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¡ Homework 3 due today
§ Late submissions accepted until end of day 

Monday, 11/20
¡ Colab 5 released on course website
§ Due Tuesday, 12/05

¡ Regrade request deadlines
§ Homework 2: Saturday, 11/18

§ Solutions and statistics released on Ed

§ Regrade request policy update on Ed
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¡ Recommender systems:
§ Amazon
§ YouTube
§ Pinterest
§ Etc.

¡ ML tasks:
§ Recommend items

(link prediction)
§ Classify users/items

(node classification)
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¡ Social networks:
§ Facebook
§ Twitter
§ Instagram
§ Etc.

¡ ML tasks:
§ Friend recommendation

(link-level)
§ User property prediction

(node-level)
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¡ Academic graph:
§ Microsoft Academic Graph

¡ ML tasks:
§ Paper categorization

(node classification)

§ Author collaboration
recommendation

§ Paper citation
recommendation
(link prediction)
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¡ Knowledge Graphs (KGs):
§ Wikidata
§ Freebase

¡ ML tasks:
§ KG completion
§ Reasoning
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¡ Large-scale:
§ #nodes ranges from 10M to 10B.
§ #edges ranges from 100M to 100B.

¡ Tasks
§ Node-level: User/item/paper classification.
§ Link-level: Recommendation, completion.

¡ Todays’ lecture
§ Scale up GNNs to large graphs!
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¡ Recall: How we usually train an ML model on 
large data (𝑵 = #data is large)

¡ Objective: Minimize the averaged loss

ℓ 𝜽 =
1
𝑁
'
!"#

$%&

ℓ! 𝜽

§ 𝜽: model parameters, ℓ! 𝜽 : loss for 𝑖-th data point.
¡ We perform Stochastic Gradient Descent (SGD).
§ Sample𝑀 (≪ 𝑁) data points (mini-batches). 
§ Compute the ℓ"#$(𝜽) over the 𝑀 data points.
§ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ"#$(𝜽)
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What if we were to use the standard SGD for GNN?
¡ In mini-batch, we sample 𝑴 (≪ 𝑵) nodes 

independently:

§ Sampled nodes will be be isolated from each other!
§ GNN generates node embeddings by aggregating neighboring node 

features.
§ GNN does not access to neighboring nodes within the mini-batch!

¡ Standard SGD cannot effectively train GNNs.
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¡ Naïve full-batch implementation: 
Generate embeddings of all the 
nodes at the same time:
𝐻("#$) = 𝜎( %𝐴𝐻 " 𝑊"

& +𝐻 " 𝐵"&)
§ Load the entire graph 𝐴 and features 

X. Set 𝐻 ' = 𝑋.
§ At each GNN layer: Compute 

embeddings of all nodes using all the 
node embeddings from the previous 
layer.

§ Compute the loss
§ Perform gradient descent
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¡ However, Full-batch implementation is not 
feasible for a large graphs. 

¡ Why?
§ Because we want to use GPU for fast training, but 

GPU memory is extremely limited (10GB-80GB).
§ The entire graph and the features cannot be loaded 

on GPU.
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We introduce three methods for scaling up GNNs:
¡ Two methods perform message-passing over small 

subgraphs in each mini-batch; only the subgraphs 
need to be loaded on a GPU at a time.
§ Neighbor Sampling [Hamilton et al. NeurIPS 2017]

§ Cluster-GCN [Chiang et al. KDD 2019]

¡ One method simplifies a GNN into feature-
preprocessing operation (can be efficiently 
performed even on a CPU)
§ Simplified GCN [Wu et al. ICML 2019]
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¡ Recall: GNNs generate node embeddings via 
neighbor aggregation.
§ Represented as a computational graph (right).
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¡ Observation: A 2-layer GNN generates 
embedding of node “0” using 2-hop 
neighborhood structure and features.
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¡ Observation: More generally, 𝐾-layer GNNs 
generate embedding of a node using 𝐾-hop 
neighborhood structure and features.
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¡ Key insight: To compute embedding of a single 
node, all we need is the 𝑲-hop neighborhood 
(which defines the computation graph).

¡ Given a set of 𝑀 different nodes in a mini-batch, 
we can generate their embeddings using 𝑀
computational graphs. Can be computed on GPU!
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¡ We can now consider the following SGD 
strategy for training 𝑲-layer GNNs:
§ Randomly sample𝑀 (≪ 𝑁) root nodes. 
§ For each sampled root node 𝑣:

§ Get 𝑲-hop neighborhood and construct the 
computation graph.

§ Use the above to generate 𝑣’s embedding.

§ Compute the loss ℓ"#$(𝜽) averaged over 
the 𝑀 nodes.

§ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ"#$(𝜽)
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¡ For each node, we need to get the entire 
𝑲-hop neighborhood and pass it through 
the computation graph.

¡ We need to aggregate lot of information 
just to compute one node embedding.

¡ Some computational redundancy:
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¡ 2nd issue:
§ Computation graph 

becomes exponentially 
large with respect to the 
layer size 𝐾.

§ Computation graph 
explodes when it hits a 
hub node (high-degree 
node).

¡ Next: Make the comp. 
graph more compact!
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Key idea: Construct the computational graph by 
(randomly) sampling at most 𝐻 neighbors at each 
hop.
¡ Example (𝑯 = 𝟐):
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We can use the pruned computational graph to 
more efficiently compute node embeddings. 
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Neighbor sampling for 𝑲-layer GNN
¡ For 𝑘 = 1, 2, … , 𝐾:
§ For each node in 𝑘-hop neighborhood:
§ (Randomly) sample at most 𝐻% neighbors:

¡ 𝐾-layer GNN will at most involve
∏'"&
( 𝐻' leaf nodes in comp. graph. 
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¡ Remark 1: Trade-off in sampling number 𝑯
§ Smaller 𝐻 leads to more efficient neighbor 

aggregation, but results are less stable training due 
to the larger variance in neighbor aggregation.

¡ Remark 2: Computational time
§ Even with neighbor sampling, the size of the 

computational graph is still exponential with 
respect to number of GNN layers 𝑲.

§ Adding one GNN layer would make computation 𝐻
times more expensive.
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¡ Remark 3: How to sample the nodes
§ Random sampling: fast but many times not 

optimal (may sample many “unimportant” nodes)
§ Random Walk with Restarts:

§ Natural graphs are “scale free”, sampling random 
neighbors, samples many low degree “leaf” nodes.

§ Strategy to sample important nodes:
§ Compute Random Walk with Restarts score
𝑅! starting at the green node

§ At each level sample 𝐻 neighbors 𝑖 with
the highest 𝑅!

§ This strategy works much better in 
practice.
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¡ A computational graph is constructed for each 
node in a mini-batch.

¡ In neighbor sampling, the comp. graph is 
pruned/sub-sampled to increase 
computational efficiency.

¡ The pruned comp. graph is used to generate a 
node embedding.

¡ However, computational graphs can still 
become large, especially for GNNs with many 
message-passing layers.
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¡ The size of computational graph becomes 
exponentially large w.r.t. the #GNN layers.

¡ Computation is redundant, especially when 
nodes in a mini-batch share many neighbors.
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¡ In full-batch GNN implementation, all the 
node embeddings are updated together 
using embeddings of the previous layer.
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Message passing

Message

§ In each layer, only 2*#(edges) 
messages need to be computed.

§ For 𝐾-layer GNN, only 2𝐾*#(edges) 
messages need to be computed.

§ GNN’s entire computation is only linear 
in #(edges) and #(GNN layers). Fast!

Update for all 𝒗 ∈ 𝑽 



¡ The layer-wise node embedding update 
allows the re-use of embeddings from the 
previous layer.

¡ This significantly reduces the 
computational redundancy 
of neighbor sampling.
§ Of course, the layer-wise update is 

not feasible for a large graph due to 
limited GPU memory.
§ Requires putting the entire graph and features on GPU. 

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Layer-wise update



¡ Key idea: We can sample a small subgraph of 
the large graph and then perform the 
efficient layer-wise node embeddings update 
over the subgraph.

11/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 31

Large graph Sampled subgraph
(small enough to 
be put on a GPU)

Layer-wise
node embeddings 
update on the GPU



¡ Key question: What subgraphs are good for 
training GNNs?
§ Recall: GNN performs node embedding by 

passing messages via the edges.
§ Subgraphs should retain edge connectivity 

structure of the original graph as much as possible.
§ This way, the GNN over the subgraph generates 

embeddings closer to the GNN over the original 
graph.
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¡ Which subgraph is good for training GNN?

¡ Left subgraph retains the essential community 
structure among the 4 nodes à Good

¡ Right subgraph drops many connectivity 
patterns, even leading to isolated nodes à Bad
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Real-world graph exhibits community structure
§ A large graph can be decomposed into many small 

communities.

¡ Key insight [Chiang et al. KDD 2019]:
Sample a community as a subgraph.
Each subgraph retains essential
local connectivity pattern of the
original graph.
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¡ We first introduce “vanilla” Cluster-GCN.
¡ Cluster-GCN consists of two steps:
§ Pre-processing: Given a large graph, partition it into 

groups of nodes (i.e., subgraphs).
§ Mini-batch training: Sample one node group at a 

time. Apply GNN’s message passing over the 
induced subgraph.
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¡ Given a large graph 𝐺 = (𝑉, 𝐸), partition its 
nodes 𝑽 into 𝑪 groups: 𝑽𝟏, … , 𝑽𝑪.
§ We can use any scalable community detection 

methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].

¡ 𝑉#, … , 𝑉$ induces 𝐶 subgraphs, 𝐺#, … , 𝐺$ , 
§ Recall: 𝐺3 ≡ (𝑉3 , 𝐸3),

where 𝐸3 = { 𝑢, 𝑣 |𝑢, 𝑣 ∈ 𝑉3}
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¡ For each mini-batch, randomly sample a node 
group 𝑽𝒄.

¡ Construct induced subgraph 𝑮𝒄 = (𝑽𝒄, 𝑬𝒄)
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¡ Apply GNN’s layer-wise node update over 𝑮𝒄 to 
obtain embedding 𝒉& for each node 𝑣 ∈ 𝑉'.

¡ Compute the loss for each node 𝑣 ∈ 𝑉' and take 
average:   ℓ()* 𝜽 = (1/|𝑉'|) ⋅ ∑&∈,( ℓ&(𝜽)

¡ Update params: 𝜽 ← 𝜽 − ∇ℓ()*(𝜽)
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¡ The induced subgraph removes between-
group links.

¡ As a result, messages from other groups will 
be lost during message passing, which could 
hurt the GNN’s performance.
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¡ Graph community detection algorithm puts 
similar nodes together in the same group.

¡ Sampled node group tends to only cover the 
small-concentrated portion of the entire data.
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Sampled nodes are not diverse enough to be 
represent the entire graph structure:
¡ As a result, the gradient averaged over the 

sampled nodes, #
|,(|

∑&∈,( ℓ&(𝜽), becomes 

unreliable.
§ Fluctuates a lot from a node group to another.
§ In other words, the gradient has high variance.

¡ Leads to slow convergence of SGD
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¡ Solution: Aggregate multiple node groups per 
mini-batch.

¡ Partition the graph into relatively-small groups 
of nodes.

¡ For each mini-batch:
§ Sample and aggregate multiple node groups.
§ Construct the induced subgraph of the aggregated

node group. 
§ The rest is the same as vanilla Cluster-GCN (compute 

node embeddings and the loss, update parameters)
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¡ Why does the solution work?
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Sampling multiple node groups
à Makes the sampled nodes more representative of the entire 
nodes. Leads to less variance in gradient estimation.

The induced subgraph over 
aggregated node groups
à Includes edges between groups
à Message can flow across groups.



Similar to vanilla Cluster-GCN, advanced 
Cluster-GCN also follows a 2-step approach.
1) Pre-processing step:
¡ Given a large graph 𝐺 = (𝑉, 𝐸), partition its 

nodes 𝑉 into 𝐶 relatively-small groups: 
𝑉#, … , 𝑉$ .
§ 𝑉., … , 𝑉5 needs to be small so that even if multiple 

of them are aggregated, the resulting group would 
not be too large.
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2) Mini-batch training:
¡ For each mini-batch, randomly sample a set of 
𝒒 node groups: {𝑉.) , … , 𝑉.*} ⊂ {𝑉#, … , 𝑉$}.

¡ Aggregate all nodes across the sampled node 
groups: 𝑉/001 = 𝑉.) ∪⋯∪ 𝑉.*

¡ Extract the induced subgraph
𝑮𝒂𝒈𝒈𝒓 = 𝑽𝒂𝒈𝒈𝒓, 𝑬𝒂𝒈𝒈𝒓 ,

where 𝐸/001 = { 𝑢, 𝑣 | 𝑢, 𝑣 ∈ 𝑉/001}
§ 𝑬𝒂𝒈𝒈𝒓 also includes between-group edges!
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¡ Generate 𝑴 (≪ 𝑵) node embeddings using 
𝑲-layer GNN (𝑵 : #all nodes). 

¡ Neighbor-sampling (sampling 𝐻 nodes per layer):
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¡ Generate 𝑴 (≪ 𝑵) node embeddings using 
𝑲-layer GNN (𝑵 : #all nodes).

¡ Cluster-GCN:
§ Perform message passing over a subgraph induced 

by the 𝑀 nodes. 
§ The subgraph contains 𝑀 ⋅ 𝐷9): edges, where 
𝐷9): is the average node degree.

§ 𝐾-layer message passing over the subgraph costs 
at most  𝑲 ⋅ 𝑴 ⋅ 𝑫𝒂𝒗𝒈. 
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¡ In summary, the cost to generate embeddings 
for 𝑀 nodes using 𝐾-layer GNN is:
§ Neighbor-sampling (sample 𝑯 nodes per layer): 
𝑴 ⋅ 𝑯𝑲

§ Cluster-GCN: 𝑲 ⋅ 𝑴 ⋅ 𝑫𝒂𝒗𝒈
¡ Assume 𝑯 = 𝑫𝒂𝒗𝒈/𝟐. In other words, 50% of 

neighbors are sampled.
§ Then, Cluster-GCN (cost: 𝟐𝑴𝑯𝑲) is much more 

efficient than neighbor sampling (cost: 𝑴𝑯𝑲).
§ Linear (instead of exponential) dependency w.r.t. 𝑲.
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¡ Cluster-GCN first partitions the entire nodes 
into a set of small node groups.

¡ At each mini-batch, multiple node groups are 
sampled, and their nodes are aggregated.

¡ GNN performs layer-wise node embeddings 
update over the induced subgraph.

¡ Cluster-GCN is more computationally efficient 
than neighbor sampling, especially when #(GNN 
layers) is large.

¡ But Cluster-GCN leads to systematically biased 
gradient estimates (due to missing cross-community edges)
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¡ We start from Graph Convolutional Network 
(GCN) [Kipf & Welling ICLR 2017].

¡ We simplify GCN (“SimplGCN”) by removing the 
non-linear activation from the GCN [Wu et al. ICML 2019]. 
§ SimplGCN demonstrated that the performance on 

benchmark is not much lower by the simplification.
§ Simplified GCN turns out to be extremely scalable by 

the model design.
§ The simplification strategy is very similar to the one 

used by LightGCN for recommender systems.
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¡ Adjacency matrix: 𝑨
¡ Degree matrix: 𝑫
¡ Normalized adjacency matrix: 
M𝑨 ≡ 𝑫6#/8𝑨𝑫6#/8

¡ Let 𝑬(:) be the embedding matrix at 𝑘-th layer.
¡ Let 𝑬 be the input embedding matrix.
§ We backprop into 𝑬.

¡ GCN’s aggregation in the matrix form
§ 𝑬(%>.) = ReLU Q𝑨𝑬(%)𝑾(%)
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¡ Removing ReLU non-linearity gives us
§ 𝑬(6) = Q𝑨6 𝑬𝑾, where 𝑾 ≡𝑾(@)⋯𝑾(6-.)

¡ Efficient algorithm to obtain M𝑨< 𝑬
§ Start from input embedding matrix 𝑬.
§ Apply 𝑬 ← Q𝑨 𝑬 for 𝐾 times.

¡ Weight matrix 𝑾 can be ignored for now.
§ 𝑾 acts as a linear classifier over the diffused node 

embeddings Q𝑨6 𝑬 .
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¡ SimplGCN adds self-loops to adjacency matrix 𝑨:
§ 𝑨 ← 𝑨 + 𝑰

§ Follows the original GCN by Kipf & Welling.

¡ SimplGCN assumes input node embeddings 𝑬 to 
be given as features:
§ Input embedding matrix 𝑬 is fixed rather than 

learned.
§ Important consequence: Q𝑨6 𝑬 needs to be 

calculated only once.
§ Can be treated as a pre-processing step.
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¡ Let M𝑬 = M𝑨< 𝑬 be pre-processed 
feature matrix.
§ Each row stores the pre-processed 

feature for each node.
§ Q𝑬 can be used as input to any 

scalable ML models (e.g., linear 
model, MLP).

¡ SimplGCN empirically shows 
learning a linear model over 
M𝑬 often gives performance 
comparable to GCN!
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¡ Compared to neighbor sampling and cluster-
GCN, SimplGCN is much more efficient.
§ SimplGCN computes Q𝑬 only once at the beginning.

§ The pre-processing (sparse matrix vector product, 
(𝑬 ← /𝑨 𝑬) can be performed efficiently on CPU.

§ Once Q𝑬 is obtained, getting an embedding for node 
𝑣 only takes constant time!
§ Just look up a row for node 𝑣 in /𝑬. 
§ No need to build a computational graph or sample a 

subgraph.
¡ But the model is less expressive (next).
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¡ Compared to the original GNN models, 
SimplGCN’s expressive power is limited due 
to the lack of non-linearity in generating 
node embeddings.
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¡ Surprisingly, in semi-supervised node 
classification benchmark, SimplGCN works 
comparably to the original GNNs despite 
being less expressive.

¡ Why?
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¡ Many node classification tasks exhibit 
homophily structure, i.e., nodes connected by 
edges tend to share the same target labels.

¡ Examples:
§ Paper category classification in paper-citation 

network
§ Two papers tend to share the same category if one cites 

another.
§ Movie recommendation for users in social 

networks
§ Two users tend to like the same movie if they are friends 

in a social network.
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¡ Recall the preprocessing step of the simplified 
GCN: Do 𝑬 ← M𝑨 𝑬 for 𝑲 times.
§ 𝑬 is node feature matrix 𝑬 = 𝑿

¡ Pre-processed features are obtained by 
iteratively averaging their neighboring node 
features. 
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Average

¡ As a result, nodes 
connected by edges tend to 
have similar pre-processed 
features.



¡ Premise: Model uses the pre-processed node 
features to make prediction.

¡ Nodes connected by edges tend to get similar 
pre-processed features.

à Nodes connected by edges tend to be 
predicted the same labels by the model

¡ Simplified SGC’s prediction aligns well with 
the graph homophily in many node 
classification benchmark datasets.
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¡ Simplified GCN removes non-linearity in GCN 
and reduces to the simple pre-processing of 
node features.

¡ Once the pre-processed features are obtained, 
scalable mini-batch SGD can be directly 
applied to optimize the parameters.

¡ Simplified GCN works surprisingly well in 
node classification benchmark.
§ The feature pre-processing aligns well with graph 

homophily in real-world prediction tasks.
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