predict **training supervision edges**

(2) At validation time: Use **training message edges** & **training supervision edges** to predict **validation edges**

(3) At test time: Use **training message edges** & **training supervision edges** & **validation edges** to predict **test edges**
Summary: Transductive link prediction split:

- Note: Link prediction settings are tricky and complex. You may find papers do link prediction differently. But if you follow our reasoning steps, this should be the right way to implement link prediction.
- Luckily, we have full support in DeepSNAP and GraphGym.
GNN Training Pipeline

Implementation resources:
- **DeepSNAP** provides core modules for this pipeline
- **GraphGym** further implements the full pipeline to facilitate GNN design

[Diagram showing GNN training pipeline with stages for input graph, graph neural network, node embeddings, prediction head, predictions, evaluation metrics, and loss function.]

Dataset split

Evaluation metrics

Graph Neural Network

Node embeddings

Prediction head

Predictions

Labels

Loss function
Stanford CS224W: When Things Don’t Go As Planned
Data preprocessing is important:
- Node attributes can vary a lot!
 - E.g. probability ranges (0,1), but some inputs could have much larger range, say (−1000, 1000)
- Use normalization

Optimizer:
- ADAM is relatively robust to learning rate

Activation function
- ReLU activation function often works well
- Other alternatives: LeakyReLU, SWISH, rational activation
- No activation function at your output layer:
 - Include bias term in every layer
 - Embedding dimensions:
 - 32, 64 and 128 are often good starting points
Debugging Deep Networks

- **Debug issues:** Loss/accuracy not converging during training
 - Check pipeline (e.g. in PyTorch we need `zero_grad`)
 - Adjust hyperparameters such as learning rate
 - Pay attention to weight parameter `initialization`

- **Important for model development:**
 - **Overfit on (part of) training data:**
 - With a small training dataset, loss should be essentially close to 0, with an expressive neural network
 - If neural network cannot overfit a single data point, something is wrong
 - **Scrutinize loss function!**
 - **Scrutinize visualizations!**
Resources on Graph Neural Networks

GraphGym:
Easy and flexible implementation support based on PyTorch Geometric

PyG
DGL
GraphNets

PyTorch

TensorFlow

GNN framework:
Implements a variety of GNN architectures

Auto-differentiation framework
Resources on Graph Neural Networks

Tutorials and overviews:
- Relational inductive biases and graph networks (Battaglia et al., 2018)
- Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
- Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
- Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et al., 2017)
- Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling (Ying et al., 2018, Zhang et al., 2018)
- Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
- How powerful are graph neural networks (Xu et al., 2017)

Embedding nodes:
- Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
- Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
- Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
- Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
- Pre-training Graph Neural Networks (Hu et al., 2019)
- GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)
Stanford CS224W: How Expressive are Graph Neural Networks?
Idea: Aggregate Neighbors

- **Key idea:** Generate node embeddings based on local network neighborhoods.

![Input Graph Diagram]

![Target Node Diagram]
Idea: Aggregate Neighbors

- **Intuition:** Nodes aggregate information from their neighbors using neural networks.
How powerful are GNNs?

- Many GNN models have been proposed (e.g., GCN, GAT, GraphSAGE, design space).
- What is the expressive power (ability to distinguish different graph structures) of these GNN models?
- How to design a maximally expressive GNN model?
Many GNN models have been proposed:
- GCN, GraphSAGE, GAT, Design Space etc.

Different GNN models use different neural networks in the box.
GNN Model Example (1)

- **GCN (mean-pool)** [Kipf and Welling ICLR 2017]

Element-wise mean pooling + Linear + ReLU non-linearity
GNN Model Example (2)

- **GraphSAGE (max-pool)** [Hamilton et al. NeurIPS 2017]

 ![GraphSAGE Diagram](image)

 INPUT GRAPH

 TARGET NODE

 MLP + element-wise max-pooling
We use node same/different colors to represent nodes with same/different features.

- For example, the graph below assumes all the nodes share the same feature.

Key question: How well can a GNN distinguish different graph structures?
We specifically consider **local neighborhood structures** around each node in a graph.

- **Example:** Nodes 1 and 5 have different neighborhood structures because they have different node degrees.
Local Neighborhood Structures

- We specifically consider **local neighborhood structures** around each node in a graph.

 - **Example:** Nodes 1 and 4 both have the same node degree of 2. However, they still have **different** neighborhood structures because **their neighbors** have different node degrees.

Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.
Local Neighborhood Structures

- We specifically consider **local neighborhood structures** around each node in a graph.

- **Example:** Nodes 1 and 2 have the **same** neighborhood structure because they are symmetric within the graph.

Node 1 has neighbors of degrees 2 and 3. Node 2 has neighbors of degrees 2 and 3. And even if we go a step deeper to 2\(^{nd}\) hop neighbors, both nodes have the same degrees (Node 4 of degree 2).
Local Neighborhood Structures

- **Key question**: Can GNN node embeddings distinguish different node’s local neighborhood structures?
 - If so, when? If not, when will a GNN fail?

- **Next**: We need to understand how a GNN captures local neighborhood structures.
 - Key concept: Computational graph
In each layer, a GNN aggregates neighboring node embeddings.

A GNN generates node embeddings through a computational graph defined by the neighborhood.

Ex: Node 1’s computational graph (2-layer GNN)
Ex: Nodes 1 and 2’s computational graphs.
- **Ex:** Nodes 1 and 2’s computational graphs.
- But GNN only sees node features (not IDs):
A GNN will generate **the same embedding** for nodes 1 and 2 because:

- Computational graphs are the same.
- Node features (colors) are identical.

Note: GNN does not care about node ids, it just aggregates features vectors of different nodes.
In general, different local neighborhoods define different computational graphs.
Computational graphs are identical to **rooted subtree structures** around each node.

Rooted subtree structures
(defined by recursively unfolding neighboring nodes from the root nodes)
GNN’s node embeddings capture rooted subtree structures. Most expressive GNN maps different rooted subtrees into different node embeddings (represented by different colors).
Recall: Injective Function

- Function $f : X \rightarrow Y$ is **injective** if it maps different elements into different outputs.
- **Intuition:** f retains all the information about input.
Most expressive GNN should map subtrees to the node embeddings *injectively*.

Embedding space

Subtrees
Key observation: Subtrees of the same depth can be recursively characterized from the leaf nodes to the root nodes.
If each step of GNN’s aggregation can fully retain the neighboring information, the generated node embeddings can distinguish different rooted subtrees.

Fully retain neighboring information

2 neighbors ≠ 1 neighbor

Input features are uniform

(2 neighbors, 3 neighbors) ≠ (1 neighbor, 3 neighbors)
In other words, most expressive GNN would use an **injective neighbor aggregation** function at each step.
- Maps different neighbors to different embeddings.
How Expressive is a GNN?

- **Summary so far**
 - To generate a node embedding, GNNs use a computational graph corresponding to a **subtree** rooted around each node.

 ![Diagram](image)

 - GNN can fully distinguish different subtree structures if **every step of its neighbor aggregation** is injective.
Stanford CS224W: Designing the Most Powerful Graph Neural Network

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Key observation: Expressive power of GNNs can be characterized by that of neighbor aggregation functions they use.

- A more expressive aggregation function leads to a more expressive a GNN.
- Injective aggregation function leads to the most expressive GNN.

Next:

- Theoretically analyze expressive power of aggregation functions.
Observation: Neighbor aggregation can be abstracted as a function over a multi-set (a set with repeating elements).
Next: We analyze aggregation functions of two popular GNN models

- **GCN** (mean-pool) [Kipf & Welling, ICLR 2017]
 - Uses **element-wise** mean pooling over neighboring node features
 \[
 \text{Mean} \left(\{ x_u \}_{u \in N(v)} \right)
 \]

- **GraphSAGE** (max-pool) [Hamilton et al. NeurIPS 2017]
 - Uses **element-wise** max pooling over neighboring node features
 \[
 \text{Max} \left(\{ x_u \}_{u \in N(v)} \right)
 \]
Neighbor Aggregation: Case Study

- **GCN (mean-pool)** [Kipf & Welling ICLR 2017]
 - Take element-wise mean, followed by linear function and ReLU activation, i.e., \(\max(0, x) \).
- **Theorem** [Xu et al. ICLR 2019]
 - GCN’s aggregation function cannot distinguish different multi-sets with the same color proportion.

Failure case

- **Why?**
For simplicity, we assume node colors are represented by one-hot encoding.

Example If there are two distinct colors:

\[
\begin{align*}
\text{Orange} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{Blue} &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\end{align*}
\]

This assumption is sufficient to illustrate how GCN fails.
Neighbor Aggregation: Case Study

- **GCN (mean-pool)** [Kipf & Welling ICLR 2017]
 - **Failure case illustration**

![Diagram showing element-wise mean-pool](image-url)

- Linear + ReLU
 - \(\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} \)
 - \(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \)

- Linear + ReLU
 - \(\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} \)
 - \(\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \)

Same outputs!
Neighbor Aggregation: Case Study

- **GraphSAGE** *(max-pool)* [Hamilton et al. NeurIPS 2017]
 - Apply an MLP, then take *element-wise max*.
 - **Theorem** [Xu et al. ICLR 2019]
 - GraphSAGE’s aggregation *function cannot distinguish different multi-sets with the same set of distinct colors*.

Failure case

Why?
Neighbor Aggregation: Case Study

- **GraphSAGE (max-pool)** [Hamilton et al. NeurIPS 2017]
 - **Failure case illustration**

 The same outputs!

 Element-wise-max-pool

 For simplicity, assume the one-hot encoding after **MLP**.

 MLP
We analyzed the expressive power of GNNs.

Main takeaways:

- Expressive power of GNNs can be characterized by that of the neighbor aggregation function.
- Neighbor aggregation is a function over multi-sets (sets with repeating elements).
- GCN and GraphSAGE’s aggregation functions fail to distinguish some basic multi-sets; hence not injective.
- Therefore, GCN and GraphSAGE are not maximally powerful GNNs.
Our goal: Design maximally powerful GNNs in the class of message-passing GNNs.

This can be achieved by designing injective neighbor aggregation function over multisets.

Here, we design a neural network that can model injective multiset function.
Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed as:

\[\Phi \left(\sum_{x \in S} f(x) \right) \]

- \(S \) : multi-set

\[\Phi \left(f(\bullet) + f(\bullet) + f(\bullet) \right) \]
Proof Intuition: [Xu et al. ICLR 2019]

f produces one-hot encodings of colors. Summation of the one-hot encodings retains all the information about the input multi-set.

$$\Phi\left(\sum_{x \in S} f(x)\right)$$

Example:

$$\Phi\left[f\left(\begin{array}{c}
\text{One-hot} \\
1 \\
0 \\
\end{array}\right) + f\left(\begin{array}{c}
\text{One-hot} \\
0 \\
1 \\
\end{array}\right) + f\left(\begin{array}{c}
\text{One-hot} \\
0 \\
1 \\
\end{array}\right)\right]$$

\[
\begin{align*}
\text{One-hot} & \quad \begin{array}{c}
1 \\
0 \\
0 \\
\end{array} & + & \begin{array}{c}
0 \\
1 \\
0 \\
\end{array} & + & \begin{array}{c}
0 \\
1 \\
1 \\
\end{array} & = & \begin{array}{c}
1 \\
2 \\
\end{array}
\end{align*}
\]
How to model Φ and f in $\Phi(\sum_{x \in S} f(x))$?

We use a Multi-Layer Perceptron (MLP).

Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

- 1-hidden-layer MLP with sufficiently-large hidden dimensionality and appropriate non-linearity $\sigma(\cdot)$ (including ReLU and sigmoid) can approximate any continuous function to an arbitrary accuracy.

![Diagram of a Multi-Layer Perceptron (MLP)]
We have arrived at a neural network that can model any injective multiset function.

\[MLP_\Phi \left(\sum_{x \in S} MLP_f(x) \right) \]

In practice, MLP hidden dimensionality of 100 to 500 is sufficient.
Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

- Apply an MLP, element-wise \textbf{sum}, followed by another MLP.

$$MLP_{\Phi} \left(\sum_{x \in S} MLP_{f}(x) \right)$$

\textbf{Theorem} [Xu et al. ICLR 2019]

- GIN’s neighbor aggregation function is injective.
- No failure cases!
- GIN is THE most expressive GNN in the class of message-passing GNNs!
Full Model of GIN

- **So far:** We have described the neighbor aggregation part of GIN.

- We now describe the full model of GIN by relating it to **WL graph kernel** (traditional way of obtaining graph-level features).
 - We will see how GIN is a “neural network” version of the WL graph kernel.
Relation to WL Graph Kernel

Recall: Color refinement algorithm in WL kernel.

- **Given:** A graph G with a set of nodes V.
 - Assign an initial color $c^{(0)}(v)$ to each node v.
 - Iteratively refine node colors by

 $$c^{(k+1)}(v) = \text{HASH} \left(c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)} \right),$$

 where HASH maps different inputs to different colors.
 - After K steps of color refinement, $c^{(K)}(v)$ summarizes the structure of K-hop neighborhood.
Example of color refinement given two graphs

- Assign initial colors

- Aggregate neighboring colors
Color Refinement (2)

Example of color refinement given two graphs

- Aggregated colors:

- **Injectively** HASH the aggregated colors

HASH table: **Injective!**

<table>
<thead>
<tr>
<th>Color Combination</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>2</td>
</tr>
<tr>
<td>1,11</td>
<td>3</td>
</tr>
<tr>
<td>1,111</td>
<td>4</td>
</tr>
<tr>
<td>1,1111</td>
<td>5</td>
</tr>
</tbody>
</table>
Example of color refinement given two graphs

- Process continues until a stable coloring is reached
- Two graphs are considered **isomorphic** if they have the same set of colors.
GIN uses a neural network to model the injective HASH function.

\[c^{(k+1)}(v) = \text{HASH} \left(c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)} \right) \]

Specifically, we will model the injective function over the tuple:

\[(c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)}) \]

- **Root node features**
- **Neighboring node colors**
Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

\[(c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)}) \]

can be modeled as

\[
\text{MLP}_\Phi \left((1 + \epsilon) \cdot \text{MLP}_f (c^{(k)}(v)) + \sum_{u \in N(v)} \text{MLP}_f (c^{(k)}(u)) \right)
\]

where \(\epsilon \) is a learnable scalar.
The Complete GIN Model

- If input feature $c^{(0)}(v)$ is represented as one-hot, **direct summation is injective**.

Example: $\Phi \left(\begin{array}{c} 1 \\ 0 \\ + \\ 0 \\ + \\ 0 \\ = \begin{array}{c} 1 \\ 2 \end{array} \right)$

- We only need Φ to ensure the injectivity.

$$\text{GINConv} \left(c^{(k)}(v) \right) = \{ c^{(k)}(u) \}_{u \in N(v)} = \text{MLP}_\Phi \left((1 + \epsilon) \cdot c^{(k)}(v) + \sum_{u \in N(v)} c^{(k)}(u) \right)$$

This MLP can provide “one-hot” input feature for the next layer.

Root node features
Neighboring node features

Example:
- Φ takes one-hot input features and outputs a single feature.
- The GINConv function applies the MLP to each node feature, incorporating the root node feature and neighboring node features.
- The resulting feature can then be used as input for the next layer.
GIN’s node embedding updates

Given: A graph G with a set of nodes V.

- Assign an initial vector $c^{(0)}(v)$ to each node v.
- Iteratively update node vectors by

$$c^{(k+1)}(v) = \text{GINConv} \left(\left\{ c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)} \right\} \right),$$

Differentiable color HASH function

where \text{GINConv} maps different inputs to different embeddings.

- After K steps of GIN iterations, $c^{(K)}(v)$ summarizes the structure of K-hop neighborhood.
GIN can be understood as differentiable neural version of the WL graph Kernel:

<table>
<thead>
<tr>
<th>Update target</th>
<th>Update function</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL Graph Kernel</td>
<td>Node colors (one-hot)</td>
</tr>
<tr>
<td>GIN</td>
<td>Node embeddings (low-dim vectors)</td>
</tr>
</tbody>
</table>

Advantages of GIN over the WL graph kernel are:

- Node embeddings are **low-dimensional**; hence, they can capture the fine-grained similarity of different nodes.
- Parameters of the update function can be **learned for the downstream tasks**.
Because of the relation between GIN and the WL graph kernel, their expressive is exactly the same.

- If two graphs can be distinguished by GIN, they can be also distinguished by the WL kernel, and vice versa.

How powerful is this?

- WL kernel has been both theoretically and empirically shown to distinguish most of the real-world graphs [Cai et al. 1992].
- Hence, GIN is also powerful enough to distinguish most of the real graphs!
We design a neural network that can model injective multi-set function.

We use the neural network for neighbor aggregation function and arrive at GIN---the most expressive GNN model.

The key is to use element-wise sum pooling, instead of mean-/max-pooling.

GIN is closely related to the WL graph kernel.

Both GIN and WL graph kernel can distinguish most of the real graphs!
Failure cases for mean and max pooling:

(a) Mean and Max both fail
(b) Max fails
(c) Mean and Max both fail

Colors represent feature values

Ranking by discriminative power:

Input
sum - multiset
mean - distribution
max - set
Can expressive power of GNNs be improved?

There are basic graph structures that existing GNN framework cannot distinguish, such as difference in cycles.

GNNs’ expressive power can be improved to resolve the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]
Summary

- GNNs and connection to bijective functions on sets.

- Most powerful GNN is equivalent to WL graph isomorphism test.

- GIN is the most powerful GNN.
 - Sum aggregator is more powerful than mean is more powerful than max.