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 Exam is tomorrow! (11/19, 6-8PM)

▪ See Ed for your assigned room

▪ If taking an OAE or makeup exam, you should have 
received details by email already

 Colab 4 due Tuesday 12/2
 Colab 5 due Thursday 12/4
 Project Report due Thursday 12/11



GNNs & LLMs in PyG



Neo4j Case Study
● Neo4j* Cyphers w/ PyG 2.6 G-retriever on Stark Prime (https://stark.stanford.edu/)

● 2x hit@1!
○ (.16->.32) (7B LLM Agentic GraphRAG vs PyG GNN+LLM)

○ PyG GNN+LLM Solution: LLAMA3.1-8B w/ LoRA + 10M param GAT

○ Even outperforms agentic GraphRAG w/ much larger frontier models: 

■ claude-3-opus (.18) and gpt-4-turbo (.2) (Agentic GraphRAGs)

● https://github.com/neo4j-product-examples/neo4j-gnn-llm-example 

● https://developer.nvidia.com/blog/boosting-qa-accuracy-with-graphrag-using-pyg-and-graph-databases/ 

Neo4j (Graph Database and Analytics): https://neo4j.com/ 

https://stark.stanford.edu/
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fneo4j-product-examples%2Fneo4j-gnn-llm-example&data=05%7C02%7Criship%40nvidia.com%7C7ec0f1a727e64128dd0a08dcfeba9eda%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638665324716964109%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=%2Bp40TJCqAG8eyzrJk363LO0zUBPjtpe0%2FpDGZFIL%2FGY%3D&reserved=0
https://developer.nvidia.com/blog/boosting-qa-accuracy-with-graphrag-using-pyg-and-graph-databases/
https://neo4j.com/


LLM/Transformer Intro
● LLMs (Transformer) excel at predicting the next token in sequences

● “Attention is all you need” is plateauing

● Single hop logic -> associative memory

○ Fails out of distribution

● Infinite out of distribution tasks in NLP, robotics, medicine, etc

● LLM’s pretrained for single hop logic:

○ Given context tokens, predict next tokens



Today’s LLMs = Associative Memory

● Imagine: Goal is learn “2, 4, 6, 8, 10, 12, 14, …”

● General Human Intelligence (Won’t Fail out of Distribution):
○ Given a number, return that number + 2

● Associative Memory Model (Will Fail out of Distribution)
○ Training: For 500GB worth of numbers, store the next token in the 

sequence

■ 2->4, 4->6, 6->8, …

○ Testing: passes within distribution, fails out of distribution

■ output undefined -> hallucinate

● LLMs close to associative memory than human intelligence



Full Lecture:



GNN Intro
GNN Visualizer (GNN 101 University of Minnesota):

Matthias Fey Graph Learning Conference Talk 2023



GNN Intro
● N layer GNN -> N hops of logic 
● GNNs can improve LLM accuracy

○ (semi-orthogonal information)
● size(LLM) >> size(GNN)

○ “Transformer layer can be seen as a special GNN that runs on a 
fully connected “word” graph” - Jure Leskovec

○ -> almost no added params for adding GNN



GNNs are Deterministic, LLMs are Not!

● For any given input, output deterministic for most GNNs
● Not the case for LLMs… They are Generative AI

○ Learn the distribution, then randomly generate outputs 
that align with that distribution

○ 1 prompt, 2+ right answers
■ -> high chance of plausible sounding hallucination

○ Toy Example: Train LLM predict next token in 2, 4, 6, 8 
and 2, 6, 18, 54 
■ What does the LLM predict for 2->?



GNNs are Deterministic, LLMs are Not!

● Real World: Task + Python Solution
● Almost always multiple valid solutions
● Outcome: inference outputs that look valid but have issues
● Why: combining random chunks from correct codebases often 

doesn’t work
● Problem Caused:

○ Devs using AI spend substantial time debugging
○ Extremely damaging bugs can slip through -> 

crashes/being hacked/etc



LLMs Strengths and Weaknesses

● Basic LLMs great for creative tasks that don’t need 
absolute precision:
○ Writing, Art, etc

● Not ideal for precise tasks like coding or making high impact 

decisions

● Running out of public data for LLM, GNNs enable a whole new 

world of data

● GNNs won’t solve all problems, but step in right direction. 



RAG: VectorRAG vs GraphRAG

● RAG = Retrieval Augmented Generation

● VectorRAG: retrieve top K relevant docs based on their embedding vector

○ Good enough when answer requires single doc 

● GraphRAG: retrieve relevant subgraph

○ Good when answer requires multiple docs with 

related entities



GraphRAG Example: Made Up NVIDIA Org Chart
Question:
Who is the shared coworker between Bob Joe and Ronald Coleyman?
Answer:
Arno Swarzfinger

node_id,node_attr
0,Ron Wonald
1,Jensen Huang
2,Ronald Coleyman
3,Arno Swarzfinger
4,Bob Joe
5,Joe Bob
6,Richard Preor
7,Breance Owls
8,Justin Brogard
9,Ash Katchoop
[[stop]]

src,edge_attr,dst
0,reports.to,5
9,reports.to,8
8,mentors,4
2,leads,5
1,leads,6
4,works.with,3
3,works.with,2
1,leads,9 
1,leads,8
3,works.with,6
6,works.with,9
[[stop]]

LLM:           Wrong  ❌ 
GNN+LLM: Correct ✅



GNNs Meet LLMs (History Lesson)
● “Attention is All You Need” (June 12, 2017 on Arxiv)

● GraphSAGE paper (June 7, 2017 on Arxiv)

● Since 2017, the industry has poured majority of effort into LLMs

● In parallel, small but strong PyG community grows in Academia

○ + Small Group of Companies Capitalizing on GNNs:

■ Pinterest, Kumo, Spotify …

● PyG GNN+LLM aims to combine the learnings of both work streams

○ Goal: Add GNNs to Advance AI systems past the limitations of LLMs



GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

(KG)

Textified Graph

Given a query at inference time…

https://arxiv.org/abs/2402.07630


GNN+LLM Graph RAG (GNN Feeds LLM)

LLM complexity = O(n^2)
n=num_tokens

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

https://arxiv.org/abs/2402.07630


GNN+LLM Graph RAG (GNN Feeds LLM)

GNN Complexity = ~Free
Node/Edge Embedding: Slides 18-20

Retrieval Complexity: Slide 21: Current Retrieval Algorithm

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

https://arxiv.org/abs/2402.07630


GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

2a. (Pass textified subgraph to LLM Encoder)

https://arxiv.org/abs/2402.07630


GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

3. Jointly embed the GNN embedding with the LLM embedding

https://arxiv.org/abs/2402.07630


GNN+LLM Graph RAG (GNN Feeds LLM)

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

3. Jointly embed the GNN embedding with the LLM embedding

4.Utilize LLM Decoder to decode joint embedding and generate a response

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

Textified Graph

https://arxiv.org/abs/2402.07630


GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation                    *G-retriever: https://arxiv.org/abs/2402.07630 

Options:
1) Full finetune (best test acc)
2) Lora for LLM (next best)
3) Frozen LLM (least good)

Textified Graph

https://arxiv.org/abs/2402.07630


Text KG -> PyG Graph?

● PyG expects:

○ feature vector for each node

○ Optionally for each edge too

● Entities and relations are short phrases…

○ Example Triple: (cats, eat, dogs)

● Need Model(str) -> feature vector



Sentence Transformer Intro

● Sentence Transformer: model(List[str]) -> Embedding Tensor

● Need to call model (3 * num_edges)

○ For each edge, call on both entities and the relation

○ -> Use small LM (SLM) like ModernBert for efficiency



Why Are Small LMs Okay as SentenceTransformers?

● Small LMs have sufficient understanding of short phrases

● Only need large LM for large/complex bodies of text

● Future work:  Measure tradeoffs for SLM vs LLM

● Latest PyG supports VisionTransformer now!

23



Basic Retrieval Algorithm (GNN Feeds LLM)

Insert future questions that Zack want’s to investigate when in school and back 
as fulltime

KNN & 
n-hop 

neighbors

(similarity based graph traversal)
Linear on thousands -> Free

Prize 
Collecting

Steiner 
Tree

(PCST)

Pruned Subgraph 
(dozens of nodes)

Untrimmed Subgraph 
(thousands of nodes)

X nodes, n hops, fanout=f
-> O(X*K*f^n)

Remote Knowledge 
Graph & Prompt

(millions of nodes)



GNN Feeds LLM vs LLM Feeds GNN
● GNN Feeds LLM:

○ Data: prompt conditioned on graph
○ Tasks: Token-level tasks (Ex. Question Answering)
○ Flow:

■ Graph -> GNN = GNN_out
■ (GNN_out + prompt) -> LLM = Answer Tokens

● LLM Feeds GNN:
○ Data: Graph where every node/edge has tokens attributed to it
○ Task: Graph learning (Ex. node classification or link prediction)
○ Flow:

■ feature vector for each node/edge (Sentence/VisionTransformer)
■ Feed this graph to GNN for Graph Learning Task



Node Classification: GLEM (LLM Feeds GNN)

● GLEM = SOTA Node Classification for Text Attributed Graphs (TAGs)
○ https://arxiv.org/abs/2210.14709 
○ Ex: OGBN-Products (https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-products)

https://arxiv.org/abs/2210.14709
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-products


Node Classification in PyG (LLM Feeds GNN)

● Implementation in PyG 7x faster than original paper’s code for OGBN-Products

● New Text Attributed Graph (TAG) Interface

● Also adds optional support for LLM finetuning w/ LoRA* (uses PEFT* library)

● See examples/llm/glem.py on PyG GitHub

PEFT = https://huggingface.co/docs/peft/en/index LoRA = https://arxiv.org/abs/2106.09685 

PEFT = https://pyg.org/ 

http://glem.py
https://huggingface.co/docs/peft/en/index
https://arxiv.org/abs/2106.09685
https://pyg.org/


TAG Usage (LLM Feeds GNN)

● Takes in path, dataset, and LM of choice

● Optional: save tokens on disk



GLEM Set Up (LLM Feeds GNN)

● GLEM model: LM of choice, GNN of choice, num_classes
● Optional:

○ Use LoRa
○ Device (default cpu but cpu is SUPER slow)



G-retriever (GNN Feeds LLM) Set Up

● GRetriever: LLM + GNN
● Auto GPU Set Up!



G-retriever: Get Loss



G-retriever Inference



Knowledge Graph Creation

● Most RAG Datasets only have unstructured text context

● Task: unstructured text -> KG

○ Format: (entity_1, relation, entity_2)

● LLMs specialized for unstructured text -> ideal model for task



TXT2KG Class in PyG
● Released in PyG 2.7
● Prompt engineering + python filters



GraphRAG+VectorRAG (PyG-RAG)(torch_geometric.llm)

Doc/Chunk
Retrieval

Textified Graph

PyG-RAG is seeing adoption 
across Fortune 500 companies 
and internally at NVIDIA!!
See:
examples/llm/txt2kg_rag.py on 
PyG’s GitHub



Accuracy on Multi-Hop Synthetic Q & A for Lecture Corpus

*Feed generator 
same docs used to 
generate synthetic 
Q&A pairs.

*ModernBert for 
vector embeddings.

*253b Nemotron for 
TXT2KG.

Synthetic Q n A made with NVIDIA TrueQuery

https://docs.google.com/presentation/d/1ZHwUsvwhbobmj0I46p9QnffSDF3z4nWkutKxHA81gnM/edit?usp=sharing


Vibe Coded GUI
● PyG Codebase is easy to build with

○ Example: Our PM Santosh Bhavani Vibe Coded a GUI using Cursor

● https://build.nvidia.com/spark/txt2kg

https://build.nvidia.com/spark/txt2kg
http://www.youtube.com/watch?v=8iA_f_UpzHc


Next Steps
● Continued improvements of codebase…

○ Speed, usability, accuracy, understandability, etc

● Accelerate retrieval w/ CuGraph+CuVs

○ Scale up to and beyond trillion edges

● Align TXT2KG w/ KGGen: https://github.com/stair-lab/kg-gen 

● More modalities and interesting new problems to solve…

● New retrieval techniques

https://github.com/stair-lab/kg-gen


More Modalities…

● Idea of GNN embeddings to prefix Transformer/LLM is highly general…



Scientific GNN+LLM Community Sprint (Biology/Chemistry)

● Goal: Add GNN+LLM support for the sciences like biology and chemistry

● 3 Biology papers & 1 Chemistry paper

● General goal: advance medicine and science

● see examples/llm/README.md on PyG GitHub or NVIDIA Container



Example: MoleculeGPT
PyG Example link:

MoleculeGPT Paper link:

● “Talk to your Moleculeˮ GNNLLM

Qformer Paper:



More Modalities…
● Idea of GNN embeddings to prefix sequence prompt is highly general

■ Ex 1: Graphs = molecule/cell/etc, NLP task=Bio/Chem/Drug 
Discovery

■ Ex 2: Graphs = customer data, NLP task=talk to customer data
■ Ex 3: Graphs = docs w hyperlinks, NLP task=talk to docs

● Imagine graphs that include multiple modalities. 
● Ex:

○ Amazon products, where each node has a text review and a photo
○ Relational Database heterographs as seen in RelBench*/Kumo.ai*
○ Node features could be:

■ Text: Natural Language or Code
■ Images
■ Audio
■ Video
■ Molecule/Cell/etc embeddings * https://relbench.stanford.edu/

* https://kumo.ai/ 

https://relbench.stanford.edu/
https://kumo.ai/


Unstructured vs Structured Graph Data

● Highly Accurate● Less Accurate ● They Likely cover different knowledge
● Most enterprises have multiple
● Combine:

○ Separate GNN per Graph Type



Graph Transformers vs Message Passing (Future)

● Today 2 Kinds of GNN:

○ Message Passing (traditional)

○ Graph Transformer (newer)

● More Graph Transformers Coming Soon to PyG

○ Future Goal: See how effects accuracy of previously 

discussed GNN+LLM systems

Webinar:



Conclusion
● General AI rule: Data is King!

● Ex: Even the best model can’t learn on randomly labeled data

● Key Takeaway:

○ Structured Data(GNN) + Unstructured Data(LLM) = Better GenAI 

● Built & Optimized for NVIDIA PyG container

○ https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg

● Stay tuned to LinkedIn for new updates

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg
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Thank You!
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