
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ Homework 3 due today
§ Late submissions accepted until end of day

Monday, 11/20
¡ Colab 5 released on course website
§ Due Tuesday, 12/05

¡ Regrade request deadlines
§ Homework 2: Saturday, 11/18

§ Solutions and statistics released on Ed

§ Regrade request policy update on Ed

11/16/23 Joshua Robinson, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

¡ Recommender systems:
§ Amazon
§ YouTube
§ Pinterest
§ Etc.

¡ ML tasks:
§ Recommend items

(link prediction)
§ Classify users/items

(node classification)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 3

Users
100M~1B

Products/Videos
10M ~ 1B

Bought/saw

¡ Social networks:
§ Facebook
§ Twitter
§ Instagram
§ Etc.

¡ ML tasks:
§ Friend recommendation

(link-level)
§ User property prediction

(node-level)
11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Users
300M~3B

Friend/follow

¡ Academic graph:
§ Microsoft Academic Graph

¡ ML tasks:
§ Paper categorization

(node classification)

§ Author collaboration
recommendation

§ Paper citation
recommendation
(link prediction)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Paper

Author

Institution

writes

affiliated with

cites

Papers
120M

Authors
120M

¡ Knowledge Graphs (KGs):
§ Wikidata
§ Freebase

¡ ML tasks:
§ KG completion
§ Reasoning

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

is a

Geoffrey Hinton

Person

affiliated
with

University of
Toronto

Canada

located in

Paul Martin

graduated from

born in

UK
Graduated
from

King’s College,
Cambridge

Entities
80M—90M

¡ Large-scale:
§ #nodes ranges from 10M to 10B.
§ #edges ranges from 100M to 100B.

¡ Tasks
§ Node-level: User/item/paper classification.
§ Link-level: Recommendation, completion.

¡ Todays’ lecture
§ Scale up GNNs to large graphs!

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

¡ Recall: How we usually train an ML model on
large data (𝑵 = #data is large)

¡ Objective: Minimize the averaged loss

ℓ 𝜽 =
1
𝑁
'
!"#

$%&

ℓ! 𝜽

§ 𝜽: model parameters, ℓ! 𝜽 : loss for 𝑖-th data point.
¡ We perform Stochastic Gradient Descent (SGD).
§ Sample𝑀 (≪ 𝑁) data points (mini-batches).
§ Compute the ℓ"#$(𝜽) over the 𝑀 data points.
§ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ"#$(𝜽)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

What if we were to use the standard SGD for GNN?
¡ In mini-batch, we sample 𝑴 (≪ 𝑵) nodes

independently:

§ Sampled nodes will be be isolated from each other!
§ GNN generates node embeddings by aggregating neighboring node

features.
§ GNN does not access to neighboring nodes within the mini-batch!

¡ Standard SGD cannot effectively train GNNs.
11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 9

All the nodes in G

: Sampled nodesX

X

X

X

X

X
X

X

X

¡ Naïve full-batch implementation:
Generate embeddings of all the
nodes at the same time:
𝐻("#$) = 𝜎(%𝐴𝐻 " 𝑊"

& +𝐻 " 𝐵"&)
§ Load the entire graph 𝐴 and features

X. Set 𝐻 ' = 𝑋.
§ At each GNN layer: Compute

embeddings of all nodes using all the
node embeddings from the previous
layer.

§ Compute the loss
§ Perform gradient descent

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Given all node
embeddings at layer K

Perform message-
passing

Obtain all node
embeddings at layer K+1

¡ However, Full-batch implementation is not
feasible for a large graphs.

¡ Why?
§ Because we want to use GPU for fast training, but

GPU memory is extremely limited (10GB-80GB).
§ The entire graph and the features cannot be loaded

on GPU.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

CPU
1TB—10TB

GPU
10GB—20GB

Fast computation,
limited memory

Slow computation,
large memory

We introduce three methods for scaling up GNNs:
¡ Two methods perform message-passing over small

subgraphs in each mini-batch; only the subgraphs
need to be loaded on a GPU at a time.
§ Neighbor Sampling [Hamilton et al. NeurIPS 2017]

§ Cluster-GCN [Chiang et al. KDD 2019]

¡ One method simplifies a GNN into feature-
preprocessing operation (can be efficiently
performed even on a CPU)
§ Simplified GCN [Wu et al. ICML 2019]

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 12

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Recall: GNNs generate node embeddings via
neighbor aggregation.
§ Represented as a computational graph (right).

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

Neighbor
aggr.0

1

7

6
2

3

4

8

5

9 Neighbor aggr.

0

1
2

3

0
4

5 6 0 7 8 0 8
9

¡ Observation: A 2-layer GNN generates
embedding of node “0” using 2-hop
neighborhood structure and features.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15

2-hop neighborhood

0
1

7

6
2

3

4

8

5

9 Neighbor aggr

0

1
2

3

0
4

5 6 0 7 8 0 8
9

¡ Observation: More generally, 𝐾-layer GNNs
generate embedding of a node using 𝐾-hop
neighborhood structure and features.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

2-hop neighborhood

0
1

7

6
2

3

4

8

5

9 Neighbor aggr

0

1
2

3

0
4

5 6 0 7 8 0 8
9

¡ Key insight: To compute embedding of a single
node, all we need is the 𝑲-hop neighborhood
(which defines the computation graph).

¡ Given a set of 𝑀 different nodes in a mini-batch,
we can generate their embeddings using 𝑀
computational graphs. Can be computed on GPU!

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 17

…

Comp. graph
for 1-st node

Comp. graph
for 2-nd node

Comp. graph
for 𝑀-th node

M
in

i-b
at

ch

¡ We can now consider the following SGD
strategy for training 𝑲-layer GNNs:
§ Randomly sample𝑀 (≪ 𝑁) root nodes.
§ For each sampled root node 𝑣:

§ Get 𝑲-hop neighborhood and construct the
computation graph.

§ Use the above to generate 𝑣’s embedding.

§ Compute the loss ℓ"#$(𝜽) averaged over
the 𝑀 nodes.

§ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ"#$(𝜽)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18

𝑲-hop
neighborhood

Computational
graph

¡ For each node, we need to get the entire
𝑲-hop neighborhood and pass it through
the computation graph.

¡ We need to aggregate lot of information
just to compute one node embedding.

¡ Some computational redundancy:

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 19
Redundancy-Free Computation for Graph Neural Networks, KDD 202

https://cs.stanford.edu/people/jure/pubs/hags-kdd20.pdf

¡ 2nd issue:
§ Computation graph

becomes exponentially
large with respect to the
layer size 𝐾.

§ Computation graph
explodes when it hits a
hub node (high-degree
node).

¡ Next: Make the comp.
graph more compact!

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

Exponential
growth

Hub node

Key idea: Construct the computational graph by
(randomly) sampling at most 𝐻 neighbors at each
hop.
¡ Example (𝑯 = 𝟐):

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

0

1
2

3

0
4

5 6 0 7 8 0 8
9

1st-hop
neighborhood

2nd-hop
neighborhood

First, sample 2 and 3
(drop node 1)

Sample
neighborhood from
the root to leaves

Sample 0 and 8
(drop 7)

Sample 8 and 9
(drop 0)

We can use the pruned computational graph to
more efficiently compute node embeddings.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22

0

1
2

3

0
4

5 6 0 7 8 0 8
9

Neighbor sampling for 𝑲-layer GNN
¡ For 𝑘 = 1, 2, … , 𝐾:
§ For each node in 𝑘-hop neighborhood:
§ (Randomly) sample at most 𝐻% neighbors:

¡ 𝐾-layer GNN will at most involve
∏'"&
(𝐻' leaf nodes in comp. graph.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

0

1 2 3

0 4 5 6 0 7 8 0 8
9

1st-hop
neighborhood

2nd-hop
neighborhood

Sample 𝐻! = 2
neighbors

Sample 𝐻" = 2
neighbors

¡ Remark 1: Trade-off in sampling number 𝑯
§ Smaller 𝐻 leads to more efficient neighbor

aggregation, but results are less stable training due
to the larger variance in neighbor aggregation.

¡ Remark 2: Computational time
§ Even with neighbor sampling, the size of the

computational graph is still exponential with
respect to number of GNN layers 𝑲.

§ Adding one GNN layer would make computation 𝐻
times more expensive.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 24

¡ Remark 3: How to sample the nodes
§ Random sampling: fast but many times not

optimal (may sample many “unimportant” nodes)
§ Random Walk with Restarts:

§ Natural graphs are “scale free”, sampling random
neighbors, samples many low degree “leaf” nodes.

§ Strategy to sample important nodes:
§ Compute Random Walk with Restarts score
𝑅! starting at the green node

§ At each level sample 𝐻 neighbors 𝑖 with
the highest 𝑅!

§ This strategy works much better in
practice.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

¡ A computational graph is constructed for each
node in a mini-batch.

¡ In neighbor sampling, the comp. graph is
pruned/sub-sampled to increase
computational efficiency.

¡ The pruned comp. graph is used to generate a
node embedding.

¡ However, computational graphs can still
become large, especially for GNNs with many
message-passing layers.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ The size of computational graph becomes
exponentially large w.r.t. the #GNN layers.

¡ Computation is redundant, especially when
nodes in a mini-batch share many neighbors.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 28

A B

Same comp. graph
(except for sampling) Same comp. graph

(except for sampling)

C D C D E

Input graph Computational
graph

A B

C D E

¡ In full-batch GNN implementation, all the
node embeddings are updated together
using embeddings of the previous layer.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

ℎ)
(ℓ) = 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 ℎ)

ℓ-. , 𝐴𝐺𝐺𝑅 𝒉𝒖
ℓ-𝟏

#∈2())

Message passing

Message

§ In each layer, only 2*#(edges)
messages need to be computed.

§ For 𝐾-layer GNN, only 2𝐾*#(edges)
messages need to be computed.

§ GNN’s entire computation is only linear
in #(edges) and #(GNN layers). Fast!

Update for all 𝒗 ∈ 𝑽

¡ The layer-wise node embedding update
allows the re-use of embeddings from the
previous layer.

¡ This significantly reduces the
computational redundancy
of neighbor sampling.
§ Of course, the layer-wise update is

not feasible for a large graph due to
limited GPU memory.
§ Requires putting the entire graph and features on GPU.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Layer-wise update

¡ Key idea: We can sample a small subgraph of
the large graph and then perform the
efficient layer-wise node embeddings update
over the subgraph.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 31

Large graph Sampled subgraph
(small enough to
be put on a GPU)

Layer-wise
node embeddings
update on the GPU

¡ Key question: What subgraphs are good for
training GNNs?
§ Recall: GNN performs node embedding by

passing messages via the edges.
§ Subgraphs should retain edge connectivity

structure of the original graph as much as possible.
§ This way, the GNN over the subgraph generates

embeddings closer to the GNN over the original
graph.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 32

¡ Which subgraph is good for training GNN?

¡ Left subgraph retains the essential community
structure among the 4 nodes à Good

¡ Right subgraph drops many connectivity
patterns, even leading to isolated nodes à Bad

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 33

Subgraphs (both 4-node induced subgraph)Original graph

v.s.

Left Right

Real-world graph exhibits community structure
§ A large graph can be decomposed into many small

communities.

¡ Key insight [Chiang et al. KDD 2019]:
Sample a community as a subgraph.
Each subgraph retains essential
local connectivity pattern of the
original graph.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

¡ We first introduce “vanilla” Cluster-GCN.
¡ Cluster-GCN consists of two steps:
§ Pre-processing: Given a large graph, partition it into

groups of nodes (i.e., subgraphs).
§ Mini-batch training: Sample one node group at a

time. Apply GNN’s message passing over the
induced subgraph.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 35

Mini-batch training
Input large graph Partitioning

Sample

Message-passing
over induced subgraph
to compute the loss

¡ Given a large graph 𝐺 = (𝑉, 𝐸), partition its
nodes 𝑽 into 𝑪 groups: 𝑽𝟏, … , 𝑽𝑪.
§ We can use any scalable community detection

methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].

¡ 𝑉#, … , 𝑉$ induces 𝐶 subgraphs, 𝐺#, … , 𝐺$,
§ Recall: 𝐺3 ≡ (𝑉3 , 𝐸3),

where 𝐸3 = { 𝑢, 𝑣 |𝑢, 𝑣 ∈ 𝑉3}

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

𝐺& 𝐺'

𝐺(

Notice: Between-group
edges are not included in
𝑮𝟏, … , 𝑮𝑪.

¡ For each mini-batch, randomly sample a node
group 𝑽𝒄.

¡ Construct induced subgraph 𝑮𝒄 = (𝑽𝒄, 𝑬𝒄)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 37

Sampled node
group 𝑽𝒄

Induced
subgraph 𝑮𝒄

¡ Apply GNN’s layer-wise node update over 𝑮𝒄 to
obtain embedding 𝒉& for each node 𝑣 ∈ 𝑉'.

¡ Compute the loss for each node 𝑣 ∈ 𝑉' and take
average: ℓ()* 𝜽 = (1/|𝑉'|) ⋅ ∑&∈,(ℓ&(𝜽)

¡ Update params: 𝜽 ← 𝜽 − ∇ℓ()*(𝜽)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 38

Layer-wise node
embedding update

Embedding
Induced subgraph 𝑮𝒄

¡ The induced subgraph removes between-
group links.

¡ As a result, messages from other groups will
be lost during message passing, which could
hurt the GNN’s performance.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 39

Between-
group links
are removed Lost messages

Induced subgraph

¡ Graph community detection algorithm puts
similar nodes together in the same group.

¡ Sampled node group tends to only cover the
small-concentrated portion of the entire data.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 40

Entire
nodes

Sampled
node
group

Sampled nodes are not diverse enough to be
represent the entire graph structure:
¡ As a result, the gradient averaged over the

sampled nodes, #
|,(|

∑&∈,(ℓ&(𝜽), becomes

unreliable.
§ Fluctuates a lot from a node group to another.
§ In other words, the gradient has high variance.

¡ Leads to slow convergence of SGD

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 41

¡ Solution: Aggregate multiple node groups per
mini-batch.

¡ Partition the graph into relatively-small groups
of nodes.

¡ For each mini-batch:
§ Sample and aggregate multiple node groups.
§ Construct the induced subgraph of the aggregated

node group.
§ The rest is the same as vanilla Cluster-GCN (compute

node embeddings and the loss, update parameters)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 42

¡ Why does the solution work?

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 43

Sampling multiple node groups
à Makes the sampled nodes more representative of the entire
nodes. Leads to less variance in gradient estimation.

The induced subgraph over
aggregated node groups
à Includes edges between groups
à Message can flow across groups.

Similar to vanilla Cluster-GCN, advanced
Cluster-GCN also follows a 2-step approach.
1) Pre-processing step:
¡ Given a large graph 𝐺 = (𝑉, 𝐸), partition its

nodes 𝑉 into 𝐶 relatively-small groups:
𝑉#, … , 𝑉$.
§ 𝑉., … , 𝑉5 needs to be small so that even if multiple

of them are aggregated, the resulting group would
not be too large.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

2) Mini-batch training:
¡ For each mini-batch, randomly sample a set of
𝒒 node groups: {𝑉.) , … , 𝑉.*} ⊂ {𝑉#, … , 𝑉$}.

¡ Aggregate all nodes across the sampled node
groups: 𝑉/001 = 𝑉.) ∪⋯∪ 𝑉.*

¡ Extract the induced subgraph
𝑮𝒂𝒈𝒈𝒓 = 𝑽𝒂𝒈𝒈𝒓, 𝑬𝒂𝒈𝒈𝒓 ,

where 𝐸/001 = { 𝑢, 𝑣 | 𝑢, 𝑣 ∈ 𝑉/001}
§ 𝑬𝒂𝒈𝒈𝒓 also includes between-group edges!

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

¡ Generate 𝑴 (≪ 𝑵) node embeddings using
𝑲-layer GNN (𝑵 : #all nodes).

¡ Neighbor-sampling (sampling 𝐻 nodes per layer):

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

§ For each node, the size of 𝐾-layer
computational graph is 𝐻6 .

§ For 𝑀 nodes, the cost is 𝑴 ⋅ 𝑯𝑲

𝐻, 𝐻, 𝐻,
𝑴 computational graphs

…

¡ Generate 𝑴 (≪ 𝑵) node embeddings using
𝑲-layer GNN (𝑵 : #all nodes).

¡ Cluster-GCN:
§ Perform message passing over a subgraph induced

by the 𝑀 nodes.
§ The subgraph contains 𝑀 ⋅ 𝐷9): edges, where
𝐷9): is the average node degree.

§ 𝐾-layer message passing over the subgraph costs
at most 𝑲 ⋅ 𝑴 ⋅ 𝑫𝒂𝒗𝒈.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

¡ In summary, the cost to generate embeddings
for 𝑀 nodes using 𝐾-layer GNN is:
§ Neighbor-sampling (sample 𝑯 nodes per layer):
𝑴 ⋅ 𝑯𝑲

§ Cluster-GCN: 𝑲 ⋅ 𝑴 ⋅ 𝑫𝒂𝒗𝒈
¡ Assume 𝑯 = 𝑫𝒂𝒗𝒈/𝟐. In other words, 50% of

neighbors are sampled.
§ Then, Cluster-GCN (cost: 𝟐𝑴𝑯𝑲) is much more

efficient than neighbor sampling (cost: 𝑴𝑯𝑲).
§ Linear (instead of exponential) dependency w.r.t. 𝑲.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 48

¡ Cluster-GCN first partitions the entire nodes
into a set of small node groups.

¡ At each mini-batch, multiple node groups are
sampled, and their nodes are aggregated.

¡ GNN performs layer-wise node embeddings
update over the induced subgraph.

¡ Cluster-GCN is more computationally efficient
than neighbor sampling, especially when #(GNN
layers) is large.

¡ But Cluster-GCN leads to systematically biased
gradient estimates (due to missing cross-community edges)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 49

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ We start from Graph Convolutional Network
(GCN) [Kipf & Welling ICLR 2017].

¡ We simplify GCN (“SimplGCN”) by removing the
non-linear activation from the GCN [Wu et al. ICML 2019].
§ SimplGCN demonstrated that the performance on

benchmark is not much lower by the simplification.
§ Simplified GCN turns out to be extremely scalable by

the model design.
§ The simplification strategy is very similar to the one

used by LightGCN for recommender systems.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 51

¡ Adjacency matrix: 𝑨
¡ Degree matrix: 𝑫
¡ Normalized adjacency matrix:
M𝑨 ≡ 𝑫6#/8𝑨𝑫6#/8

¡ Let 𝑬(:) be the embedding matrix at 𝑘-th layer.
¡ Let 𝑬 be the input embedding matrix.
§ We backprop into 𝑬.

¡ GCN’s aggregation in the matrix form
§ 𝑬(%>.) = ReLU Q𝑨𝑬(%)𝑾(%)

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 52

Embedding
matrix 𝑬($)

Embedding
of node 𝑣

𝑣

¡ Removing ReLU non-linearity gives us
§ 𝑬(6) = Q𝑨6 𝑬𝑾, where 𝑾 ≡𝑾(@)⋯𝑾(6-.)

¡ Efficient algorithm to obtain M𝑨< 𝑬
§ Start from input embedding matrix 𝑬.
§ Apply 𝑬 ← Q𝑨 𝑬 for 𝐾 times.

¡ Weight matrix 𝑾 can be ignored for now.
§ 𝑾 acts as a linear classifier over the diffused node

embeddings Q𝑨6 𝑬 .
11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53

Diffusing node embeddings
along the graph

¡ SimplGCN adds self-loops to adjacency matrix 𝑨:
§ 𝑨 ← 𝑨 + 𝑰

§ Follows the original GCN by Kipf & Welling.

¡ SimplGCN assumes input node embeddings 𝑬 to
be given as features:
§ Input embedding matrix 𝑬 is fixed rather than

learned.
§ Important consequence: Q𝑨6 𝑬 needs to be

calculated only once.
§ Can be treated as a pre-processing step.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 54

¡ Let M𝑬 = M𝑨< 𝑬 be pre-processed
feature matrix.
§ Each row stores the pre-processed

feature for each node.
§ Q𝑬 can be used as input to any

scalable ML models (e.g., linear
model, MLP).

¡ SimplGCN empirically shows
learning a linear model over
M𝑬 often gives performance
comparable to GCN!

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 55

Feature for
node 𝑣

𝑣

Feature
matrix A𝑬

¡ Compared to neighbor sampling and cluster-
GCN, SimplGCN is much more efficient.
§ SimplGCN computes Q𝑬 only once at the beginning.

§ The pre-processing (sparse matrix vector product,
(𝑬 ← /𝑨 𝑬) can be performed efficiently on CPU.

§ Once Q𝑬 is obtained, getting an embedding for node
𝑣 only takes constant time!
§ Just look up a row for node 𝑣 in /𝑬.
§ No need to build a computational graph or sample a

subgraph.
¡ But the model is less expressive (next).

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 56

¡ Compared to the original GNN models,
SimplGCN’s expressive power is limited due
to the lack of non-linearity in generating
node embeddings.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

¡ Surprisingly, in semi-supervised node
classification benchmark, SimplGCN works
comparably to the original GNNs despite
being less expressive.

¡ Why?

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58

¡ Many node classification tasks exhibit
homophily structure, i.e., nodes connected by
edges tend to share the same target labels.

¡ Examples:
§ Paper category classification in paper-citation

network
§ Two papers tend to share the same category if one cites

another.
§ Movie recommendation for users in social

networks
§ Two users tend to like the same movie if they are friends

in a social network.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 59

¡ Recall the preprocessing step of the simplified
GCN: Do 𝑬 ← M𝑨 𝑬 for 𝑲 times.
§ 𝑬 is node feature matrix 𝑬 = 𝑿

¡ Pre-processed features are obtained by
iteratively averaging their neighboring node
features.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

Average

¡ As a result, nodes
connected by edges tend to
have similar pre-processed
features.

¡ Premise: Model uses the pre-processed node
features to make prediction.

¡ Nodes connected by edges tend to get similar
pre-processed features.

à Nodes connected by edges tend to be
predicted the same labels by the model

¡ Simplified SGC’s prediction aligns well with
the graph homophily in many node
classification benchmark datasets.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 61

¡ Simplified GCN removes non-linearity in GCN
and reduces to the simple pre-processing of
node features.

¡ Once the pre-processed features are obtained,
scalable mini-batch SGD can be directly
applied to optimize the parameters.

¡ Simplified GCN works surprisingly well in
node classification benchmark.
§ The feature pre-processing aligns well with graph

homophily in real-world prediction tasks.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 62

