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Note to other teachers and users of these slides: We would be delighted if you found our 

material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify 

them to fit your own needs. If you make use of a significant portion of these slides in your own 

lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu 

http://cs224w.stanford.edu/


 Project Milestone feedback is out now!
 We are almost done grading exams — will 

make an announcement when done 
 Colab 4 due today (12/2)
 Colab 5 due Thursday 12/4
 Project Report due Thursday 12/11
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 We need your Medium account usernames

▪ We will add all of you as writers to our CS224W 
publications

▪ Please fill out the Google Form on Ed with your 
Medium account username

▪ https://forms.gle/HWinc8vEZ2gK6DYc6

▪ This is a requirement!
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 So far, we have been learning from graphs

▪ We assume the graphs are given

 But how are these graphs generated?
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Economic Networks Communication NetworksSocial Networks
Image credit: Medium Image credit: Science Image credit: Lumen Learning

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/


 We want to generate realistic graphs, using 
graph generative models

 Applications:

▪ Drug discovery, material design

▪ Social network modeling
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 Insights – We can understand the formulation 
of graphs

 Predictions – We can predict how will the 
graph further evolve

 Simulations – We can use the same process 
to general novel graph instances

 Anomaly detection - We can decide if a graph 
is normal / abnormal
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 Step 1: Properties of real-world graphs

▪ A successful graph generative model should fit 
these properties

 Step 2: Traditional graph generative models

▪ Each come with different assumptions on the graph 
formulation process

 Step 3: Deep graph generative models

▪ Learn the graph formation process from the data

▪ This lecture!
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…

Output: node embeddings
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…

Output: Graph Structure!
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Task 1: Realistic graph generation
 Generate graphs that are similar to a given 

set of graphs [Focus of this lecture]

Task 2: Goal-directed graph generation
 Generate graphs that optimize given 

objectives/constraints

▪ E.g., Drug molecule generation/optimization
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 Given: Graphs sampled from 𝑝𝑑𝑎𝑡𝑎(𝐺)
 Goal: 

▪ Learn the distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺) 

▪ Sample from 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)
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𝑝𝑑𝑎𝑡𝑎(𝐺) 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)Learn & 

Sample



Setup:
 Assume we want to learn a generative model 

from a set of data points (i.e., graphs) {𝒙𝑖}
▪ 𝑝𝑑𝑎𝑡𝑎(𝒙) is the data distribution, which is never known 

to us, but we have sampled 𝒙𝑖  ~ 𝑝𝑑𝑎𝑡𝑎(𝒙)

▪ 𝑝𝑚𝑜𝑑𝑒𝑙(𝒙; 𝜃) is the model, parametrized by 𝜃, that we 
use to approximate 𝑝𝑑𝑎𝑡𝑎(𝒙) 

 Goal:
▪ (1) Make 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃  close to 𝑝𝑑𝑎𝑡𝑎 𝒙  (Density 

estimation)

▪ (2) Make sure we can sample from 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃  
(Sampling)
▪ To generate new graphs, we sample from 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃
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(1) Make 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙; 𝜽  close to 𝒑𝒅𝒂𝒕𝒂 𝒙
 Key Principle: Maximum Likelihood
 Fundamental approach to modeling distributions

▪ Find parameters 𝜃∗, such that for observed data 
points 𝒙𝑖~𝑝𝑑𝑎𝑡𝑎 the σ𝑖 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙𝑖; 𝜃∗  has the 
highest value, among all possible choices of 𝜃

▪ That is, find the model that is most likely to have 
generated the observed data 𝑥
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(2) Sample from 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙; 𝜽
 Goal: Sample from a complex distribution
 The most common approach:

▪ (1) Sample from a simple noise distribution
𝒛𝑖~𝑁(0,1)

▪ (2) Transform the noise 𝑧𝑖 via complex 𝑓(⋅)
𝒙𝑖 = 𝑓(𝒛𝑖; 𝜃)

Then 𝒙𝑖 follows a complex distribution

 Q: How to design 𝒇(⋅)?
 A: Use Deep Neural Networks, and train it 

using the data we have!
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Auto-regressive models:
 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙; 𝜽  is used for both density 

estimation and sampling (remember our two goals)
▪ Other models like Variational Auto Encoders (VAEs), Generative Adversarial 

Nets (GANs) have 2 or more models, each playing one of the roles

▪ Idea: Chain rule. Joint distribution is a product of 
conditional distributions:

𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃 = ෑ

𝑡=1

𝑛

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡|𝑥1, … , 𝑥𝑡−1; 𝜃)

▪ E.g., 𝒙 is a vector, 𝑥𝑡  is the 𝑡-th dimension; 
𝒙 is a sentence, 𝑥𝑡  is the 𝑡-th word.

▪ In our case: 𝑥𝑡 will be the 𝑡-th action (add node, add edge)
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Generating graphs via sequentially adding 
nodes and edges
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[You et al., ICML 2018]
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Generation process 𝑆𝜋

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. J. You, R. Ying, X. 
Ren, W. L. Hamilton, J. Leskovec. International Conference on Machine Learning (ICML), 2018.

https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
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Graph 𝐺 with node ordering π can be uniquely mapped 
into a sequence of node and edge additions Sπ 
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Graph 𝐺 with
node ordering 𝜋: 

Sequence 𝑆𝜋: 

𝑆1
𝜋 𝑆2

𝜋 𝑆3
𝜋 𝑆4

𝜋 𝑆5
𝜋( )𝑆𝜋 = , , , , 



The sequence 𝑆𝜋 has two levels 
(𝑆 is a sequence of sequences): 

▪ Node-level: add nodes, one at a time

▪ Edge-level: add edges between existing nodes

 Node-level: At each step, a new node is added
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The sequence 𝑆𝜋 has two levels:
 Each Node-level step is an edge-level sequence
 Edge-level: At each step, add a new edge
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0 1 1



 Summary: A graph + a node ordering = 
A sequence of sequences

 Node ordering is randomly selected (we will 
come back to this)
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 We have transformed graph generation 
problem into a sequence generation problem

 Need to model two processes:

▪ 1) Generate a state for a new node
(Node-level sequence)

▪ 2) Generate edges for the new node based on its 
state (Edge-level sequence)

 Approach: Use Recurrent Neural Networks 
(RNNs) to model these processes!

 Same principles apply to Transformers
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▪ RNNs are designed for sequential data

▪ RNN sequentially takes input sequence to update 
its hidden states

▪ The hidden states summarize all the information 
input to RNN

▪ The update is conducted via RNN cells
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RNN 
cell

𝑥1

𝑠0

𝑦1

𝑠1
RNN 
cell

𝑥2

𝑦2

…𝑠2

Input sequence:

Output sequence:

Hidden states: 



 𝑠𝑡: State of RNN after step 𝑡
 𝑥𝑡: Input to RNN at step 𝑡
 𝑦𝑡: Output of RNN at step 𝑡
 RNN cell: 𝑊, 𝑈, 𝑉: Trainable parameters

 More expressive cells: GRU, LSTM, etc.
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RNN 
cell

𝑥𝑡

𝑠𝑡−1

𝑦𝑡

𝑠𝑡

The RNN cell:
(1) Update hidden state: 

𝑠𝑡 = 𝜎(𝑊 ⋅ 𝑥𝑡 + 𝑈 ⋅ 𝑠𝑡−1)
(2) Output prediction: 

𝑦𝑡 = 𝑉 ⋅ 𝑠𝑡

(1)
(2)

In our case 𝑠𝑡, 𝑥𝑡 and 
𝑦𝑡 will be scalars
(edge probabilities)



 GraphRNN has a node-level RNN and an 
edge-level RNN

 Relationship between the two RNNs:

▪ Node-level RNN generates the initial state 
for edge-level RNN

▪ Edge-level RNN sequentially predict if the 
new node will connect to each of the 
previous node
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Node-level RNN generates the initial 
state for edge-level RNN

Edge-level RNN sequentially predict if the new node will 
connect to each of the previous node
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Node-level RNN generates the initial 

state for edge-level RNN

Edge-level RNN generates edges for the new node, 

then update Node-level RNN state using generated results
Next: How to generate a sequence with RNN?



 Q: How to use RNN to generate sequences?
 A: Let 𝑥𝑡+1 = 𝑦𝑡 (Use the previous output as input)

 Q: How to initialize the input sequence? 
 A: Use start of sequence token (SOS) as the initial input

▪ SOS is usually a vector with all zero/ones

 Q: When to stop generation?
 A: Use end of sequence token (EOS) as an extra RNN 

output

▪ If output EOS=0, RNN will continue generation

▪ If output EOS=1, RNN will stop generation
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 This is good, but this model is deterministic
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𝐸𝑂𝑆 = 1

…𝑠2

Initialize input

Stop generationUse the previous output as input



Consider the Edge-level RNN for now.
 Our goal: Model ς𝑡=1

𝑛 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡|𝑥1, … , 𝑥𝑡−1; 𝜃)
 Let 𝑦𝑡 = 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡+1|𝑥1, … , 𝑥𝑡; 𝜃) 
 Then we need to sample 𝑥𝑡+1 from 𝑦𝑡: 𝑥𝑡+1~𝑦𝑡

▪ Each step of RNN outputs a probability of a single edge

▪ We then sample from the distribution, and feed sample to next 
step:
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𝑦3

𝑠3
…𝑠0

𝑥2~𝑦1



Suppose we already have trained the edge-level RNN
▪ 𝑦𝑡 is a scalar, following a Bernoulli distribution 

▪        means value 1 has prob. 𝑝, value 0 has prob. 1 − 𝑝

 How do we use training data 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏?
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𝑥3 ~ 0.4

𝑥3 =

𝑝

1 0



Training the model:
 We observe a sequence 𝑦∗ of edges [0,0,1,…]
 Principle: Teacher Forcing -- Replace input 

and output by the real sequence
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RNN 
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𝒔1
RNN 
cell

𝑠2
RNN 
cell

𝑠3
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𝑦2
∗ = 𝑦3
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𝑠0 = 𝑆𝑂𝑆

0.9𝑦1 = 0.4𝑦2 = 0.7𝑦3 =

0 0

0 0 1
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 Loss 𝐿 : Binary cross entropy
 Minimize:

𝐿 = −[𝑦1
∗log(𝑦1) + (1 − 𝑦1

∗)log(1 − 𝑦1)]

 If 𝑦1
∗ = 1, we minimize −log(𝑦1), making 𝑦1 higher 

 If 𝑦1
∗ = 0, we minimize −log(1 − 𝑦1), making 𝑦1 lower

 This way, 𝑦1 is fitting the data samples 𝑦1
∗ 

 Reminder: 𝑦1 is computed by RNN, this loss will adjust 
RNN parameters accordingly, using back propagation!

𝑦1
∗ =Compute 

loss
0.9𝑦1 =

0
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Our Plan:
(1) Add a new node: We run Node RNN for a step, and use 

it output to initialize Edge RNN
(2) Add new edges for the new node: We run Edge RNN to  

predict if the new node will connect to each of the 
previous node

(3) Add another new node: We use the last hidden state of 
Edge RNN to run Node RNN for another step

(4) Stop graph generation: If Edge RNN outputs EOS at step 
1, we know no edges are connected to the new node. 
We stop the graph generation.
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Observed graph

Assuming Node 1 is in the graph
Now adding Node 2

Start the node RNN
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Observed graph

Start the edge RNNWill node 2 
connect to 
node 1?
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0.4 1

Edge RNN predicts 
how Node 3 tries to 
connects to Nodes 1, 2

0 1 1
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Observed graph

Will node 3 
connect to node 1?

Teacher forcing: node 3 will 
connect to node 1

Will node 3 
connect to node 2?
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Observed graph

Update Node RNN using 
Edge RNN’s hidden state
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Observed graph
4
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Observed graph1

For each prediction, we get 
supervision from the ground truth
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Observed graph1

Backprop through time:
Gradients are accumulated 
across time steps
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Quick Summary of GraphRNN:

▪ Generate a graph by generating a two-level sequence

▪ Use RNN to generate the sequences

 Next: Making GraphRNN tractable, proper evaluation
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 Any node can connect to any prior node

 Too many steps for edge generation

▪ Need to generate full adjacency matrix

▪ Complex too-long edge dependencies
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1

5 4

3

2

Random node ordering: 

Node 5 may connect to any/all previous nodes

How do we limit this complexity?

“Recipe” to generate the left graph:

- Add node 1

- Add node 2

- Add node 3

- Connect 3 with 2 and 1
- Add node 4

- …



 Breadth-First Search node ordering

 BFS node ordering: 
▪ Since Node 4 doesn’t connect to Node 1

▪ We know all Node 1’s neighbors have already been traversed

▪ Therefore, Node 5 and the following nodes will never connect 
to node 1

▪ We only need memory of 2 “steps” rather than n − 1 steps
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1

2 4

3

5

BFS ordering 

“Recipe” to generate the left graph:

- Add node 1

- Add node 2

- Connect 2 with 1

- Add node 3

- Connect 3 with 1 

- Add node 4

- Connect 4 with 3 and 2



 Breadth-First Search node ordering

 Benefits:

▪ Reduce possible node orderings

▪ From 𝑂(𝑛!) to number of distinct BFS orderings

▪ Reduce steps for edge generation

▪ Reducing number of previous nodes to look at
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3

5

BFS ordering 

BFS node ordering: Node 5 will 

never connect to node 1

(only need memory of 2 “steps” 

rather than 𝑛 − 1 steps)



 BFS reduces the number of steps for edge 
generation
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Adjacency matrices



 Task: Compare two sets of graphs

 Goal: Define similarity metrics for graphs

 Solution

▪ (1) Visual similarity

▪ (2) Graph statistics similarity
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How similar?



12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53



12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



Question: Can we learn a model that can 
generate valid and realistic molecules with 
optimized property scores?
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Model Property

output that optimizes

e.g., drug_likeness=0.95

[You et al., NeurIPS 2018]

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. 
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf


Generating graphs that:
 Optimize a given objective (High scores)

▪ e.g., drug-likeness

 Obey underlying rules (Valid)

▪ e.g., chemical validity rules

 Are learned from examples (Realistic)

▪ Imitating a molecule graph dataset

▪ We have just covered this part
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Generating graphs that:
 Optimize a given objective (High scores)

▪ e.g., drug-likeness

 Obey underlying rules (Valid)

▪ e.g., chemical validity rules

 Are learned from examples (Realistic)

▪ Imitating a molecule graph dataset

▪ Covered this part when introducing GraphRNN
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Including a “Black-box” to Graph 
Generation:
Objectives like drug-likeness are governed by 
physical law which is assumed to be unknown 
to us.



 A ML agent observes the environment, takes 
an action to interact with the environment, 
and receives positive or negative reward

 The agent then learns from this loop
 Key idea: Agent can directly learn from 

environment, which is a blackbox to the agent
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ML Agent

Action

Environment

Observation,
Reward



Graph Convolutional Policy Network (GCPN) 
combines graph representation + RL
Key component of GCPN:
 Graph Neural Network captures graph 

structural information
 Reinforcement learning guides the generation 

towards the desired objectives
 Supervised training imitates examples in given 

datasets
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 Commonality of GCPN & GraphRNN:

▪ Generate graphs sequentially

▪ Imitate a given graph dataset

 Main Differences:

▪ GCPN uses GNN to predict the generation action

▪ Pros: GNN is more expressive than RNN

▪ Cons: GNN takes longer time to compute than RNN

▪ GCPN further uses RL to direct graph generation to 
our goals

▪ RL enables goal-directed graph generation
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 Sequential graph generation
 GraphRNN: predict action based on RNN hidden states

 GCPN: predict action based on GNN node embeddings
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Node 
RNN

Edge 
RNN

Edge 
RNN

Edge 
RNN

0 1 1
1

2 4

31
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3

RNN hidden state captures the generated graph so far

GNN

1

2 4

3 1

2 4

3

Predict potential links 
using node embeddings

Node 
embeddings

1

2 4

3
Recall the link 
prediction head:

Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

):= 

Linear(Concat(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

))



 (a) Insert nodes

 (b,c) Use GNN to predict which nodes to connect

 (d) Take an action (check chemical validity)

 (e, f) Compute reward
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 Step reward: Learn to take valid action

▪ At each step, assign small positive reward for valid 

action

 Final reward: Optimize desired properties

▪ At the end, assign positive reward for high desired 

property

Reward = Final reward + Step reward
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 Two parts:
 (1) Supervised training: Train policy by imitating 

the action given by real observed graphs. Use 
gradient. 
▪ We have covered this idea in GraphRNN

 (2) RL training: Train policy to optimize rewards. 
Use standard policy gradient algorithm.
▪ Refer to any RL course, e.g., CS234
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Visualization of GCPN graphs:

 Property optimization Generate molecules 
with high specified property score
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Visualization of GCPN graphs: 
 Constrained optimization: Edit a given molecule for 

a few steps to achieve higher property score
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Starting structure Finished structure

12/1/2025

Increase the 
solubility in 
octanol



 Complex graphs can be successfully generated 
via sequential generation using deep learning

 Each step a decision is made based on hidden 
state, which can be 

▪ Implicit: vector representation, decode with RNN

▪ Explicit: intermediate generated graphs, decode 
with GCN

 Possible tasks:

▪ Imitating a set of given graphs

▪ Optimizing graphs towards given goals
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