XAI for Graphs

Guest Lecture at Stanford CS 224W: Machine Learning with Graphs

Rex Ying
Readings

• Readings are updated on the website (syllabus page)

• **Readings:**
 - LIME (local interpretation)
 - SHAP (attribution)
 - GNNExplainer
 - GNN Explainability Taxonomy
 - Trustworthy Graph Neural Networks
 - GraphFramEx Evaluation
Trustworthy AI/GNN includes many components
 • Explainability, fairness, robustness, privacy, ...
 • Algorithms to tackle combination of these aspects

Challenges
 • Role of graph topology is previously unexplored in these problems
 • Comprehensive quantitative evaluation
Big Picture: Aspects of Trustworthy GNNs

• Robustness
• Explainability
• Privacy
• Fairness
• Accountability
• Environmental well-being
• Others

Each aspect can play a role in gaining trust from users of deep learning models

Challenges in GNN context
• Role of graph topology is previously unexplored in these problems
• Quantitative evaluation is often difficult
Outline of Today’s Lecture

1. Explainability and its Problem Settings

2. GNNExplainer

3. Explainability Evaluation
Outline of Today’s Lecture

1. Explainability and its Problem Settings
 Motivation, goals and settings

2. GNNEmplainer

3. Explainability Evaluation
Explainability

• The **black-box** nature of deep learning makes it a **major challenge** to:
 • Understand what is learned by the ML model
 • Extract insights of the underlying data we are trying to model

• **Explainable Artificial Intelligence (XAI)** is an umbrella term for any research trying to solve the **black-box problem for AI**

• Why is it useful?
 • Enable users to **understand the decision-making** of the model
 • **Gain trust from human users** of the deep learning system

What was explainable about previous ML models?
Explainable Models: Linear regression

- **Linear regression**
 - **Slope is explainable** (how much does one variable affects a prediction)
 - $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + \cdots$
 - Each feature has an associated **weights**, indicating its **importance**
 - “A change of Δx amount to feature x_1 will result in increase of prediction by Δy"
Explainable Models: Dimension Reduction

- **Dimension reduction**
 - Dimension reduction allows us to visualize the training data distribution

- Decision boundary can be visualized and understood
 - Instances at the boundary characterizes how different classes are different
Explainable Models: Decision Tree

- **Decision trees** are very explainable!
- On every node of the decision tree, we understand a criteria for prediction
- We can perform statistics for each decision node
 - E.g. if the condition of the node is met, **80% of the instances will be classified as being positive**
Explainable Characteristics

• What makes model explainable?
 • **Importance** values (for pixels, features, words, nodes in graphs ...)

• **Attributions**: straightforward relationships between prediction and input features

• Encourage **concepts** and **prototypes**
Explanation in Computer Vision:
A particular region of the image displays the predicted class of objects (cat / dog in this example)

Importance scores on pixels

computation process of CNN and the prediction

Example: Natural Language Processing

Explanation in Natural Language Processing: **important tokens** that lead to the prediction

Input text

“A mindless but entertaining movie with cool effects”

“These toys were in a really bad shape, two tails fell off when I opened the package and the coloring is peeling off everywhere”

Sentiment Prediction

Positive

Negative

Explanation

A mindless but entertaining movie with cool effects.

These toys were in a really bad shape, two tails fell off when I opened the package and the coloring is peeling off everywhere.

Legend: Stronger Influence Weak Influence

Dunn, Andrew, Diana Inkpen, and Răzvan Andonie. “Context-Sensitive Visualization of Deep Learning Natural Language Processing Models.”

3/15/2023

Rex Ying, Guest Lecture at Stanford CS 224W
Explanation in Graph Learning: an important subgraph structure and a small subset of node features that play a crucial role in GNNs prediction.

Explanations for prediction at node \(v \)

A: Import subgraph structure

B: Important subset of features

Goal of GNN Explainability

- Model’s behavior might be different from the underlying phenomenon
- Explaining ground truth phenomenon
- Explaining model predictions

What are the characteristics of toxic molecules?

Why does the model recommend no loan for Person X?

Why was I denied?

Lan, a bank customer

Graph of bank transactions

Model

Chances that Lan’ll have repayment problem

22%

No loan

3/15/2023

Rex Ying, Guest Lecture at Stanford CS 224W
Deep Learning Explainability Methods: Examples

• Proxy Model
 • Learn an interpretable model that locally approximates the original model. (Example: SHAP)

• Saliency Maps
 • Compute the gradients of outputs with respect to inputs (example: Grad-CAM)

• Attention Mechanisms
 • Visualize attention weights in attention models, such as transformer and GAT architectures.
Reasons for Explainability

Why do we need Explainability?

• **Trust**: Explainability is a prerequisite for humans to *trust and accept* the model’s prediction.

• **Causality**: Explainability can sometimes imply *causality* for the target prediction: attribute X causes the data to be Y

• **Transferability**: The model needs to convey an understanding of decision-making by humans before it can be *safely deployed to unseen data*.

• **Fair and Ethical Decision Making**: Knowing the reasons for a certain decision is a societal need, in order to perceive if the prediction *conforms to ethical standards*.
Explainability Settings (1)

By target:

- **Instance-level**: a local explanation for a single input x and the prediction \hat{y}
 - identify the important components of individual instances

- **Model-level**: a global explanation for a specific dataset D or classes of D
 - provide high-level insights into the model’s decision-making behaviors

Example: model-level explanations for each class

Engelmann, Justin, Amos Storkey, and Miguel O. Bernabeu. "Global explainability in aligned image modalities."
Explainability Settings (2)

By stages:

- **ante-hoc:** Explainability is built-in from the beginning of the model creation (for intrinsically interpretable / white-box models)
- **post-hoc:** Explainability is created after model creation (for black-box models)

By applicability of the method:

- **model-specific:** the mechanism for generating explanation is model-dependent and works only for a specific model.
- **model-agnostic:** the mechanism for generating explanation is applicable for many or even all model classes.
Outline of Today’s Lecture

1. Explainability and its Problem Settings

2. GNNExplainer

 The first and very commonly used GNN explainability method

 Reference: GNNExplainer (NeurIPS 2019)

3. Explainability Evaluation
Example: Financial markets as graphs

Nodes Interaction Patterns

Graph Neural Network

Trustworthy
Risky
GNN Explainability Use Cases

• Questions after training GNNs (post-hoc setting):
 • Why is an item recommended to a user?
 • Why is the molecule mutagenic?
 • Why is the user classified as fraudulent?
Explainability: Motivation (2)

• **Example questions after training GNNs:**
 • Why is an item recommended to a user?
 • Why is the molecule mutagenic?
 • Why is the user classified as fraudulent?

Explain link prediction
Explain graph classification
Explain node classification
GNNExplainer Pipeline

• **Training time:**
 • Optimize GNN on training graphs
 • Save the trained model

• **Test time:**
 • Explain predictions made by the GNN
 • On unseen instances (nodes, edges, graphs)

Challenges

• **Explain predictions for multiple tasks**
 • Node classification
 • Graph classification
 • Link prediction

• **Model agnostic (post-hoc)**
 • Need to be applied to a variety of GNN models: GCN, GraphSAGE, GAT etc.

• Predictions on graphs are induced by a complex combination of nodes, edges between them, and even motifs / subgraph structures.

• Unlike in CV, gradient is a less reliable signal on real-world graphs due to the discrete nature of edges
 • In many cases (counterfactual explanation, model-level explanations), gradients cannot be used at all
How to explain a GNN

- Consider the general message-passing framework
- The importance of node features

Structural explanation

Feature explanation

GNNExplainer explain both aspects **simultaneously**

Without loss of generality, consider node classification task:

- Input computation graph: $G_c(v)$
- Adjacency matrix of G_c: $A_c(v) \in \{0,1\}^{n\times n}$
- Node Feature: $X_c(v) = \{x_j | v_j \in G_c(v)\}$

GNNExplainer Input

Suppose GNN predicts label \hat{y} for node v
GNN model ϕ learns $P_\phi(Y \mid A_c(v), X_c(v))$

- Y denotes predicted label of v
- **GNNExplainer** outputs (A_S, X^F_S)
- Graph G_S with adjacency matrix A_S is a subgraph of graph with adjacency matrix $A_c(v)$ (omit v)
- $X^F_S = \{x^F_j \mid v_j \in G_S\}$ are features for G_S
- Mask F masks out unimportant dimensions

Explain by Mutual Information

- **Mutual information (MI)**
 - A measure of the mutual correlation between the two random variables.
 - Good explanation should have **high correlation** with model prediction.
 - Relation to entropy:
 \[MI(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]

- **GNNEexplainer Objective**:
 - Maximize MI between label and explanation:
 \[\max_{G_S} MI(Y; (A_S, X_S)) = H(Y) - H(Y|A = A_S, X = X_S^F) \]

Ying, Rex, et al. "**Gnnexplainer: Generating explanations for graph neural networks.**" NeurIPS 2019
Explain by Optimization

• By relation to entropy, the objective is equivalent to minimization of conditional entropy:

\[
\max_{A_S} MI(Y|(A_S, X_S)) = \min_{A_S} H(Y|A = A_S, X = X_S^F)
\]

• Finding \(A_S\) that minimizes the conditional entropy is computationally expensive!
 • Issue: Exponentially many possible \(A_S\)

• Solution: Treat explanation as a distribution of “plausible explanations”, instead of a single graph
 • Optimize the expected explanation
 • Benefit 1: captures multiple possible explanations for the same node
 • Benefit 2: turns discrete optimization to continuous
Continuous relaxation

- Optimize the expected adjacency matrix A_S

$$\min_{A} E_{A \sim A} H(Y|A = A_S, X = X_S)$$

- View $E_{A \sim A}$ as an adjacency matrix where entries are continuous

Approximation

$$\min_{A} H(Y|A = E_{A}[A_S], X = X_S)$$

- Optimize the expectation by masking

Element-wise multiply

- Use $A_C \odot $Mask to represent $E_{A}[A_S]$

- If $Mask_{ij}$ close to 1, keep edge (i, j); if close to 0, drop edge (i, j).
Let $\text{Mask} = \sigma(M)$ be the adjacency mask

- Continuous relaxation: $\sigma(M) \in \mathbb{R}$ instead of binary
- **Sigmoid** function σ squashes M into $[0, 1]$
- Masking: Element-wise multiply $\sigma(M)$ by A_c

Objective:

$$\min_M -H(P_\phi (Y = y | G = A_c \odot \sigma(M), X = X_S))$$
GNNExplainer Model

• Optimize M:

$$\min_M -H(P_\phi (Y = y | A = A_c \odot \sigma(M), X = X_S))$$

• $A_c \odot \sigma(M)$ is the relaxed adjacency matrix
 • Entries are real-values in $[0, 1]$, instead of being binary

• Threshold $A_c \odot \sigma(M)$ to get G_S. Example:

Prediction probability distribution by the GNN with parameters ϕ
Feature Explanation

• Similarly select features by optimizing for feature mask F

 \[X^F_S = \{ x^F_j \mid v_j \in G_S \}, \quad x^F_j = [x_{j,t_1}, \ldots, x_{j,t_k}] \]

 For the selected dimensions, \(\sigma(F_{t_i}) \to 1 \)

• **Problem**: Zero value could be important!

• **Solution**: Measure feature importance by how much drop in model confidence when features are replaced with explainability **baselines**.

• **Concept**: explainability **baseline** is the “null model” of a feature, such as the mean of the marginal distribution of each feature.
Regularization Constraints

- Optimize feature and adjacency masks jointly with regularization

- Concise explanation
 - Mask size: $\text{Sum}(\sigma(M))$
 - Feature size: $\text{Sum}(\sigma(F))$

- Final Objective
 $$\min_{M} -H(P_\phi(Y = y|G = A_c \odot \sigma(M), X = X_S^F) + \lambda_1 \text{Sum}(\sigma(M)) + \lambda_2 \text{Sum}(\sigma(F))$$

- Threshold $A_c \odot \sigma(M)$ to get the explanation G_S

- The optimization is performed when explaining every instance
GNNExplainer Model

• Explain different tasks
 • **Node classification**: optimize mask \((M, F)\) on the **node’s neighborhood** (computation graph)
 • **Link prediction**: optimize mask \((M, F)\) on **union of 2 node neighborhoods**
 • **Graph classification**: optimize mask \((M, F)\) on the **entire graph**

• Can adapt to different architectures
 • Graph Attention Networks
 • Gated Graph Sequence
 • Graph Networks
 • GraphSAGE
 • ...

We replace \(P_\phi\) with the respective architecture
Experiments: Alternative Approaches (1)

- GNN saliency map based on gradients of output score with respect to inputs

- Gradient is a **local approximation** of the slope
- We compute gradient of objective with respect to the **edges and features**
Experiments: Alternative Approaches (2)

- **Attention** values based on Graph Attention Networks (GAT)
 - Edge importance indicated by average attention weights across layers for each edge
 - Attention-based importance is available for edges
Experiments: Datasets (1)

• Synthetic task: is a node part of a given motif?
 • 100 Motifs are randomly attached to nodes in base graphs (500 nodes)
• Node classification (structural roles)
Experiments: Datasets (2)

• Real-world tasks
 • Social networks (Reddit-binary dataset)
 • Reddit community prediction
 • Chemistry (Mutagenic molecule dataset)
 • Chemical property prediction
 • Graph classification
Results: Quantitative Analysis

- Node classification with ground-truth
- Measures accuracy of explanation with respect to ground-truth

<table>
<thead>
<tr>
<th></th>
<th>BA-House</th>
<th>BA-Comm</th>
<th>Tree-Cycle</th>
<th>Tree-Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad</td>
<td>88.2</td>
<td>73.9</td>
<td>82.4</td>
<td>61.2</td>
</tr>
<tr>
<td>Att</td>
<td>81.5</td>
<td>75.0</td>
<td>90.5</td>
<td>66.7</td>
</tr>
<tr>
<td>GNN-Explainer</td>
<td>92.5</td>
<td>83.6</td>
<td>94.8</td>
<td>87.5</td>
</tr>
</tbody>
</table>
Results: Qualitative Analysis
1. Explainability and its Problem Settings

2. GNNExplainer

3. Explainability Evaluation
 - GNN Explainability Taxonomy and Evaluation
 - Reference: GraphFramEx (LoG 2022)
Goal recap: identify important subgraph structures and node features (masks)
Perturbation-based approaches (including GNNExplainer) have been a very popular approach.
Explainability Method Evaluation

- **Challenge:** groundtruth might not always be available
- **Evaluation is** multi-dimensional

- **Goal** (phenomenon vs. model)
- **Masking** strategy
- **Type** (sufficiency vs. necessity)

- **GraphFramEx**
 Benchmarks and evaluation criteria for graph explainability
Explanation Goal

• **Phenomenon** Explanation
 • Explain the underlying reasons for the ground truth phenomenon

• **Model** Explanation
 • Explain why model makes a particular prediction

• We will explain the **fidelity** metric in both cases:
Explanation Goal: Fidelity Metric

- Define 2 fidelity metrics: fid_+ and fid_- to capture different aspects of explanation quality.
- The formula of fidelity depends on the goal:
 - **Goal 1**: explain phenomenon of the data
 - **Goal 2**: explain what has the model learned

\[
\begin{align*}
fid_+ &= \frac{1}{N} \sum_{i=1}^{N} \left| \mathbb{1}(\hat{y}_i = y_i) - \mathbb{1}(\hat{y}_i^{G \cap S} = y_i) \right| \\
fid_- &= \frac{1}{N} \sum_{i=1}^{N} \left| \mathbb{1}(\hat{y}_i = y_i) - \mathbb{1}(\hat{y}_i^G = y_i) \right|
\end{align*}
\]
Fidelity Metric Details

- **Characteristics of a good explanation**

- fid_+: removal important subgraph will result in dramatic decrease of the confidence

- fid_-: Using only the important subgraph will result in similar confidence

\[
fid_+ = \frac{1}{N} \sum_{i=1}^{N} \left| \mathbf{1}(\hat{y}_i = y_i) - \mathbf{1}(\hat{y}_i^{G \setminus S} = y_i) \right|
\]

\[
fid_- = \frac{1}{N} \sum_{i=1}^{N} \left| \mathbf{1}(\hat{y}_i = y_i) - \mathbf{1}(\hat{y}_i^S = y_i) \right|
\]

Phenomenon

- **Removal of important subgraph**
- **Keeping only the important subgraph**

Original prediction probability / confidence
Notably, the explanation evaluation criteria are **multi-dimensional**

- **Explanation quality**
 - High fidelity / characterization scores
 - Sufficiency and necessity aspects (see the previous slide)

- **Explanation stability**
 - Explanations are consistent across random optimization seeds (measure variance)

- **Explanation complexity**
 - The explanation should be concise and easy to understand by human (measure size)
Types of Explanations

• **Sufficiency**
 • An explanation is sufficient if it leads by its own to the initial prediction of the model explanation. \((fid_- \to 0)\)

• **Necessity**
 • An explanation is necessary if the model prediction changes when removing it from the initial graph. \((fid_+ \to 1)\)

• Use the **Characterization** score to summarize the explanation quality

\[
\text{charact} = \frac{w_+ + w_}{w_+ + w_-} = \frac{(w_+ + w_-) \times fid_+ \times (1-fid_-)}{w_+ \cdot (1-fid_-) + w_- \cdot fid_+}
\]

Where \(w_+\) and \(w_-\) are the weights of both fidelity metrics (commonly set \(w_+ = w_- = 1\))
Characterization Score

• **Characterization** score to summarize the explanation quality

$$\text{charact} = \frac{w_+ + w_-}{w_+ + w_-} = \frac{(w_+ + w_-) \times fid_+ \times (1 - fid_-)}{w_+ \cdot (1 - fid_-) + w_- \cdot fid_+}$$

• Necessary AND sufficient

Fidelity +

Fidelity -

NECESSARY explanation: the model prediction changes when you remove it from the initial graph

SUFFICIENT explanation: it leads by its own to the expected label (predicted or groundtruth)
Results: Explain Efficiency vs. Characterization Score

- Multi-dimensional performance comparison of explainability methods
- Explanations have $k = 10$ edges
Explainability on Large-scale Real-world Graphs

• The conclusion can be very different depending on datasets and tasks
• Experiment on the e-commerce graph at eBay
• GNNExplainer achieves the highest metric in both necessity and sufficiency aspects
Other Types of Explanations (1)

- **Counterfactual explanations**: what makes an instance belonging to a **different** class (than the predicted / ground-truth class)?

- Useful in understanding distinctions between classes
- For example, real-world applications often wants to know what does it take to convert a user from “inactive / churn” class to “active / premium” class

Example method: **CF-GNNExplainer**
• **Model-level explanations**: what are the general characteristics of **ALL** instances belonging to a certain class?

• Useful in extracting general insights for all instances of a class

Example method: **XGNN**
Summary of the Lecture

• **Trustworthy GNN**
 • Robustness, explainability, privacy, fairness, accountability, efficiency and environmental well-being,...

• **GNNExplainer**
 • Perturbation-based approach
 • Optimize for masks that indicate important substructure and node features

• **Explainability evaluation of GNN**
 • Explainability evaluation is *multi-dimensional* in nature
 • Fidelity and characterization scores
 • Other types of explanations: counterfactual, model-level explanations