Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: hitp://cs224w.Stanford.edu

Stanford CS224W:

Deep Generative Models for
Graphs

http://cs224w.stanford.edu/

Announcements

Project Milestone feedback is out now!
We are almost done grading exams — will
make an announcement when done
Colab 4 due today (12/2)

Colab 5 due Thursday 12/4

Project Report due Thursday 12/11

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Announcements

We need your Medium account usernames

We will add all of you as writers to our C5224W
publications

Please fill out the Google Form on Ed with your
Medium account username

https://forms.gle/HWinc8vEZ2gK6DYcb
This is a requirement!

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Motivation for Graph Generation

So far, we have been learning from graphs

We assume the graphs are given

£ {
A SETE o
RS) allas
/] e v "
R 17 N ’ /,%/
= ﬁ r : Z - :
;g;f" P W Q) W
o O
&

Social Networks Economic Networks Communication Networks

But how are these graphs generated?

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 4

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/

The Problem: Graph Generation

We want to generate realistic graphs, using
graph generative models

which is

Generate *=~ similar to
Synthetic graph Real graph

Applications:
Drug discovery, material design
Social network modeling

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 5

Why Do We Study Graph Generation

12/1/2025

Insights — We can understand the formulation
of graphs
Predictions — We can predict how will the

graph further evolve

Simulations — We can use the same process
to general novel graph instances

Anomaly detection - We can decide if a graph
is normal / abnormal

History of Graph Generation

Step 1: Properties of real-world graphs

A successful graph generative model should fit
these properties

Step 2: Traditional graph generative models

Each come with different assumptions on the graph
formulation process

Step 3: Deep graph generative models

Learn the graph formation process from the data
This lecture!

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu

So far: Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
@2 °
& &
Activation Q Q
function &
y >

A,
y
'y

Output: node embeddings

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

Today: Deep Graph Decoders

 ——————

Graph Regularization, Graph
convolutions e.g., dropout convolutions
@2 °
& &
Activation Q Q
function &
y >

A,

/
Y
¥

Output: Graph Structure!

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W:
Machine Learning for
Graph Generation

Graph Generation Tasks

Task 1: Realistic graph generation
Generate graphs that are similar to a given
set of graphs [Focus of this lecture]

Task 2: Goal-directed graph generation
Generate graphs that optimize given
objectives/constraints

E.g., Drug molecule generation/optimization

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph Generative Models

Given: Graphs sampled from p;,:4(G)
Goal:

Learn the distribution p,,,,40:1(G)
Sample from P, 5401 (G)

Paata(CG) Learn & Pmodel(G)

| Lo e
. . P~ S Salll |e .p Sioace <N
b S -p - e -, [e S P .. . s
s oL 2 o iy o =2t o2 i -
. i A I & = e 2 5 P X
L& ST e o ¥ . SRS s .. 0 -~ - o
- v o - -~ e .- v .
P e N ~: ¥ piis) Ol 13 7
s e atos t S 5 = iy
» - . - . \ - <nhw
by . FRN S oY ra
S | R) P v 3 }@ - pas
e 3 At - 3 N
. P v “
e o N Per e 4 =
P ety N » 2N \ v la N < b e 14 s
Pl ke A A ==] b 2 o ’ - ek NPy
P . A N v > . - -~ . & o] S
(i SN, ¥ . LT ¢ o, =% . =4 3
= feis <AL i e .
A wxr o e S5 A e o' ol
L v e ' L Y ¢ -

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Generative Models Basics

Setup:
Assume we want to learn a generative model
from a set of data points (i.e., graphs) {x;}

Daatq (X) is the data distribution, which is never known
to us, but we have sampled x; ~ Pig4¢q (X)

Pmodel (X; 8) is the model, parametrized by 6, that we
use to approximate D ,¢4 (X)
Goal:

(1) Make P, pq01(X; 8) close to Py eq(x) (Density
estimation)

(2) Make sure we can sample from p,,,, 401 (X; 0)
(Sampling)

To generate new graphs, we sample from p,,,40:(X; 6)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

Generative Models Basics

(1) Make p;0461(X; 0) close to pggeq(x)
Key Principle: Maximum Likelihood

Fundamental approach to modeling distributions

0" = argénax @ oo 108 Pmodel (T | 0)

Find parameters 87, such that for observed data
POINts X;~Paqta the ;108 Pmoder(Xi; 67) has the
highest value, among all possible choices of 6

That is, find the model that is most likely to have
generated the observed data x

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Generative Models Basics

(2) Sample from P, q01(X; 0)
Goal: Sample from a complex distribution
The most common approach:

(1) Sample from a simple noise distribution
z;~N(0,1)
(2) Transform the noise z; via complex f (-)
= f(2:;0)

Then x; follows a complex distribution
Q: How to design f(-)?
A: Use Deep Neural Networks, and train it
using the data we haveI

12/1/2025 eskovec, Stanford CS224W: Machin with Graphs, http://cs224w.stanford.edu

Deep Generative Models

Auto-regressive models:
Pmodel(X; @) is used for both density
estimation and sampling (remember our two goals)

Other models like Variational Auto Encoders (VAEs), Generative Adversarial
Nets (GANs) have 2 or more models, each playing one of the roles

Idea: Chain rule. Joint distribution is a product of
conditional distributions:

n
Pmodel (x;0) = Pmodel (Xt X1, oy X¢—1; 0)
t=1

E.g., x is a vector, x; is the t-th dimension;

X is a sentence, x; is the t-th word.

In our case: x; will be the t-th action (add node, add edge)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

Stanford CS224W:
GraphRNN:
Generating Realistic Graphs

[You et al., ICML 2018]

GraphRNN Idea

Generating graphs via sequentially adding

nodes and edges
Graph

D= ag—@@

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. J. You, R. Ying, X.
Ren, W. L. Hamilton, J. Leskovec. International Conference on Machine Learning (ICML), 2018.

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf

Model Graphs as Sequences

Graph G with
node ordering :

]

Sequence S™:

@

ST= (SIS}

)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

Model Graphs as Sequences

The sequence S™ has two levels
(S is a sequence of sequences):

Node-level: add nodes, one at a time
Edge-level: add edges between existing nodes

Node level: At each step, a new node is added

RIS

= (St sy , S5 , Sy S)
“Add node 1” - “Add node 5”

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Model Graphs as Sequences

The sequence S™ has two levels:
Each Node-level step is an edge-level sequence
Edge-level: At each step, add a new edge

SZLT: (SZLT,1 , SZLT,Z , SZLT,B)
“Not connect 4, 1 “Connect4,2” “Connect4, 3’

0 1 1

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Model Graphs as Sequences

Summary: A graph + a node ordering =
A sequence of sequences
Node ordering is randomly selected (we will

come back to this)
Node-level sequence

0
& 0110 Edge-level
111 sequence
1

Adjacency matrix

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

22

Model Graphs as Sequences

We have transformed graph generation
problem into a sequence generation problem

Need to model two processes:

1) Generate a state for a new node
(Node-level sequence)

2) Generate edges for the new node based on its
state (Edge-level sequence)
Approach: Use Recurrent Neural Networks
(RNNs) to model these processes!

Same principles apply to Transformers

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Background: Recurrent NNs

RNNs are designed for sequential data
RNN sequentially takes input sequence to update
its hidden states

The hidden states summarize all the information
input to RNN

The update is conducted via

Output sequence:

Hidden states: S :}D:} S1 :}D:} S5

Input sequence: x1 x2

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 24

Background: Recurrent NNs

s;: State of RNN after step t In our case s¢, x; and
+ Will be scalars
x,: Input to RNN at step ¢ (e dee probabilities]

y¢: Output of RNN at step ¢
RNN cell: W, U, V: Trainable parameters

Ve The RNN cell:
1)) (1) Update hidden state:
St — O-(W 'xt —+ U 'St_l)
St = = s (2) Output prediction:
ﬁ yt — V . St
Xt

More expresswe ceIIs GRU LSTI\/I etc.

12/1/202 anford CS224W: Machin with Graphs, http://cs anford.edu

GraphRNN: Two levels of RNN

12/1/2025

GraphRNN has a node-level RNN and an
edge-level RNN

Relationship between the two RNNs:

Node-level RNN generates the initial state
for edge-level RNN

Edge-level RNN sequentially predict if the
new node will connect to each of the
previous node

GraphRNN: Two levels of RNN

Node-level RNN generates the initial ‘
state for edge-level RNN

hy o h3 hy

hs he
(O—3 O—B)
e D

SOS— 1 1 0 0
Sg 1 0 11| — 0| —
ST ! 1 :
3 Sample + Edge-level Update
ST 1 —
4 Node-level Update

S5
Edge-level RNN sequentially predict if the new node will
connect to each of the previous node

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

GraphRNN: Two levels of RNN

Node-level RNN generates the initial ‘
state for edge-level RNN

hl hg }13]14 hrg. h@
(OD—B O—3)
o b T D

9@ 2O—®

SOS— |1 B 1] | o — 0
S%r 0 — 1| — 10 [——
S%r 1 1 _'i Sample + Edge-level Update
Szlr o 1 Node-level Upd

I - pdate

IL Qm

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

RNN for Sequence Generation

Q: How to use RNN to generate sequences?
A: Let x;,1 = V¢ (Use the previous output as input)

Q: How to initialize the input sequence?
A: Use start of sequence token (SOS) as the initial input

SOS is usually a vector with all zero/ones

Q: When to stop generation?
A: Use end of sequence token (EOS) as an extra RNN
output

If output EOS=0, RNN will continue generation

If output EOS=1, RNN will stop generation

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

RNN for Sequence Generation

Use the previous output as input Stop generation
EOS =1
X1 —SOS RS > x2=y1 xT = Y1-1

Initialize input

This is good, but this model is deterministic

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

Towards Edge-Level RNN

Consider the Edge-level RNN for now.
Our goal: Model [[7=1 Pmoder (X¢ X1, o) Xt—1; 0)

Let v = Pmodet (Xe+1]%1, - X5 0)
Then we need to sample x; 1 from y¢: xp 01 ~V;

Each step of RNN outputs a probability of a single edge

We then sample from the distribution, and feed sample to next
step:

Vi Y2

L S 1
So @B@ 51 @B@ s, @B@;} 5y o
Tt L] 1

X1 = SOS oo X2 ~V1 X3~Yo

12/1/2025 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

Towards Edge-Level RNN

Suppose we already have trained the edge-level RNN
y; is a scalar, following a Bernoulli distribution
p |means value 1 has prob. p, value O has prob. 1 —p

Yi= (03] Y2 = [04] . y3 = |07

How do we use training data x¢, x5, ..., xX,,?

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Edge-Level RNN at Training Time

Training the model:
We observe a sequence y* of edges [0,0,1,...]
Principle: Teacher Forcing -- Replace input
and output by the real sequence

Compute y7 = |0t Y, =0 y; = 1
loss JJ y, = |09 ﬂ' y, = |04 J Vs = |07
t 1 2
e o -~
Ll . | Ll

12/1/2025 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, http://cs224w.stanford.edu

E

12/1/2025

dge-Level RNN at Training Time

Loss L : Binary cross entropy
Minimize:
L = —[y;log(y1) + (1 — y1)log(1l — y1)]

Compute y7

loss ﬂ,

V1

0

0.9

If y; = 1, we minimize —log(y;), making y; higher

If y; = 0, we minimize —log(1 — y,), making y, lower
This way, y; is fitting the data samples y;

Reminder: y; is computed by RNN, this loss will adjust
RNN parameters accordingly, using back propagation!

ure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Putting Things Together

Our Plan:

(1) Add a new node: We run Node RNN for a step, and use
it output to initialize Edge RNN

(2) Add new edges for the new node: We run Edge RNN to
predict if the new node will connect to each of the
previous node

(3) Add another new node: We use the last hidden state of
Edge RNN to run Node RNN for another step

(4) Stop graph generation: If Edge RNN outputs EOS at step
1, we know no edges are connected to the new node.
We stop the graph generation.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Put Things Together:

Assuming Node 1 is in the graph
Now adding Node 2

ki

1)
SOS
Start the node RNN

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Put Things Together: Training

Edge RNN predicts how
Node 2 connects to Node 1

054 €@ S0S
Start the edge RNN

Will node 2 1@

connect to

node 17 D
1)
SOS

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Put Things Together: Training

Update Node RNN using
Edge RNN’s hidden state

05| €6

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Put Things Together: Training

Edge RNN predicts
how Node 3 tries to
connects to Nodes 1, 2

04 & al 1l
Will node 3 Teacher forcing: node 3 will
connect to node 27 T connect to node 1
05| €@ @ S0S 0.6 ¢-|:|¢- SOS
Will node 3
2 connect to node 17 L)
D . >

1t
S0S

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Put Things Together: Training

Update Node RNN using
Edge RNN’s hidden state

0.5 éDé SOS
=

1t
S0S

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Put Things Together: Training

Stop generation since
we know node 4 won’t
connect to any nodes

0.5 éDé SOS
=

1t
S0S

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Put Things Together: Training

For each prediction, we get
supervision from the ground truth

0.4 ¢-|:|¢- 1
0 T
0.5 éDéSOS 0.6 ¢-|:|¢- S0S
1 13 1 L)
it — kd

1t
S0S

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Put Things Together: Training

Backprop through time:
Gradients are accumulated
across time steps

SOS

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Put Things Together:

Test time: (1) Sample edge connectivity
based on predicted distribution

(2) Replace input at each step by
GraphRNN’s own predictions o

0.2 {:D{: 0

o [o]

09| €&

-Hi-E

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Put Things Together:

Test time: (1) Samp'e edge connectivity r—————————
based on predicted distribution @ 1
(2) Replace input at each step by GD\@ 0 |
GraphRNN’s own predictions .

o2]e [B| «[<] L. Generated graph

oo]

09| €&

-gi-El
o
=
Cy
)
)
=Y

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

GraphRNN: Two levels of RNN

Quick Summary of GraphRNN:

Generate a graph by generating a two-level sequence
Use RNN to generate the sequences

Next: Making GraphRNN tractable, proper evaluation

ﬂ Edge-level RNN

Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Node-level RNN
11110

0 |1
=
1

| =~ 1O O

Adjacency matrix

12/1/2025 Jure

Stanford CS224W:
Scaling Up and Evaluvating
Graph Generation

Issue: Tractability

Any node can connect to any prior node
Too many steps for edge generation

Need to generate full adjacency matrix

Complex too-long edge dependencies

“Recipe” to generate the left graph:
- Add node 1

- Add node 2

- Add node 3

- Connect 3 with 2 and 1

- Add node 4

Random node ordering:
Node 5 may connect to any/all previous nodes

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Solution: Tractability via BFS

Breadth-First Search node ordering

“Recipe” to generate the left graph:
- Add node 1
Add node 2
Connect 2 with 1
Add node 3
Connect 3 with 1
) - Add node 4
BFS ordering - Connect 4 with 3 and 2

BFS node ordering:
Since Node 4 doesn’t connect to Node 1
We know all Node 1’s neighbors have already been traversed

Therefore, Node 5 and the following nodes will never connect
tonode 1

We only need memory of 2 “steps” rather than n — 1 steps

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Solution: Tractability via BFS

Breadth-First Search node ordering

BFS node ordering: Node 5 will
never connect to node 1
(only need memory of 2 “steps”
rather than n — 1 steps)

BFS ordering

Benefits:

Reduce possible node orderings
From O(n!) to number of distinct BFS orderings

Reduce steps for edge generation
Reducing number of previous nodes to look at

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Solution: Tractability via BFS

BFS reduces the number of steps for edge

generation
Adjacency matrices

Without BFS ordering With BFS ordering
N=10 N=10
£
/ 3
M=
M=9 /
/L] /
/4 /
7
Connectivity with Connectivity only with

All Previous nodes nodes in the BFS frontier

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Evaluating Generated Graphs

Task: Compare two sets of graphs

. .
- i e %o s A, ey £l b)
e . SR ~2hR SR 5 Yl
ST o bl it : o I A " P> i i 2
L8 S R / =% 7z o £ ’ :
* . e s < N7 A <
5 -l & S
aF—d T at LN N 7 }‘. - pas 4
o e Ry r ' & { " 4 g
S v \ Zias v iy \ . «] ¥ sl | 2 ez,
I il ol = o i o= /N N ¢ Bl SFars
o R N = : [t : b s A 7 oo
e = e\ SRR =)

Goal: Define similarity metrics for graphs

Solution
(1) Visual similarity
(2) Graph statistics similarity

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

(1) Visual Similarity

a0

IE

g

=

=i

I T

2 iitissass:
HT_T_F+_ L — B

e gggi‘-%‘ o

o~ — = "

3 1eSS=Sy e,

Baselines

(Kronecker) (MMSB) (B-A)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

(1) Visual Similarity

Community

ining

Tra

GraphRNN

Baselines

(Kronecker) (MMSB) (B-A)

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Stanford CS224W:
Application of Deep Graph
Generative Models to
Molecule Generation

[You et al., NeurlPS 2018]

Application: Drug Discovery

Question: Can we learn a model that can
generate valid and molecules with
property scores?

output that optimizes

)
Dad®
s

e.g.,drug_likeness=0.95

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

Goal-Directed Graph Generation

Generating graphs that:

Obey underlying rules (Valid)

e.g., chemical validity rules

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

The Hard Part:

Generating graphs that:

Covered this part when introducing GraphRNN

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

ldea: Reinforcement Learning

A ML agent observes the environment, takes
an action to interact with the environment,
and receives positive or negative reward

The agent then learns from this loop

Key idea: Agent can directly learn from
environment, which is a blackbox to the agent

MLAgent
: Observation,
Action @ > Reward

12/1/2025 Jure Leskovec, Stanford CS224W: Machin ing with Graphs, http://cs224w.stanford.edu

66

Solution: GCPN

Graph Convolutional Policy Network (GCPN)
combines graph representation + RL
Key component of GCPN:
Graph Neural Network captures graph
structural information
guides the generation
towards the desired objectives
imitates examples in given
datasets

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

GCPN vs. GraphRNN

Commonality of GCPN & GraphRNN:

Generate graphs sequentially

Imitate a given graph dataset
Main Differences:
GCPN uses GNN to predict the generation action

Pros: GNN is more expressive than RNN
Cons: GNN takes longer time to compute than RNN

GCPN further uses RL to direct graph generation to
our goals

RL enables goal-directed graph generation

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 68

GCPN vs. GraphRNN

Sequential graph generation

GraphRNN: predict action based on RNN hidden states
0 1 1

RNN hidden state captures the generated graph so far

GCPN: predict action based on GNN node embeddings

Recall the link
prediction head:

H ead—edge (hch)) hgyL)):=
Linear(C oncat(hgf), hE,L)))

Predict potential links
embeddings using node embeddings

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 69

Overview of GCPN

(1) NodelD &) ° 5) n @
Node |0 |NodelD
@ (| é\:b Observe n | . . n Sample . NodelD Act Env render o/ \0 0.1 | Step reward
—_— Edge = . d = uodate | = 0 | Final reward
) () f\ n . EdgeType p
n Message Stop (©)—=0)
(d) Dynamics
mb dding (a) State — G; Scaffold — C (b) GCPN — my(a;|G; U €) (c) Action — a; ~ 1y P(Ges1|Ger ar) (e) State — Gyyq (f) Reward — r;

(a) Insert nodes
(b,c) Use GNN to predict which nodes to connect
(d) Take an action (check chemical validity)

(e, f) Compute reward

12/1/2025

How Do We Set the Reward?

(1) NodelD 5, ° 6)

© Node Observe n o . f\ Sample Eg:::g Act Env rende ; Step reward
—— Edge () () G " . n EdgeType = update = Final reward
é Messag CQ) StOP
< passin s

Node (d) Dynamics

embedding (a) State — G, Scaffold — C (b) GCPN — mg(a¢|G U €) (c) Action — a; ~ 1y P(Gry1|Ge, ar) (e) State — Gyy4 (f) Reward — 7y

Step reward: Learn to take valid action

At each step, assign small positive reward for valid
action

Final reward: Optimize desired properties

At the end, assign positive reward for high desired
property
Reward = Final reward + Step reward

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

How Do We Train?

(1) (5)
(1) NodelD
© Nod O ﬂ NodelD O—Q
Node
) Observe Y4 . l (\ Sample 5 |NodelD |A—_Ct> Env | render e/ \G 0.1 | Step reward
s @) @) () e = . |1 |EdgeType update y 0 | Final reward
{\ N
N Message (©O)—=C) @ m Stop © ©
«— passing . 5
- Node (d) Dynamics
embedding (a) State — G, Scaffold — C (b) GCPN — mg(ac|Ge U C) (c) Action — a, ~ g P(Ge41|Grrar) (e) State — Gyyq (f) Reward — 7;

Two parts:
(1) Supervised training: Train policy by imitating
the action given by real observed graphs. Use
gradient.

We have covered this idea in GraphRNN
(2) RL training: Train policy to optimize rewards.
Use standard policy gradient algorithm.

Refer to any RL course, e.g., C5234

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

Training GCPN

Gradient
Generated
graph G¢44q
(O—W
e® G/
Graph G; (\o“‘a
N\ ©
{ pemmmnd GCPN
1 /?‘//7 Generated
0,70_/ graph Gt
S,
‘o, /O m\ R
@ Q)
©O—©

| 0.6 | Cross entropy loss

0.1

Policy gradient

12/1/2025

Step reward
Final reward

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

—

—

Supervised
Training

RL
Training

73

Qualitative Results

Visualization of GCPN graphs:

Property optimization Generate molecules

with high specified property score

7.98 7.48
f’%’v o Lk
TR
712 23.88*

(a) Penalized logP optimization

RWa
;fj?,
\/\

’ed

0.948 0.945
- .
=l)= A&
\ I
0.944 0.941

(b) QED optimization

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

74

Qualitative Results

Visualization of GCPN graphs:
Constrained optimization: Edit a given molecule for
a few steps to achieve higher property score

Starting structure Finished structure

{7? ” ﬁ;f\“\«
8.32 ;>> -0.71

O‘/(—OA@ Increase the 4 ®)
~ solubility in -Q%{Y

octanol

-D.99 1.78

(c) Constrained optimization of penalized logP

12/1/2025 75

Summary of Graph Generation

Complex graphs can be successfully generated
via sequential generation using deep learning
Each step a decision is made based on hidden
state, which can be

Implicit: vector representation, decode with RNN

Explicit: intermediate generated graphs, decode
with GCN

Possible tasks:
Imitating a set of given graphs
Optimizing graphs towards given goals

12/1/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 76

	Slide 1: Stanford CS224W: Deep Generative Models for Graphs
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Motivation for Graph Generation
	Slide 5: The Problem: Graph Generation
	Slide 6: Why Do We Study Graph Generation
	Slide 7: History of Graph Generation
	Slide 8: So far: Deep Graph Encoders
	Slide 9: Today: Deep Graph Decoders
	Slide 10: Stanford CS224W: Machine Learning for Graph Generation
	Slide 11: Graph Generation Tasks
	Slide 12: Graph Generative Models
	Slide 13: Generative Models Basics
	Slide 14: Generative Models Basics
	Slide 15: Generative Models Basics
	Slide 16: Deep Generative Models
	Slide 17: Stanford CS224W: GraphRNN: Generating Realistic Graphs
	Slide 18: GraphRNN Idea
	Slide 19: Model Graphs as Sequences
	Slide 20: Model Graphs as Sequences
	Slide 21: Model Graphs as Sequences
	Slide 22: Model Graphs as Sequences
	Slide 23: Model Graphs as Sequences
	Slide 24: Background: Recurrent NNs
	Slide 25: Background: Recurrent NNs
	Slide 26: GraphRNN: Two levels of RNN
	Slide 27: GraphRNN: Two levels of RNN
	Slide 28: GraphRNN: Two levels of RNN
	Slide 29: RNN for Sequence Generation
	Slide 30: RNN for Sequence Generation
	Slide 31: Towards Edge-Level RNN
	Slide 32: Towards Edge-Level RNN
	Slide 33: Edge-Level RNN at Training Time
	Slide 34: Edge-Level RNN at Training Time
	Slide 35: Putting Things Together
	Slide 36: Put Things Together: Training
	Slide 37: Put Things Together: Training
	Slide 38: Put Things Together: Training
	Slide 39: Put Things Together: Training
	Slide 40: Put Things Together: Training
	Slide 41: Put Things Together: Training
	Slide 42: Put Things Together: Training
	Slide 43: Put Things Together: Training
	Slide 44: Put Things Together: Test
	Slide 45: Put Things Together: Test
	Slide 46: GraphRNN: Two levels of RNN
	Slide 47: Stanford CS224W: Scaling Up and Evaluating Graph Generation
	Slide 48: Issue: Tractability
	Slide 49: Solution: Tractability via BFS
	Slide 50: Solution: Tractability via BFS
	Slide 51: Solution: Tractability via BFS
	Slide 52: Evaluating Generated Graphs
	Slide 53: (1) Visual Similarity
	Slide 54: (1) Visual Similarity
	Slide 62: Stanford CS224W: Application of Deep Graph Generative Models to Molecule Generation
	Slide 63: Application: Drug Discovery
	Slide 64: Goal-Directed Graph Generation
	Slide 65: The Hard Part:
	Slide 66: Idea: Reinforcement Learning
	Slide 67: Solution: GCPN
	Slide 68: GCPN vs. GraphRNN
	Slide 69: GCPN vs. GraphRNN
	Slide 70: Overview of GCPN
	Slide 71: How Do We Set the Reward?
	Slide 72: How Do We Train?
	Slide 73: Training GCPN
	Slide 74: Qualitative Results
	Slide 75: Qualitative Results
	Slide 76: Summary of Graph Generation

