
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our

material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify

them to fit your own needs. If you make use of a significant portion of these slides in your own

lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

 Project Milestone feedback is out now!
 We are almost done grading exams — will

make an announcement when done
 Colab 4 due today (12/2)
 Colab 5 due Thursday 12/4
 Project Report due Thursday 12/11

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

 We need your Medium account usernames

▪ We will add all of you as writers to our CS224W
publications

▪ Please fill out the Google Form on Ed with your
Medium account username

▪ https://forms.gle/HWinc8vEZ2gK6DYc6

▪ This is a requirement!

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

 So far, we have been learning from graphs

▪ We assume the graphs are given

 But how are these graphs generated?

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 4

Economic Networks Communication NetworksSocial Networks
Image credit: Medium Image credit: Science Image credit: Lumen Learning

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/

 We want to generate realistic graphs, using
graph generative models

 Applications:

▪ Drug discovery, material design

▪ Social network modeling
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 5

Real graphSynthetic graph

Graph
Generative

Model

Generate

≈

which is
similar to

 Insights – We can understand the formulation
of graphs

 Predictions – We can predict how will the
graph further evolve

 Simulations – We can use the same process
to general novel graph instances

 Anomaly detection - We can decide if a graph
is normal / abnormal

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 6

 Step 1: Properties of real-world graphs

▪ A successful graph generative model should fit
these properties

 Step 2: Traditional graph generative models

▪ Each come with different assumptions on the graph
formulation process

 Step 3: Deep graph generative models

▪ Learn the graph formation process from the data

▪ This lecture!

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 7

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

…

Output: node embeddings

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

…

Output: Graph Structure!

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Task 1: Realistic graph generation
 Generate graphs that are similar to a given

set of graphs [Focus of this lecture]

Task 2: Goal-directed graph generation
 Generate graphs that optimize given

objectives/constraints

▪ E.g., Drug molecule generation/optimization

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

 Given: Graphs sampled from 𝑝𝑑𝑎𝑡𝑎(𝐺)
 Goal:

▪ Learn the distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)

▪ Sample from 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

𝑝𝑑𝑎𝑡𝑎(𝐺) 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)Learn &

Sample

Setup:
 Assume we want to learn a generative model

from a set of data points (i.e., graphs) {𝒙𝑖}
▪ 𝑝𝑑𝑎𝑡𝑎(𝒙) is the data distribution, which is never known

to us, but we have sampled 𝒙𝑖 ~ 𝑝𝑑𝑎𝑡𝑎(𝒙)

▪ 𝑝𝑚𝑜𝑑𝑒𝑙(𝒙; 𝜃) is the model, parametrized by 𝜃, that we
use to approximate 𝑝𝑑𝑎𝑡𝑎(𝒙)

 Goal:
▪ (1) Make 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃 close to 𝑝𝑑𝑎𝑡𝑎 𝒙 (Density

estimation)

▪ (2) Make sure we can sample from 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃
(Sampling)
▪ To generate new graphs, we sample from 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

(1) Make 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙; 𝜽 close to 𝒑𝒅𝒂𝒕𝒂 𝒙
 Key Principle: Maximum Likelihood
 Fundamental approach to modeling distributions

▪ Find parameters 𝜃∗, such that for observed data
points 𝒙𝑖~𝑝𝑑𝑎𝑡𝑎 the σ𝑖 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙𝑖; 𝜃∗ has the
highest value, among all possible choices of 𝜃

▪ That is, find the model that is most likely to have
generated the observed data 𝑥

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

(2) Sample from 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙; 𝜽
 Goal: Sample from a complex distribution
 The most common approach:

▪ (1) Sample from a simple noise distribution
𝒛𝑖~𝑁(0,1)

▪ (2) Transform the noise 𝑧𝑖 via complex 𝑓(⋅)
𝒙𝑖 = 𝑓(𝒛𝑖; 𝜃)

Then 𝒙𝑖 follows a complex distribution

 Q: How to design 𝒇(⋅)?
 A: Use Deep Neural Networks, and train it

using the data we have!
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Auto-regressive models:
 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙; 𝜽 is used for both density

estimation and sampling (remember our two goals)
▪ Other models like Variational Auto Encoders (VAEs), Generative Adversarial

Nets (GANs) have 2 or more models, each playing one of the roles

▪ Idea: Chain rule. Joint distribution is a product of
conditional distributions:

𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃 = ෑ

𝑡=1

𝑛

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡|𝑥1, … , 𝑥𝑡−1; 𝜃)

▪ E.g., 𝒙 is a vector, 𝑥𝑡 is the 𝑡-th dimension;
𝒙 is a sentence, 𝑥𝑡 is the 𝑡-th word.

▪ In our case: 𝑥𝑡 will be the 𝑡-th action (add node, add edge)
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Generating graphs via sequentially adding
nodes and edges

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

[You et al., ICML 2018]

1 1

2

1

2

3 1

2 4

3 1

2 4

3

5

1

2 4

3

5

Graph 𝐺

Generation process 𝑆𝜋

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. J. You, R. Ying, X.
Ren, W. L. Hamilton, J. Leskovec. International Conference on Machine Learning (ICML), 2018.

https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

1

2 4

3

5

Graph 𝐺 with node ordering π can be uniquely mapped
into a sequence of node and edge additions Sπ

1 1

2

1

2

3 1

2 4

3 1

2 4

3

5

Graph 𝐺 with
node ordering 𝜋:

Sequence 𝑆𝜋:

𝑆1
𝜋 𝑆2

𝜋 𝑆3
𝜋 𝑆4

𝜋 𝑆5
𝜋()𝑆𝜋 = , , , ,

The sequence 𝑆𝜋 has two levels
(𝑆 is a sequence of sequences):

▪ Node-level: add nodes, one at a time

▪ Edge-level: add edges between existing nodes

 Node-level: At each step, a new node is added

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

1 1

2

1

2

3 1

2 4

3 1

2 4

3

5

𝑆1
𝜋 𝑆2

𝜋 𝑆3
𝜋 𝑆4

𝜋 𝑆5
𝜋()𝑆𝜋 = , , , ,

“Add node 1” “Add node 5”…

The sequence 𝑆𝜋 has two levels:
 Each Node-level step is an edge-level sequence
 Edge-level: At each step, add a new edge

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

1

2 4

3

𝑆4,1
𝜋 𝑆4,2

𝜋 𝑆4,3
𝜋

𝑆4
𝜋

()𝑆4
𝜋 = , ,

“Not connect 4, 1” “Connect 4, 2” “Connect 4, 3”

0 1 1

 Summary: A graph + a node ordering =
A sequence of sequences

 Node ordering is randomly selected (we will
come back to this)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

2 4

3

5

Graph 𝐺

Node-level sequence

Edge-level

sequence

Adjacency matrix

⇔

 We have transformed graph generation
problem into a sequence generation problem

 Need to model two processes:

▪ 1) Generate a state for a new node
(Node-level sequence)

▪ 2) Generate edges for the new node based on its
state (Edge-level sequence)

 Approach: Use Recurrent Neural Networks
(RNNs) to model these processes!

 Same principles apply to Transformers
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

▪ RNNs are designed for sequential data

▪ RNN sequentially takes input sequence to update
its hidden states

▪ The hidden states summarize all the information
input to RNN

▪ The update is conducted via RNN cells

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 24

RNN
cell

𝑥1

𝑠0

𝑦1

𝑠1
RNN
cell

𝑥2

𝑦2

…𝑠2

Input sequence:

Output sequence:

Hidden states:

 𝑠𝑡: State of RNN after step 𝑡
 𝑥𝑡: Input to RNN at step 𝑡
 𝑦𝑡: Output of RNN at step 𝑡
 RNN cell: 𝑊, 𝑈, 𝑉: Trainable parameters

 More expressive cells: GRU, LSTM, etc.
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

RNN
cell

𝑥𝑡

𝑠𝑡−1

𝑦𝑡

𝑠𝑡

The RNN cell:
(1) Update hidden state:

𝑠𝑡 = 𝜎(𝑊 ⋅ 𝑥𝑡 + 𝑈 ⋅ 𝑠𝑡−1)
(2) Output prediction:

𝑦𝑡 = 𝑉 ⋅ 𝑠𝑡

(1)
(2)

In our case 𝑠𝑡, 𝑥𝑡 and
𝑦𝑡 will be scalars
(edge probabilities)

 GraphRNN has a node-level RNN and an
edge-level RNN

 Relationship between the two RNNs:

▪ Node-level RNN generates the initial state
for edge-level RNN

▪ Edge-level RNN sequentially predict if the
new node will connect to each of the
previous node

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Node-level RNN generates the initial
state for edge-level RNN

Edge-level RNN sequentially predict if the new node will
connect to each of the previous node

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

Node-level RNN generates the initial

state for edge-level RNN

Edge-level RNN generates edges for the new node,

then update Node-level RNN state using generated results
Next: How to generate a sequence with RNN?

 Q: How to use RNN to generate sequences?
 A: Let 𝑥𝑡+1 = 𝑦𝑡 (Use the previous output as input)

 Q: How to initialize the input sequence?
 A: Use start of sequence token (SOS) as the initial input

▪ SOS is usually a vector with all zero/ones

 Q: When to stop generation?
 A: Use end of sequence token (EOS) as an extra RNN

output

▪ If output EOS=0, RNN will continue generation

▪ If output EOS=1, RNN will stop generation

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

 This is good, but this model is deterministic

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝑠0

𝑦1

𝑠1
RNN
cell

𝑥2= 𝑦1

𝑦2

𝑠𝑇−1
RNN
cell

𝑥𝑇 = 𝑦𝑇−1

𝐸𝑂𝑆 = 1

…𝑠2

Initialize input

Stop generationUse the previous output as input

Consider the Edge-level RNN for now.
 Our goal: Model ς𝑡=1

𝑛 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡|𝑥1, … , 𝑥𝑡−1; 𝜃)
 Let 𝑦𝑡 = 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡+1|𝑥1, … , 𝑥𝑡; 𝜃)
 Then we need to sample 𝑥𝑡+1 from 𝑦𝑡: 𝑥𝑡+1~𝑦𝑡

▪ Each step of RNN outputs a probability of a single edge

▪ We then sample from the distribution, and feed sample to next
step:

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝑦1

𝑠1
RNN
cell

𝑦2

𝑠2
RNN
cell

𝑥3~𝑦2

𝑦3

𝑠3
…𝑠0

𝑥2~𝑦1

Suppose we already have trained the edge-level RNN
▪ 𝑦𝑡 is a scalar, following a Bernoulli distribution

▪ means value 1 has prob. 𝑝, value 0 has prob. 1 − 𝑝

 How do we use training data 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏?
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝑠1
RNN
cell

𝑥2 ~

𝑠2
RNN
cell

𝑠3
…

0.9𝑦1 =

𝑠0 = 𝑆𝑂𝑆

0.9

0.4𝑦2 = 0.7𝑦3 =

𝑥2 =

𝑥3 ~ 0.4

𝑥3 =

𝑝

1 0

Training the model:
 We observe a sequence 𝑦∗ of edges [0,0,1,…]
 Principle: Teacher Forcing -- Replace input

and output by the real sequence

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝒔1
RNN
cell

𝑠2
RNN
cell

𝑠3

𝑦1
∗ =

𝑥2 = 𝑥3 =

Compute
loss

𝑦2
∗ = 𝑦3

∗ =

𝑠0 = 𝑆𝑂𝑆

0.9𝑦1 = 0.4𝑦2 = 0.7𝑦3 =

0 0

0 0 1

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

 Loss 𝐿 : Binary cross entropy
 Minimize:

𝐿 = −[𝑦1
∗log(𝑦1) + (1 − 𝑦1

∗)log(1 − 𝑦1)]

 If 𝑦1
∗ = 1, we minimize −log(𝑦1), making 𝑦1 higher

 If 𝑦1
∗ = 0, we minimize −log(1 − 𝑦1), making 𝑦1 lower

 This way, 𝑦1 is fitting the data samples 𝑦1
∗

 Reminder: 𝑦1 is computed by RNN, this loss will adjust
RNN parameters accordingly, using back propagation!

𝑦1
∗ =Compute

loss
0.9𝑦1 =

0

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Our Plan:
(1) Add a new node: We run Node RNN for a step, and use

it output to initialize Edge RNN
(2) Add new edges for the new node: We run Edge RNN to

predict if the new node will connect to each of the
previous node

(3) Add another new node: We use the last hidden state of
Edge RNN to run Node RNN for another step

(4) Stop graph generation: If Edge RNN outputs EOS at step
1, we know no edges are connected to the new node.
We stop the graph generation.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Node
RNN

𝑆𝑂𝑆

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Assuming Node 1 is in the graph
Now adding Node 2

Start the node RNN

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Edge RNN predicts how
Node 2 connects to Node 1 0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Start the edge RNNWill node 2
connect to
node 1?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Update Node RNN using
Edge RNN’s hidden state 0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Edge
RNN

𝑆𝑂𝑆0.6

Edge
RNN

0.4 1

Edge RNN predicts
how Node 3 tries to
connects to Nodes 1, 2

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Will node 3
connect to node 1?

Teacher forcing: node 3 will
connect to node 1

Will node 3
connect to node 2?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Edge
RNN

Node
RNN

𝑆𝑂𝑆0.6

Edge
RNN

0.4 1

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Update Node RNN using
Edge RNN’s hidden state

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.6

Edge
RNN

0.4

0.4

𝐸𝑂𝑆

1

Stop generation since
we know node 4 won’t
connect to any nodes

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph
4

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

0 1 1

1 0 0

1 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.6

Edge
RNN

1

0.4

1

0

0.4

𝐸𝑂𝑆

Observed graph1

For each prediction, we get
supervision from the ground truth

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

0 1 1

1 0 0

1 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.6

Edge
RNN

1

0.4

1

0

0.4

𝐸𝑂𝑆

Observed graph1

Backprop through time:
Gradients are accumulated
across time steps

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.9

0 1 1

1 0 0

1 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.2

Edge
RNN

0.2 Observed graph0

Test time: (1) Sample edge connectivity
based on predicted distribution
(2) Replace input at each step by
GraphRNN’s own predictions

1
~

0
~

0.5

𝐸𝑂𝑆
~

0
~

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.9

0 1 0

1 0 0

0 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.2

Edge
RNN

0.2 Generated graph0

Test time: (1) Sample edge connectivity
based on predicted distribution
(2) Replace input at each step by
GraphRNN’s own predictions

1
~

0
~

0.5

𝐸𝑂𝑆
~

0
~

Quick Summary of GraphRNN:

▪ Generate a graph by generating a two-level sequence

▪ Use RNN to generate the sequences

 Next: Making GraphRNN tractable, proper evaluation

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

2 4

3

5

Graph 𝐺

Node-level RNN

Edge-level RNN

Adjacency matrix

⇔

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Any node can connect to any prior node

 Too many steps for edge generation

▪ Need to generate full adjacency matrix

▪ Complex too-long edge dependencies

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

1

5 4

3

2

Random node ordering:

Node 5 may connect to any/all previous nodes

How do we limit this complexity?

“Recipe” to generate the left graph:

- Add node 1

- Add node 2

- Add node 3

- Connect 3 with 2 and 1
- Add node 4

- …

 Breadth-First Search node ordering

 BFS node ordering:
▪ Since Node 4 doesn’t connect to Node 1

▪ We know all Node 1’s neighbors have already been traversed

▪ Therefore, Node 5 and the following nodes will never connect
to node 1

▪ We only need memory of 2 “steps” rather than n − 1 steps

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

1

2 4

3

5

BFS ordering

“Recipe” to generate the left graph:

- Add node 1

- Add node 2

- Connect 2 with 1

- Add node 3

- Connect 3 with 1

- Add node 4

- Connect 4 with 3 and 2

 Breadth-First Search node ordering

 Benefits:

▪ Reduce possible node orderings

▪ From 𝑂(𝑛!) to number of distinct BFS orderings

▪ Reduce steps for edge generation

▪ Reducing number of previous nodes to look at

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

1

2 4

3

5

BFS ordering

BFS node ordering: Node 5 will

never connect to node 1

(only need memory of 2 “steps”

rather than 𝑛 − 1 steps)

 BFS reduces the number of steps for edge
generation

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Adjacency matrices

 Task: Compare two sets of graphs

 Goal: Define similarity metrics for graphs

 Solution

▪ (1) Visual similarity

▪ (2) Graph statistics similarity

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

How similar?

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Question: Can we learn a model that can
generate valid and realistic molecules with
optimized property scores?

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Model Property

output that optimizes

e.g., drug_likeness=0.95

[You et al., NeurIPS 2018]

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

Generating graphs that:
 Optimize a given objective (High scores)

▪ e.g., drug-likeness

 Obey underlying rules (Valid)

▪ e.g., chemical validity rules

 Are learned from examples (Realistic)

▪ Imitating a molecule graph dataset

▪ We have just covered this part

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

Generating graphs that:
 Optimize a given objective (High scores)

▪ e.g., drug-likeness

 Obey underlying rules (Valid)

▪ e.g., chemical validity rules

 Are learned from examples (Realistic)

▪ Imitating a molecule graph dataset

▪ Covered this part when introducing GraphRNN

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

Including a “Black-box” to Graph
Generation:
Objectives like drug-likeness are governed by
physical law which is assumed to be unknown
to us.

 A ML agent observes the environment, takes
an action to interact with the environment,
and receives positive or negative reward

 The agent then learns from this loop
 Key idea: Agent can directly learn from

environment, which is a blackbox to the agent

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

ML Agent

Action

Environment

Observation,
Reward

Graph Convolutional Policy Network (GCPN)
combines graph representation + RL
Key component of GCPN:
 Graph Neural Network captures graph

structural information
 Reinforcement learning guides the generation

towards the desired objectives
 Supervised training imitates examples in given

datasets

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

 Commonality of GCPN & GraphRNN:

▪ Generate graphs sequentially

▪ Imitate a given graph dataset

 Main Differences:

▪ GCPN uses GNN to predict the generation action

▪ Pros: GNN is more expressive than RNN

▪ Cons: GNN takes longer time to compute than RNN

▪ GCPN further uses RL to direct graph generation to
our goals

▪ RL enables goal-directed graph generation

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 68

 Sequential graph generation
 GraphRNN: predict action based on RNN hidden states

 GCPN: predict action based on GNN node embeddings

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 69

Node
RNN

Edge
RNN

Edge
RNN

Edge
RNN

0 1 1
1

2 4

31

2

3

RNN hidden state captures the generated graph so far

GNN

1

2 4

3 1

2 4

3

Predict potential links
using node embeddings

Node
embeddings

1

2 4

3
Recall the link
prediction head:

Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

):=

Linear(Concat(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

))

 (a) Insert nodes

 (b,c) Use GNN to predict which nodes to connect

 (d) Take an action (check chemical validity)

 (e, f) Compute reward

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7012/1/2025

 Step reward: Learn to take valid action

▪ At each step, assign small positive reward for valid

action

 Final reward: Optimize desired properties

▪ At the end, assign positive reward for high desired

property

Reward = Final reward + Step reward
12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

 Two parts:
 (1) Supervised training: Train policy by imitating

the action given by real observed graphs. Use
gradient.
▪ We have covered this idea in GraphRNN

 (2) RL training: Train policy to optimize rewards.
Use standard policy gradient algorithm.
▪ Refer to any RL course, e.g., CS234

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

Visualization of GCPN graphs:

 Property optimization Generate molecules
with high specified property score

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7412/1/2025

Visualization of GCPN graphs:
 Constrained optimization: Edit a given molecule for

a few steps to achieve higher property score

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 75

Starting structure Finished structure

12/1/2025

Increase the
solubility in
octanol

 Complex graphs can be successfully generated
via sequential generation using deep learning

 Each step a decision is made based on hidden
state, which can be

▪ Implicit: vector representation, decode with RNN

▪ Explicit: intermediate generated graphs, decode
with GCN

 Possible tasks:

▪ Imitating a set of given graphs

▪ Optimizing graphs towards given goals

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 76

	Slide 1: Stanford CS224W: Deep Generative Models for Graphs
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Motivation for Graph Generation
	Slide 5: The Problem: Graph Generation
	Slide 6: Why Do We Study Graph Generation
	Slide 7: History of Graph Generation
	Slide 8: So far: Deep Graph Encoders
	Slide 9: Today: Deep Graph Decoders
	Slide 10: Stanford CS224W: Machine Learning for Graph Generation
	Slide 11: Graph Generation Tasks
	Slide 12: Graph Generative Models
	Slide 13: Generative Models Basics
	Slide 14: Generative Models Basics
	Slide 15: Generative Models Basics
	Slide 16: Deep Generative Models
	Slide 17: Stanford CS224W: GraphRNN: Generating Realistic Graphs
	Slide 18: GraphRNN Idea
	Slide 19: Model Graphs as Sequences
	Slide 20: Model Graphs as Sequences
	Slide 21: Model Graphs as Sequences
	Slide 22: Model Graphs as Sequences
	Slide 23: Model Graphs as Sequences
	Slide 24: Background: Recurrent NNs
	Slide 25: Background: Recurrent NNs
	Slide 26: GraphRNN: Two levels of RNN
	Slide 27: GraphRNN: Two levels of RNN
	Slide 28: GraphRNN: Two levels of RNN
	Slide 29: RNN for Sequence Generation
	Slide 30: RNN for Sequence Generation
	Slide 31: Towards Edge-Level RNN
	Slide 32: Towards Edge-Level RNN
	Slide 33: Edge-Level RNN at Training Time
	Slide 34: Edge-Level RNN at Training Time
	Slide 35: Putting Things Together
	Slide 36: Put Things Together: Training
	Slide 37: Put Things Together: Training
	Slide 38: Put Things Together: Training
	Slide 39: Put Things Together: Training
	Slide 40: Put Things Together: Training
	Slide 41: Put Things Together: Training
	Slide 42: Put Things Together: Training
	Slide 43: Put Things Together: Training
	Slide 44: Put Things Together: Test
	Slide 45: Put Things Together: Test
	Slide 46: GraphRNN: Two levels of RNN
	Slide 47: Stanford CS224W: Scaling Up and Evaluating Graph Generation
	Slide 48: Issue: Tractability
	Slide 49: Solution: Tractability via BFS
	Slide 50: Solution: Tractability via BFS
	Slide 51: Solution: Tractability via BFS
	Slide 52: Evaluating Generated Graphs
	Slide 53: (1) Visual Similarity
	Slide 54: (1) Visual Similarity
	Slide 62: Stanford CS224W: Application of Deep Graph Generative Models to Molecule Generation
	Slide 63: Application: Drug Discovery
	Slide 64: Goal-Directed Graph Generation
	Slide 65: The Hard Part:
	Slide 66: Idea: Reinforcement Learning
	Slide 67: Solution: GCPN
	Slide 68: GCPN vs. GraphRNN
	Slide 69: GCPN vs. GraphRNN
	Slide 70: Overview of GCPN
	Slide 71: How Do We Set the Reward?
	Slide 72: How Do We Train?
	Slide 73: Training GCPN
	Slide 74: Qualitative Results
	Slide 75: Qualitative Results
	Slide 76: Summary of Graph Generation

