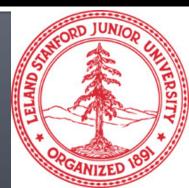
Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <a href="http://cs224w.Stanford.edu">http://cs224w.Stanford.edu</a>

# Stanford CS224W: Fast Neural Subgraph Matching and Counting

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

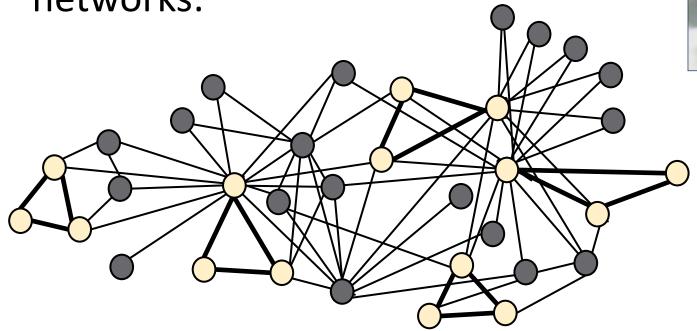


#### Announcements

- Colab 2 due today
  - Submissions close at midnight
- Colab 3 will be released today by 9PM on our course website
  - Due on Thursday 11/09 (2 weeks from today)
  - Submit written answers and code on Gradescope

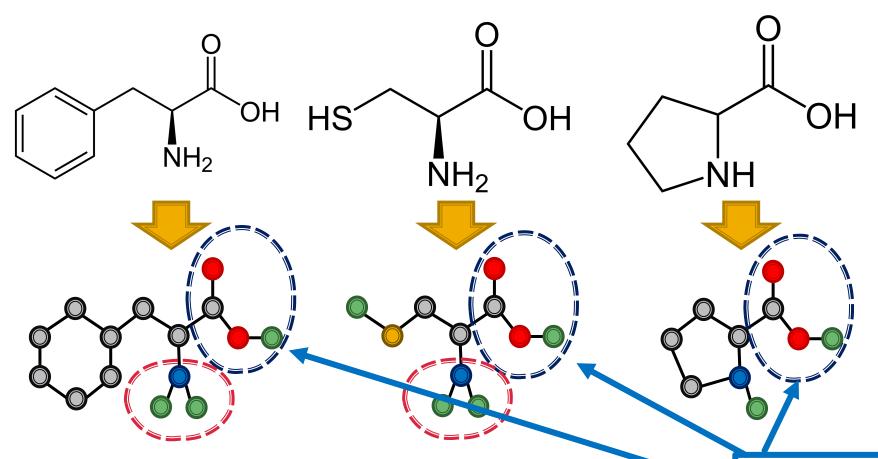
## Subgraphs

Subgraphs are the building blocks of networks:



 They have the power to characterize and discriminate networks

## **Building Blocks of Networks**



In many domains, recurring structural components determine the function or behavior of the graph

Carboxyl group = Acidic

#### Plan for Today

#### 1) Subgraphs and motifs

- Defining Subgraphs and Motifs
- Determining Motif Significance

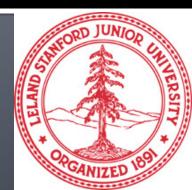


#### 2) Neural Subgraph Representations

#### 3) Mining Frequent Motifs

## Stanford CS224W: Subgraphs and Motifs

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu



## Definition: Subgraph (1)

#### Two ways to formalize "network building blocks"

• Given graph G = (V, E):

**Def 1. Node-induced subgraph:** Take subset of the **nodes** and all edges induced by the nodes:

- G' = (V', E') is a node induced subgraph iff
  - $V' \subseteq V$
  - $E' = \{(u, v) \in E \mid u, v \in V'\}$
  - G' is the subgraph of G induced by V'
- Alternate terminology: "induced subgraph"

## Definition: Subgraph (2)

#### Two ways to formalize "network building blocks"

• Given graph G = (V, E):

**Def 2. Edge-induced subgraph:** Take subset of the edges and all corresponding nodes

- G' = (V', E') is an edge induced subgraph iff
  - $E' \subseteq E$
  - $V' = \{v \in V \mid (v, u) \in E' \text{ for some } u\}$
- Alternate terminology: "non-induced subgraph" or just "subgraph"

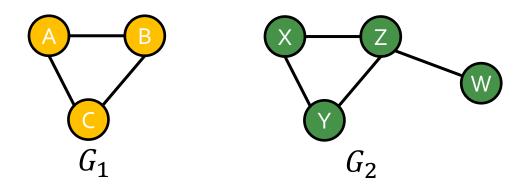
## Definition: Subgraph (3)

#### Two ways to formalize "network building blocks"

- The best definition depends on the domain!
  Examples:
  - Chemistry: Node-induced (functional groups)
  - Knowledge graphs: Often edge-induced (focus is on edges representing logical relations)

## Definition: Subgraph (4)

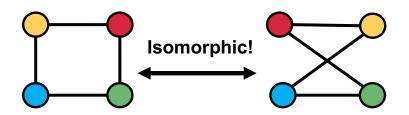
- The preceding definitions define subgraphs when  $V' \subseteq V$  and  $E' \subseteq E$ , i.e. nodes and edges are taken from the original graph G.
- What if V' and E' come from a totally different graph? Example:

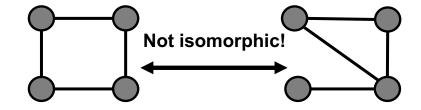


• We would like to say that  $G_1$  is "contained in"  $G_2$ 

#### Graph Isomorphism

- Graph isomorphism problem: Check whether two graphs are identical:
  - $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  are **isomorphic** if there exists a bijection  $f \colon V_1 \to V_2$  such that  $(u, v) \in E_1$  iff  $(f(u), f(v)) \in E_2$ 
    - f is called the isomorphism:

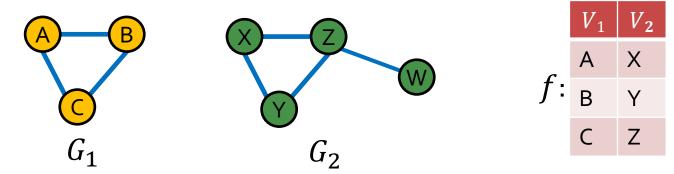




 We do not know if graph isomorphism is NP-hard, nor is any polynomial algorithm found for solving graph isomorphism.

#### Subgraph Isomorphism

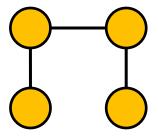
- $G_2$  is subgraph-isomorphic to  $G_1$  if some subgraph of  $G_2$  is isomorphic to  $G_1$ 
  - We also commonly say  $G_1$  is a subgraph of  $G_2$
  - We can use either the node-induced or edge-induced definition of subgraph
  - This problem is NP-hard

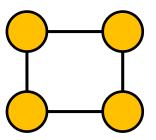


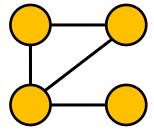
A-B-C matches with X-Y-Z: There is a subgraph isomorphism between G1 and G2.

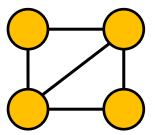
## Case Example of Subgraphs (1)

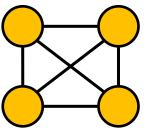
All non-isomorphic, connected, undirected graphs of size 4





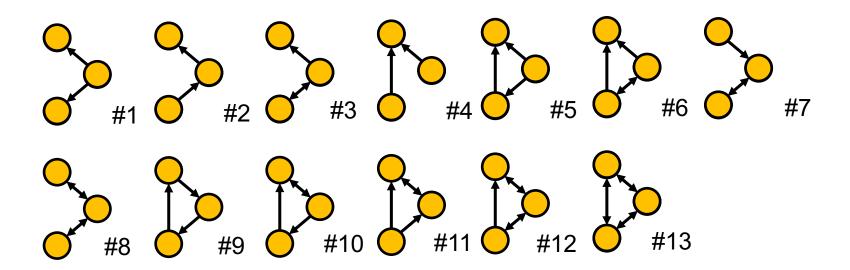






## Case Example of Subgraphs (2)

## All non-isomorphic, connected, directed graphs of size 3

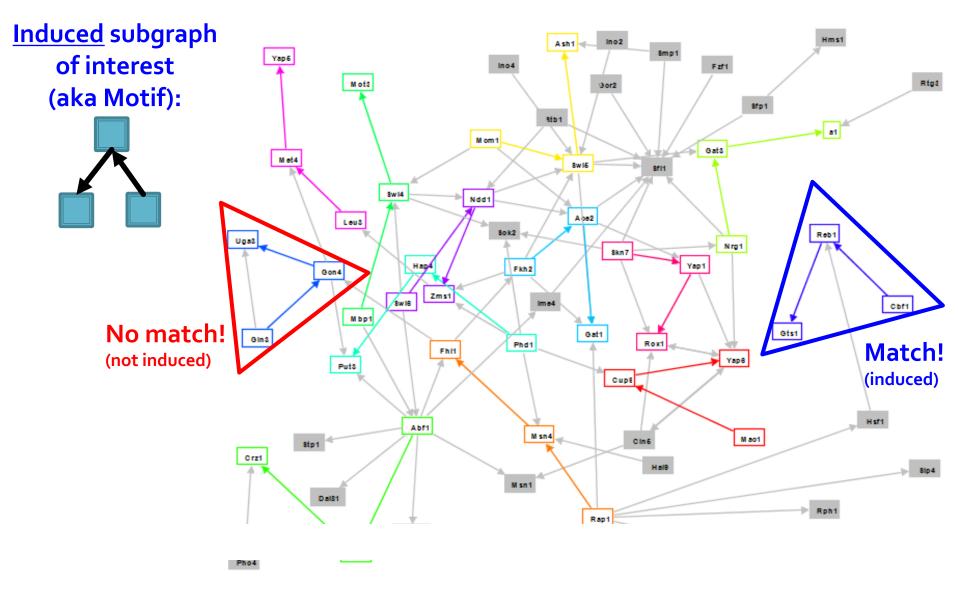


#### **Network Motifs**

- Network motifs: "recurring, significant patterns of interconnections"
- How to define a network motif:
  - Pattern: Small (node-induced) subgraph
  - Recurring: Found many times, i.e., with high frequency How to define frequency?
  - Significant: More frequent than expected, i.e., in randomly generated graphs?

How to define random graphs?

## Motifs: Induced Subgraphs



#### Why Do We Need Motifs?

#### Motifs:

- Help us understand how graphs work
- Help us make predictions based on presence or lack of presence in a graph dataset

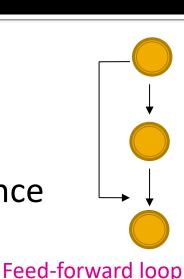
#### Examples:

Feed-forward loops: Found in networks of neurons, where they neutralize "biological noise"

Parallel loops: Found in food webs

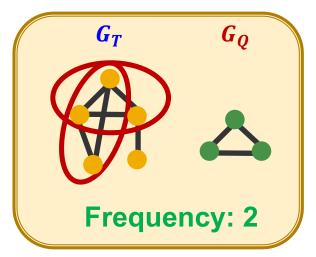
Single-input modules: Found in gene control networks

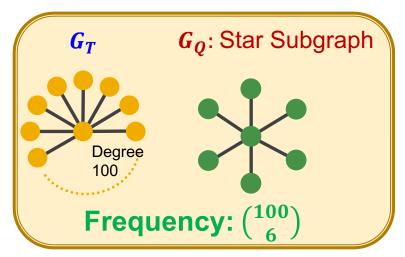
Single-input module



## Subgraph Frequency (1)

- Let  $G_Q$  be a small graph and  $G_T$  be a target graph dataset.
- Graph-level Subgraph Frequency Definition Frequency of  $G_Q$  in  $G_T$ : number of unique subsets of nodes  $V_T$  of  $G_T$  for which the subgraph of  $G_T$ induced by the nodes  $V_T$  is isomorphic to  $G_Q$

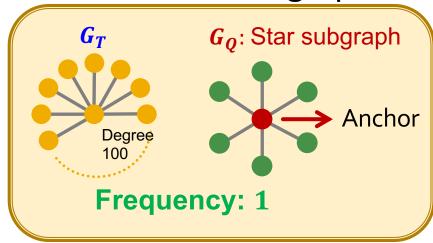




## Subgraph Frequency (2)

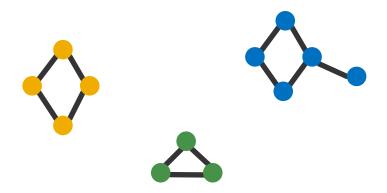
- Let  $G_Q$  be a small graph, v be a node in  $G_Q$  (the "anchor") and  $G_T$  be a target graph dataset.
- Node-level Subgraph Frequency Definition: The number of nodes u in  $G_T$  for which some subgraph of  $G_T$  is isomorphic to  $G_Q$  and the isomorphism maps node u to v
- Let  $(G_O, v)$  be called a **node-anchored** subgraph
- Robust to outliers





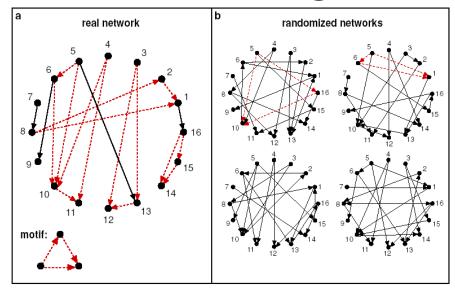
## Subgraph Frequency (3)

- What if the dataset contains multiple graphs, and we want to compute frequency of subgraphs in the dataset?
- Solution: Treat the dataset as a giant graph  $G_T$  with disconnected components corresponding to individual graphs.



## **Defining Motif Significance**

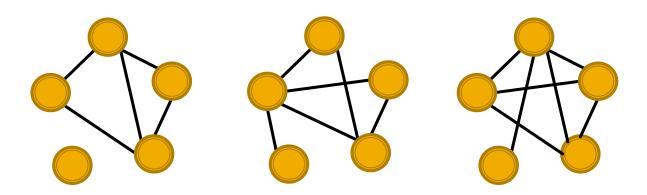
- To define significance, we need to have a null-model (i.e., point of comparison).
- Key idea: Subgraphs that occur in a real network much more often than in a random network have functional significance.



### **Defining Random Graphs**

#### Erdős-Rényi (ER) random graphs:

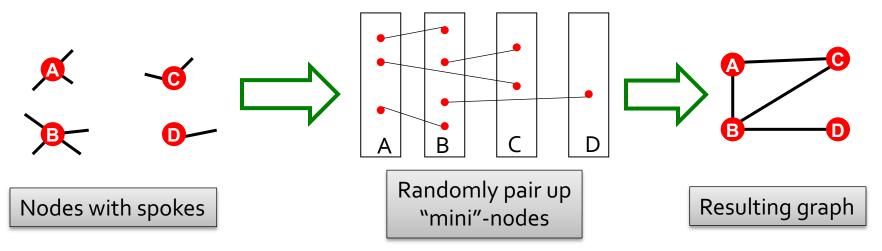
- $G_{n,p}$ : undirected graph on n nodes where each edge (u,v) appears i.i.d. with probability p
  - How to generate the graph: Create n nodes, for each pair of nodes (u, v) flip a biased coin with bias p
- Generated graph is a result of a random process:



Three random graphs drawn from  $G_{5,0.6}$ 

## New Model: Configuration Model

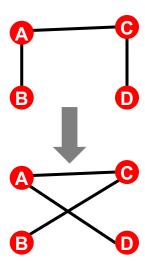
- Goal: Generate a random graph with a given degree sequence  $k_1, k_2, ... k_N$
- Useful as a "null" model of networks:
  - We can compare the real network  $G^{\text{real}}$  and a "random"  $G^{\text{rand}}$  which has the same degree sequence as  $G^{\text{real}}$
- Configuration model:



We ignore double edges and self-loops when creating the final graph

## Alternative for Spokes: Switching

- Start from a given graph G Q is a constant parameter
- Repeat the switching step  $Q \cdot |E|$  times:
  - Select a pair of edges  $A \rightarrow B$ ,  $C \rightarrow D$  at random
  - **Exchange** the endpoints to give  $A \rightarrow D$ ,  $C \rightarrow B$ 
    - Exchange edges only if no multiple edges or self-edges are generated



- Result: A randomly rewired graph:
  - Same node degrees, randomly rewired edges
- Q is chosen large enough (e.g., Q=100) for the process to converge

## **Motif Significance Overview**

- Intuition: Motifs are overrepresented in a network when compared to random graphs:
- Step 1: Count motifs in the given graph ( $G^{\text{real}}$ )
- Step 2: Generate random graphs with similar statistics (e.g. number of nodes, edges, degree sequence), and count motifs in the random graphs
- Step 3: Use statistical measures to evaluate how significant is each motif
  - Use Z-score

#### **Z-score for Statistical Significance**

•  $Z_i$  captures statistical significance of motif i:

$$Z_i = (N_i^{\text{real}} - \overline{N}_i^{\text{rand}})/\text{std}(N_i^{\text{rand}})$$

- $N_i^{\text{real}}$  is #(motif i) in graph  $G^{\text{real}}$
- $\overline{N}_i^{\text{rand}}$  is average #(motifs i) in random graph instances
- Network significance profile (SP):

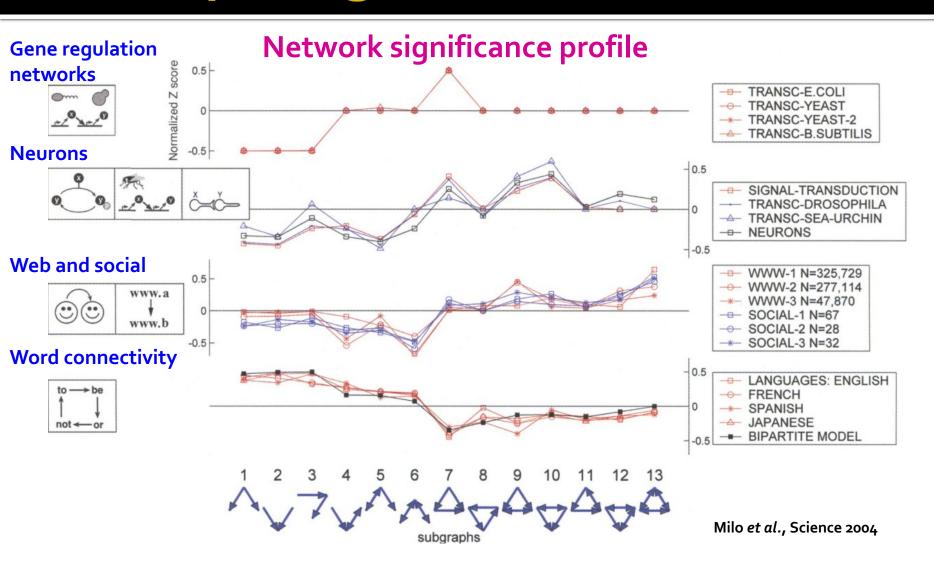
$$SP_i = Z_i / \sqrt{\sum_j Z_j^2}$$

- SP is a vector of normalized Z-scores
- The dimension depends on number of motifs considered
- SP emphasizes relative significance of subgraphs:
  - Important for comparison of networks of different sizes
  - Generally, larger graphs display higher Z-scores

#### Significance Profile

- For each subgraph:
  - z-score metric is capable of classifying the subgraph "significance":
    - Negative values indicate under-representation
    - Positive values indicate over-representation
- We create a network significance profile:
  - A feature vector with values for all subgraph types
- Next: Compare profiles of different graphs with random graphs:
  - Regulatory network (gene regulation)
  - Neuronal network (synaptic connections)
  - World Wide Web (hyperlinks between pages)
  - Social network (friendships)
  - Language networks (word adjacency)

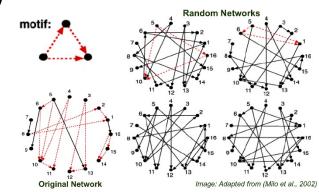
## Example Significance Profile



Networks from the same domain have similar significance profiles

#### **Summary: Detecting Motifs**

- Count subgraphs i in  $G^{\text{real}}$
- Count subgraphs i in random graphs  $G^{\text{rand}}$ :
  - Null model: Each  $G^{rand}$  has the same #(nodes), #(edges) and degree distribution as  $G^{real}$
- Assign Z-score to motif i:
  - $Z_i = (N_i^{\text{real}} \overline{N}_i^{\text{rand}})/\text{std}(N_i^{\text{rand}})$
  - High Z-score: Subgraph i is a network motif of G



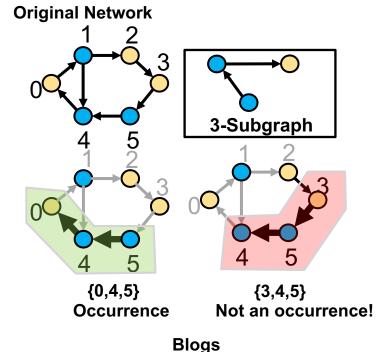
#### Variations on the Motif Concept

#### Extensions:

- Directed and undirected
- Colored and uncolored
- Temporal and static motifs

#### Variations on the concept:

- Different frequency concepts
- Different significance metrics
- Under-Representation (anti-motifs)
- Different null models







Conservative

Liberal

Motif **C** Motif **D** 

Overrepresentation of **C** much larger than **D** 

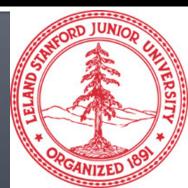
E is overrepresented F is underrepresented

#### **Summary: Motifs**

- Subgraphs and motifs are the building blocks of graphs
  - Subgraph isomorphism and counting are NP-hard
- Understanding which motifs are frequent or significant in a dataset gives insight into the unique characteristics of that domain
- Use random graphs as null model to evaluate the significance of motif via Z-score

## Stanford CS224W: Neural Subgraph Matching

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



#### Plan for Today

#### 1) Subgraphs and Motifs

- Defining Subgraphs and Motifs
- Determining Motif Significance

#### 2) Neural Subgraph Representations



#### 3) Mining Frequent Motifs

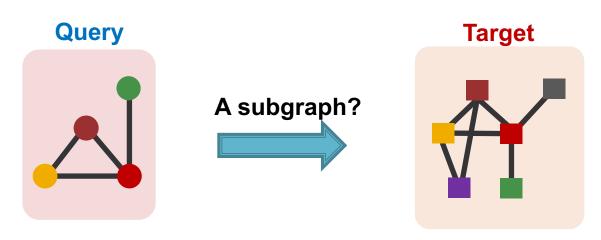
#### Subgraph Matching

#### **Given:**

- Large target graph (can be disconnected)
- Query graph (connected)

#### **Decide:**

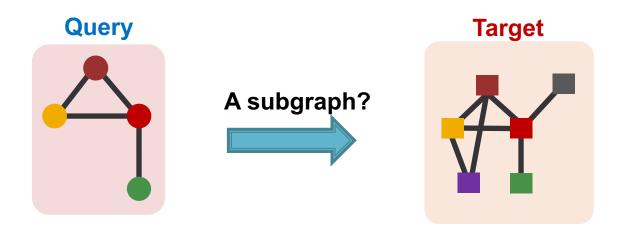
Is a query graph a subgraph in the target graph?



Node colors indicate the correct mapping of the nodes

#### Isomorphism as an ML Task

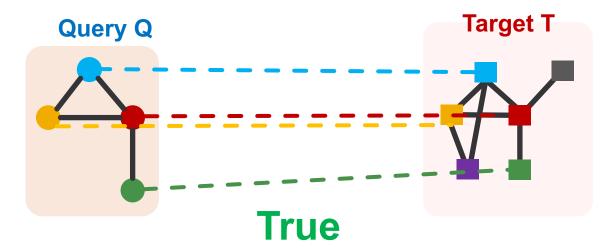
- Large target graph (can be disconnected)
- Query graph (has to be connected)
- Use GNN to predict subgraph isomorphism:



 Intuition: Exploit the geometric shape of embedding space to capture the properties of subgraph isomorphism

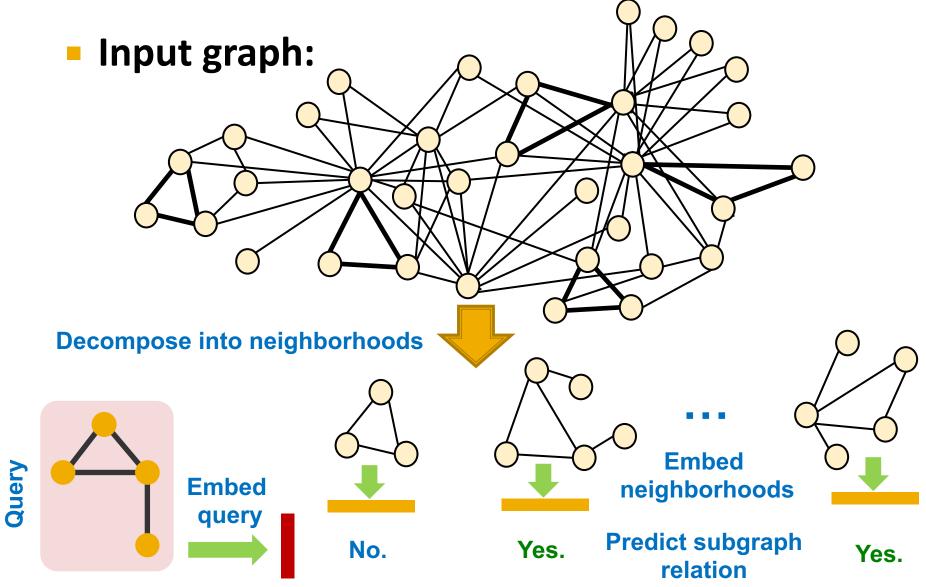
#### Task Setup

 Consider a binary prediction: Return True if query is isomorphic to a subgraph of the target graph, else return False



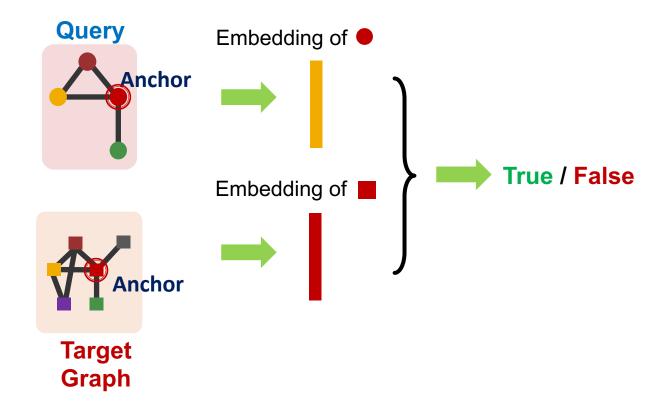
Finding node correspondences between Q and T is another challenging problem, which will not be covered in this lecture.

# Overview of the Approach



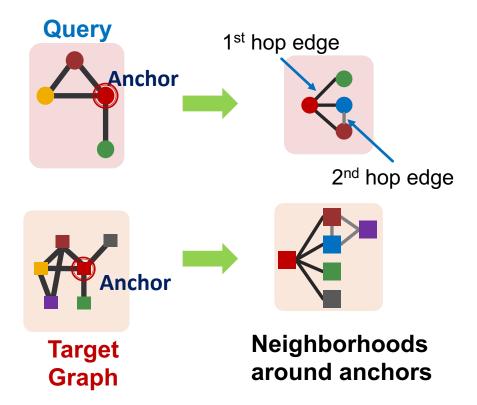
#### Neural Architecture for Subgraphs (1)

(1) We are going to work with node-anchored definitions:



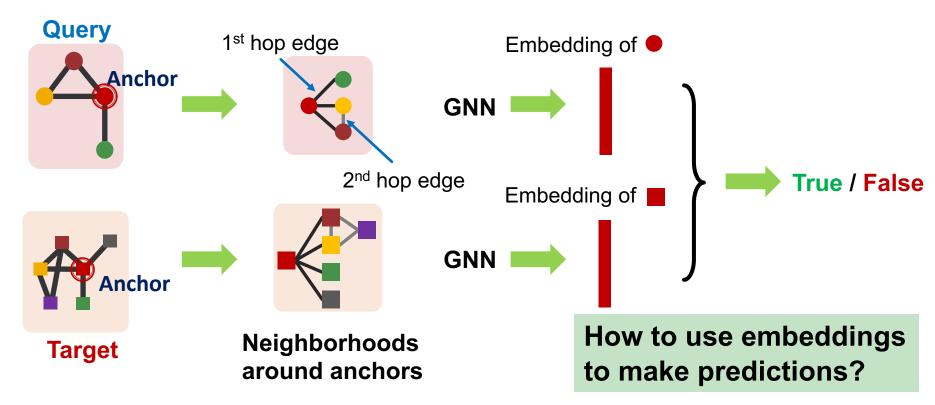
#### Neural Architecture for Subgraphs (2)

(2) We are going to work with node-anchored neighborhoods:



#### Neural Architecture for Subgraphs (3)

- Use GNN to obtain representations of u and v
- Predict if node u's neighborhood is isomorphic to node v's neighborhood:



# Why Anchor?

- Recall node-level frequency definition: The number of nodes u in  $G_T$  for which some subgraph of  $G_T$  is isomorphic to  $G_Q$  and the isomorphism maps u to v
- We can compute **embeddings** for u and v using GNN
- Use embeddings to decide if neighborhood of  $oldsymbol{u}$  is isomorphic to subgraph of neighborhood of  $oldsymbol{v}$
- We not only predict if there exists a mapping, but also a identify corresponding nodes (u and v)!

#### Decomposing $G_T$ into Neighborhoods

#### • For each node in $G_T$ :

- Obtain a k-hop neighborhood around the anchor
- Can be performed using breadth-first search (BFS)
- The depth k is a hyper-parameter (e.g. 3)
  - Larger depth results in more expensive model
- Same procedure applies to  $G_Q$  to obtain the neighborhoods
- We embed the neighborhoods using a GNN
  - By computing the embeddings for the anchor nodes in their respective neighborhoods

# <u>Idea</u>: Order Embedding Space

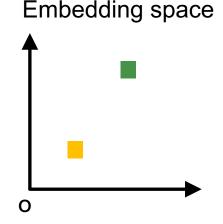
Map graph A to a point  $z_A$  into a high-dimensional (e.g. 64-dim) embedding space, such that  $z_A$  is non-negative in all dimensions Capture partial ordering (transitivity):

We use ■ ≼ ■ to denote that the embedding of ■ is less than or equal to ■ in all of its

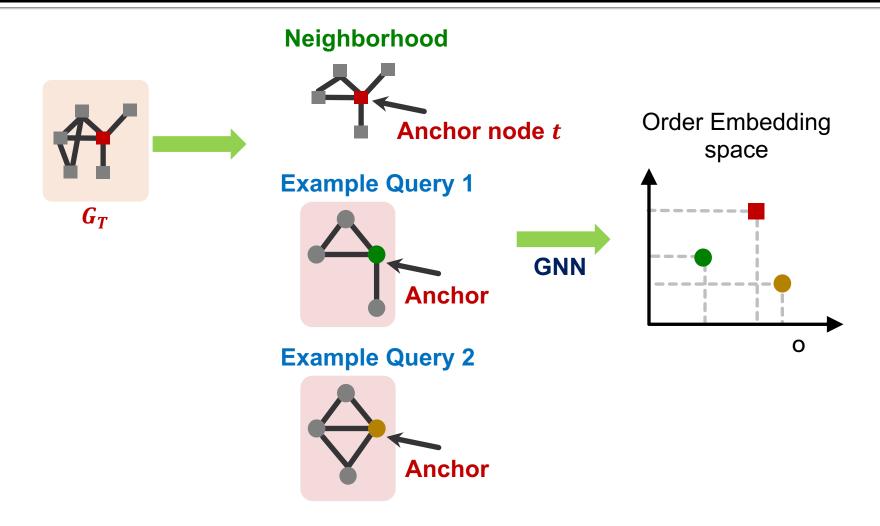
coordinates

If ■ ≼ ■, ■ ≼ ■ then ■ ≼ ■

Intuition: subgraph is to the lower-left of its supergraph (in 2D)



# Subgraph Order Embedding Space



By comparing the embedding, we find that  $\bullet \leq \blacksquare$  but  $\bullet \leq \blacksquare$ , Indicating that only query 1 is a subgraph of the neighborhood of t

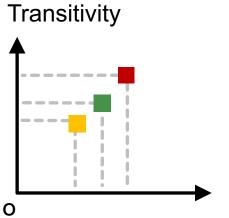
# Why Order Embedding Space?

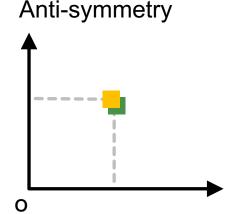
- Subgraph isomorphism relationship can be nicely encoded in order embedding space
  - Transitivity: If  $G_1$  is a subgraph of  $G_2$ ,  $G_2$  is a subgraph of  $G_3$ , then  $G_1$  is a subgraph of  $G_3$
  - Anti-symmetry: If  $G_1$  is a subgraph of  $G_2$ , and  $G_2$  is a subgraph of  $G_1$ , then  $G_1$  is isomorphic to  $G_2$
  - Closure under intersection: The trivial graph of 1 node is a subgraph of any graph
  - All properties have their counter-parts in the order embedding space

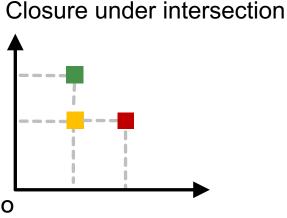
# Why Order Embedding Space?

- Subgraph isomorphism relationship can be nicely encoded in order embedding space
  - Transitivity: If ≼■, ■≼■ then ■≼■
  - Trivial graph

    Anti-symmetry: If ≤ and ≤ , then = with one node
  - Closure under intersection: The 0 embedding satisfies 0 ≤
     for any order embedding since all dimensions of order embedding are non-negative
    - Corollary: If ■≤■ and ■≤■ then has a valid embedding







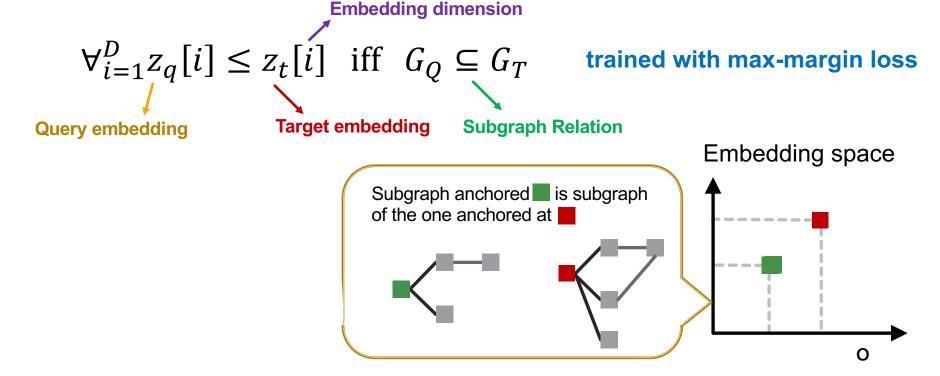
0 embedding:

#### Order Constraint (1)

- We use a GNN to learn to embed neighborhoods and preserve the order embedding structure
- What loss function should we use, so that the learned order embedding reflects the subgraph relationship?
- We design loss functions based on the order constraint:
  - Order constraint specifies the ideal order embedding property that reflects subgraph relationships

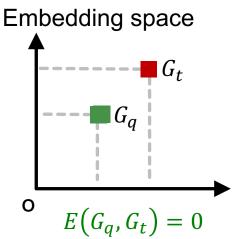
#### Order Constraint (2)

We specify the order constraint to ensure that the subgraph properties are preserved in the order embedding space

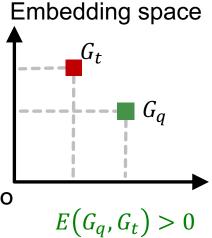


#### Loss Function: Order Constraint

- GNN Embeddings are learned by minimizing a maxmargin loss
- Define  $E(G_q, G_t) = \sum_{i=1}^D (\max(0, z_q[i] z_t[i]))^2$  as the "margin" between graphs  $G_q$  and  $G_t$



According to the order embedding,  $G_a$  is a subgraph of  $G_t$ !



According to the order embedding,  $G_q$  is **not** a subgraph of  $G_t$ !

#### **Loss Function**

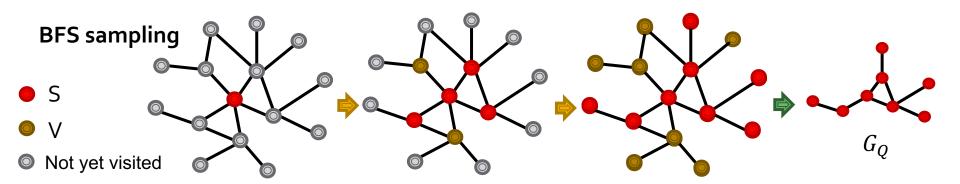
- Embeddings are learned by minimizing a maxmargin loss
- Let  $E(G_q, G_t) = \sum_{i=1}^{D} (\max(0, z_q[i] z_t[i]))^2$  be the "margin" between graphs  $G_q$  and  $G_t$
- To learn the correct order embeddings, we want to learn  $z_q$ ,  $z_t$  such that
  - $E(G_q, G_t) = 0$  when  $G_q$  is a subgraph of  $G_t$
  - $E(G_q, G_t) > 0$  when  $G_q$  is not a subgraph of  $G_t$

# Training Neural Subgraph Matching

- To learn such embeddings, construct training examples  $(G_q, G_t)$  where half the time,  $G_q$  is a subgraph of  $G_t$ , and the other half, it is not
- Train on these examples by minimizing the following max-margin loss:
  - For positive examples: Minimize  $E(G_q, G_t)$  when  $G_q$  is a subgraph of  $G_t$
  - For negative examples: Minimize  $\max(0, \alpha - E(G_q, G_t))$ 
    - Max-margin loss prevents the model from learning the degenerate strategy of moving embeddings further and further apart forever

# Training Example Construction

- Need to generate training queries  $G_O$  and targets  $G_T$  from the dataset G
- Get  $G_T$  by choosing a random anchor v and taking all nodes in G within distance K from v to be in  $G_T$
- Positive examples: Sample induced subgraph  $G_Q$  of  $G_T$ . Use BFS sampling:
  - Initialize  $S = \{v\}, V = \emptyset$
  - Let N(S) be all neighbors of nodes in S. At every step, sample 10% of the nodes in  $N(S) \setminus V$ , put them in S. Put the remaining nodes of N(S) in V.
  - After K steps, take the subgraph of G induced by S anchored at q
- Negative examples ( $G_Q$  not subgraph of  $G_T$ ): "corrupt"  $G_Q$  by adding/removing nodes/edges so it's no longer a subgraph.



# Training Details

#### How many training examples to sample?

- At every iteration, we sample new training pairs
- Benefit: Every iteration, the model sees different subgraph examples
- Improves performance and avoids overfitting since there are exponential number of possible subgraphs to sample from
- How deep is the BFS sampling?
  - A hyper-parameter that trades off runtime and performance
  - Usually use 3-5, depending on size of the dataset

#### Subgraph Predictions on New Graphs

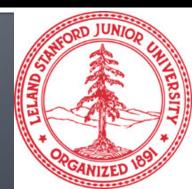
- **Given**: query graph  $G_q$  anchored at node q, target graph  $G_t$  anchored at node t
- Goal: output whether the query is a nodeanchored subgraph of the target
- Procedure:
  - If  $E(G_q, G_t) < \epsilon$ , predict "True"; else "False"
  - ullet is a hyper-parameter
- To check if  $G_Q$  is isomorphic to a subgraph of  $G_T$ , repeat this procedure for all  $q \in G_Q$ ,  $t \in G_T$ . Here  $G_q$  is the neighborhood around node  $q \in G_Q$ .

### Summary: Neural Subgraph Matching

- Neural subgraph matching uses a machine learningbased approach to learn the NP-hard problem of subgraph isomorphism
  - Given query and target graph, it embeds both graphs into an order embedding space
  - Using these embeddings, it then computes  $E(G_q, G_t)$  to determine whether query is a subgraph of the target
- Embedding graphs within an order embedding space allows subgraph isomorphism to be efficiently represented and tested by the relative positions of graph embeddings

# Stanford CS224W: Finding Frequent Subgraphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



# Plan for Today

#### 1) Subgraphs and Motifs

- Defining Subgraphs and Motifs
- Determining Motif Significance

#### 2) Neural Subgraph Representations

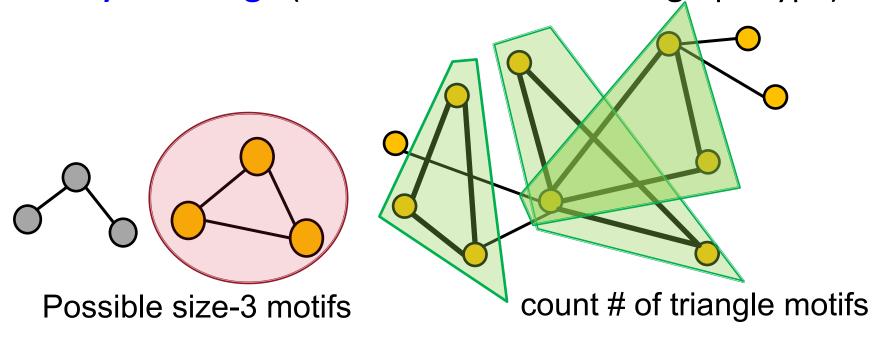
3) Mining Frequent Subgraphs



# Intro: Finding Frequent Subgraphs

- Generally, finding the most frequent size-k motifs requires solving two challenges:
  - 1) Enumerating all size-k connected subgraphs

2) Counting #(occurrences of each subgraph type)



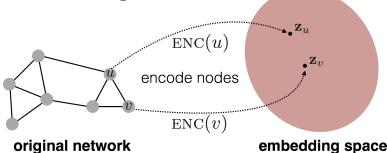
# Why is it Hard?

- Just knowing if a certain subgraph exists in a graph, is a hard computational problem!
  - Subgraph isomorphism is NP-complete
- Computation time grows exponentially as the size of the subgraphs increases
  - Feasible motif size for traditional methods is relatively small (3 to 7)

#### Solution with Representation Learning

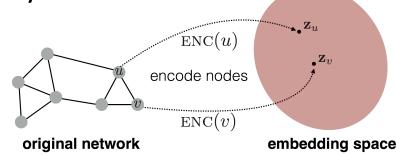
- Finding frequent subgraph patterns is computationally hard
  - Combinatorial explosion of number of possible patterns
  - Counting subgraph frequency is NP-hard
- Representation learning can tackle these challenges:
  - Combinatorial explosion → organize the search space

Subgraph isomorphism -> prediction using GNN



#### Solution with Representation Learning

- Representation learning can tackle these challenges:
  - 1) Counting #(occurrences of each subgraph type)
    - Solution: Use GNN to "predict" the frequency of the subgraph.
  - **2)** Enumerating all size-k connected subgraphs
    - Solution: Don't enumerate subgraphs but construct a size-k subgraph incrementally
      - Note: We are only interested in high frequency subgraphs

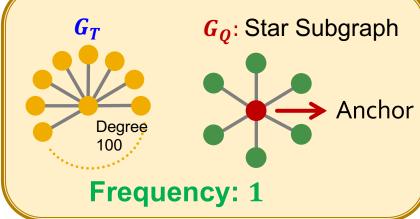


#### Problem Setup: Frequent Motif Mining

- Target graph (dataset)  $G_T$ , size parameter k
- Desired number of results r
- Goal: Identify, among all possible graphs of k nodes, the r graphs with the highest frequency in  $G_T$ .
- We use the node-level definition:

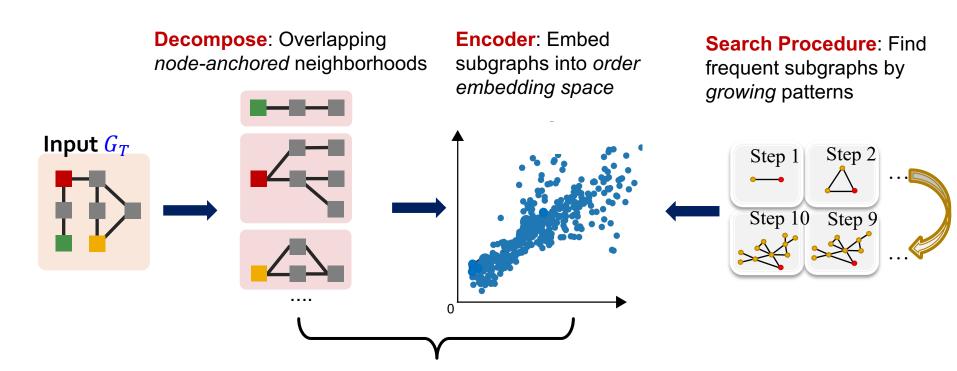
The number of nodes u in  $G_T$  for which some subgraph of  $G_T$  is isomorphic to  $G_Q$  and the

isomorphism maps u to v.



#### **SPMiner: Overview**

#### **SPMiner**: A neural model to identify frequent motifs



Same as neural subgraph matching

## SPMiner: Key Idea

- Decompose input graph  $G_T$  into neighborhoods
- Embed neighborhoods into an order embedding space
- Key benefit of order embedding: We can quickly "predict" the frequency of a given subgraph  $G_Q$

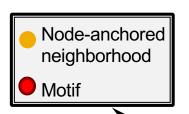
# **Motif Frequency Estimation**

- Given: Set of subgraphs ("node-anchored neighborhoods")  $G_{N_i}$  of  $G_T$  (sampled randomly)
- **Key idea:** Estimate frequency of  $G_Q$  by counting the number of  $G_{N_i}$  such that their embeddings  $Z_{N_i}$  satisfy  $Z_Q \leq Z_{N_i}$ 
  - This is a consequence of the order embedding space property

# Embedding Space

#### "Super-graph" region:

All points in the red shaded region correspond to neighborhoods in  $G_T$  that contain  $G_Q$ 

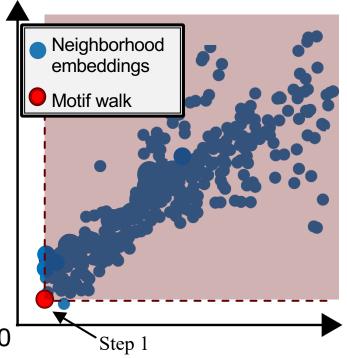


Benefit: Super-fast subgraph frequency counting!

#### SPMiner Search Procedure (1)

**Initial step**: Start by randomly picking a starting node u in the target graph  $G_T$ . Set  $S = \{u\}$ .

#### Walk in Embedding Space



Each point in the shaded region represents a neighborhood in target graph that contains the motif pattern

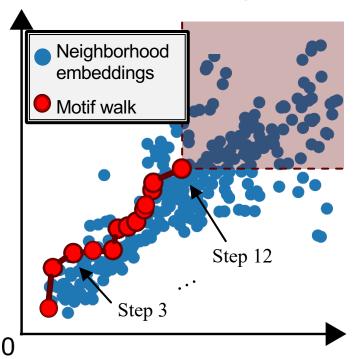


Initially, all neighborhoods contain the trivial subgraph

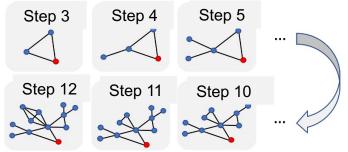
#### SPMiner Search Procedure (2)

**Iteratively**: Grow a motif by iteratively choosing a neighbor in  $G_T$  of a node in S and add that node to S. We grow the motif S to find **larger frequent** motifs!

#### Walk in Embedding Space



- Small motifs grow by adding neighbors
- Their embeddings correspond to red points on the left

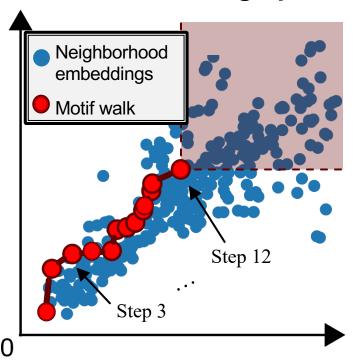


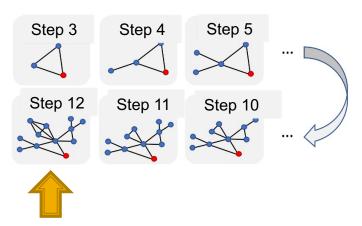
**Goal**: maximize number of neighborhoods in red shaded area after k step!

#### SPMiner Search Procedure (3)

**Termination**: Upon reaching a desired motif size, take the subgraph of the target graph induced by S.

#### Walk in Embedding Space





#### **Identified frequent motif of size 12:**

It has the largest number of blue points in super-graph region, among all embeddings of possible subgraphs of size 12

#### SPMiner Search Procedure (4)

#### How to pick which node to add at each step?

**Def: Total violation** of a subgraph *G*:

the number of neighborhoods that do not contain G.

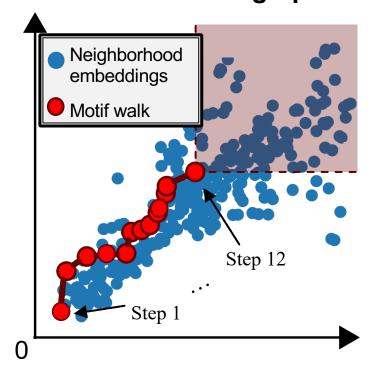
- The number of neighborhoods  $G_{N_i}$  that do **not** satisfy  $z_0 \leq z_{N_i}$
- Minimizing total violation = maximizing frequency

#### **Greedy strategy (heuristic):**

At every step, add the node that results in the smallest

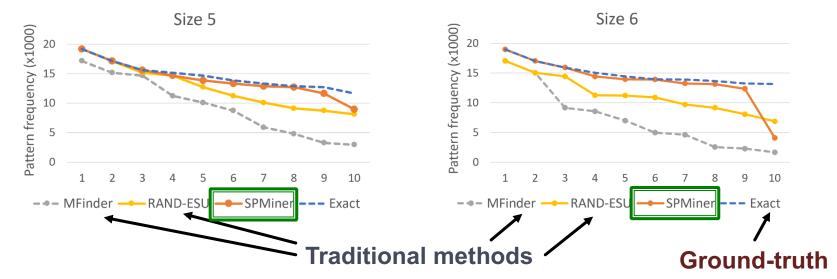
#### total violation

#### Walk in Embedding Space



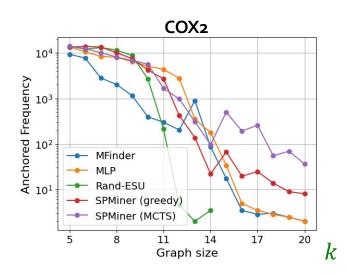
#### **Results: Small Motifs**

- Ground-truth: Find most frequent 10 motifs in dataset by brute-force exact enumeration (expensive)
- Question: Can the model identify frequent motifs?
- Result: The model identifies 9 and 8 of the top 10 motifs, respectively.

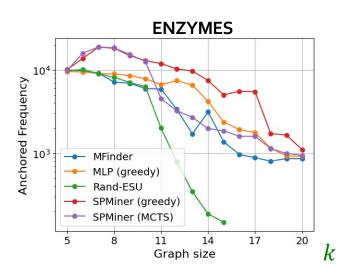


## **Experiments: Large motifs**

- Question: How do the frequencies of the identified motif compare?
- Result: SPMiner identifies motifs that appear
   10-100x more frequently than the baselines



Molecule dataset



Protein dataset

#### Summary

- Subgraphs and motifs are important concepts that provide insights into the structure of graphs. Their frequency can be used as features for nodes/graphs.
- We covered neural approaches to prediction subgraph isomorphism relationship.
- Order embeddings have desirable properties and can be used to encode subgraph relations
- Neural embedding-guided search in order embedding space can enable ML model to identify motifs much more frequent than existing methods