
CS224W: Machine Learning with Graphs
Jure Leskovec and Charilaos Kanatsoulis, Stanford

University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our

material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify

them to fit your own needs. If you make use of a significant portion of these slides in your own

lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

11/18/2025 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

 Exam is tomorrow! (11/19, 6-8PM)

▪ See Ed for your assigned room

▪ If taking an OAE or makeup exam, you should have
received details by email already

 Colab 4 due Tuesday 12/2
 Colab 5 due Thursday 12/4
 Project Report due Thursday 12/11

GNNs & LLMs in PyG

Neo4j Case Study
● Neo4j* Cyphers w/ PyG 2.6 G-retriever on Stark Prime (https://stark.stanford.edu/)

● 2x hit@1!
○ (.16->.32) (7B LLM Agentic GraphRAG vs PyG GNN+LLM)

○ PyG GNN+LLM Solution: LLAMA3.1-8B w/ LoRA + 10M param GAT

○ Even outperforms agentic GraphRAG w/ much larger frontier models:

■ claude-3-opus (.18) and gpt-4-turbo (.2) (Agentic GraphRAGs)

● https://github.com/neo4j-product-examples/neo4j-gnn-llm-example

● https://developer.nvidia.com/blog/boosting-qa-accuracy-with-graphrag-using-pyg-and-graph-databases/

Neo4j (Graph Database and Analytics): https://neo4j.com/

https://stark.stanford.edu/
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fneo4j-product-examples%2Fneo4j-gnn-llm-example&data=05%7C02%7Criship%40nvidia.com%7C7ec0f1a727e64128dd0a08dcfeba9eda%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638665324716964109%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=%2Bp40TJCqAG8eyzrJk363LO0zUBPjtpe0%2FpDGZFIL%2FGY%3D&reserved=0
https://developer.nvidia.com/blog/boosting-qa-accuracy-with-graphrag-using-pyg-and-graph-databases/
https://neo4j.com/

LLM/Transformer Intro
● LLMs (Transformer) excel at predicting the next token in sequences

● “Attention is all you need” is plateauing

● Single hop logic -> associative memory

○ Fails out of distribution

● Infinite out of distribution tasks in NLP, robotics, medicine, etc

● LLM’s pretrained for single hop logic:

○ Given context tokens, predict next tokens

Today’s LLMs = Associative Memory

● Imagine: Goal is learn “2, 4, 6, 8, 10, 12, 14, …”

● General Human Intelligence (Won’t Fail out of Distribution):
○ Given a number, return that number + 2

● Associative Memory Model (Will Fail out of Distribution)
○ Training: For 500GB worth of numbers, store the next token in the

sequence

■ 2->4, 4->6, 6->8, …

○ Testing: passes within distribution, fails out of distribution

■ output undefined -> hallucinate

● LLMs close to associative memory than human intelligence

Full Lecture:

GNN Intro
GNN Visualizer (GNN 101 University of Minnesota):

Matthias Fey Graph Learning Conference Talk 2023

GNN Intro
● N layer GNN -> N hops of logic
● GNNs can improve LLM accuracy

○ (semi-orthogonal information)
● size(LLM) >> size(GNN)

○ “Transformer layer can be seen as a special GNN that runs on a
fully connected “word” graph” - Jure Leskovec

○ -> almost no added params for adding GNN

GNNs are Deterministic, LLMs are Not!

● For any given input, output deterministic for most GNNs
● Not the case for LLMs… They are Generative AI

○ Learn the distribution, then randomly generate outputs
that align with that distribution

○ 1 prompt, 2+ right answers
■ -> high chance of plausible sounding hallucination

○ Toy Example: Train LLM predict next token in 2, 4, 6, 8
and 2, 6, 18, 54
■ What does the LLM predict for 2->?

GNNs are Deterministic, LLMs are Not!

● Real World: Task + Python Solution
● Almost always multiple valid solutions
● Outcome: inference outputs that look valid but have issues
● Why: combining random chunks from correct codebases often

doesn’t work
● Problem Caused:

○ Devs using AI spend substantial time debugging
○ Extremely damaging bugs can slip through ->

crashes/being hacked/etc

LLMs Strengths and Weaknesses

● Basic LLMs great for creative tasks that don’t need
absolute precision:
○ Writing, Art, etc

● Not ideal for precise tasks like coding or making high impact

decisions

● Running out of public data for LLM, GNNs enable a whole new

world of data

● GNNs won’t solve all problems, but step in right direction.

RAG: VectorRAG vs GraphRAG

● RAG = Retrieval Augmented Generation

● VectorRAG: retrieve top K relevant docs based on their embedding vector

○ Good enough when answer requires single doc

● GraphRAG: retrieve relevant subgraph

○ Good when answer requires multiple docs with

related entities

GraphRAG Example: Made Up NVIDIA Org Chart
Question:
Who is the shared coworker between Bob Joe and Ronald Coleyman?
Answer:
Arno Swarzfinger

node_id,node_attr
0,Ron Wonald
1,Jensen Huang
2,Ronald Coleyman
3,Arno Swarzfinger
4,Bob Joe
5,Joe Bob
6,Richard Preor
7,Breance Owls
8,Justin Brogard
9,Ash Katchoop
[[stop]]

src,edge_attr,dst
0,reports.to,5
9,reports.to,8
8,mentors,4
2,leads,5
1,leads,6
4,works.with,3
3,works.with,2
1,leads,9
1,leads,8
3,works.with,6
6,works.with,9
[[stop]]

LLM: Wrong ❌
GNN+LLM: Correct ✅

GNNs Meet LLMs (History Lesson)
● “Attention is All You Need” (June 12, 2017 on Arxiv)

● GraphSAGE paper (June 7, 2017 on Arxiv)

● Since 2017, the industry has poured majority of effort into LLMs

● In parallel, small but strong PyG community grows in Academia

○ + Small Group of Companies Capitalizing on GNNs:

■ Pinterest, Kumo, Spotify …

● PyG GNN+LLM aims to combine the learnings of both work streams

○ Goal: Add GNNs to Advance AI systems past the limitations of LLMs

GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

(KG)

Textified Graph

Given a query at inference time…

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

LLM complexity = O(n^2)
n=num_tokens

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

GNN Complexity = ~Free
Node/Edge Embedding: Slides 18-20

Retrieval Complexity: Slide 21: Current Retrieval Algorithm

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

2a. (Pass textified subgraph to LLM Encoder)

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

Textified Graph

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

3. Jointly embed the GNN embedding with the LLM embedding

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

3. Jointly embed the GNN embedding with the LLM embedding

4.Utilize LLM Decoder to decode joint embedding and generate a response

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

Textified Graph

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

Options:
1) Full finetune (best test acc)
2) Lora for LLM (next best)
3) Frozen LLM (least good)

Textified Graph

https://arxiv.org/abs/2402.07630

Text KG -> PyG Graph?

● PyG expects:

○ feature vector for each node

○ Optionally for each edge too

● Entities and relations are short phrases…

○ Example Triple: (cats, eat, dogs)

● Need Model(str) -> feature vector

Sentence Transformer Intro

● Sentence Transformer: model(List[str]) -> Embedding Tensor

● Need to call model (3 * num_edges)

○ For each edge, call on both entities and the relation

○ -> Use small LM (SLM) like ModernBert for efficiency

Why Are Small LMs Okay as SentenceTransformers?

● Small LMs have sufficient understanding of short phrases

● Only need large LM for large/complex bodies of text

● Future work: Measure tradeoffs for SLM vs LLM

● Latest PyG supports VisionTransformer now!

23

Basic Retrieval Algorithm (GNN Feeds LLM)

Insert future questions that Zack want’s to investigate when in school and back
as fulltime

KNN &
n-hop

neighbors

(similarity based graph traversal)
Linear on thousands -> Free

Prize
Collecting

Steiner
Tree

(PCST)

Pruned Subgraph
(dozens of nodes)

Untrimmed Subgraph
(thousands of nodes)

X nodes, n hops, fanout=f
-> O(X*K*f^n)

Remote Knowledge
Graph & Prompt

(millions of nodes)

GNN Feeds LLM vs LLM Feeds GNN
● GNN Feeds LLM:

○ Data: prompt conditioned on graph
○ Tasks: Token-level tasks (Ex. Question Answering)
○ Flow:

■ Graph -> GNN = GNN_out
■ (GNN_out + prompt) -> LLM = Answer Tokens

● LLM Feeds GNN:
○ Data: Graph where every node/edge has tokens attributed to it
○ Task: Graph learning (Ex. node classification or link prediction)
○ Flow:

■ feature vector for each node/edge (Sentence/VisionTransformer)
■ Feed this graph to GNN for Graph Learning Task

Node Classification: GLEM (LLM Feeds GNN)

● GLEM = SOTA Node Classification for Text Attributed Graphs (TAGs)
○ https://arxiv.org/abs/2210.14709
○ Ex: OGBN-Products (https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-products)

https://arxiv.org/abs/2210.14709
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-products

Node Classification in PyG (LLM Feeds GNN)

● Implementation in PyG 7x faster than original paper’s code for OGBN-Products

● New Text Attributed Graph (TAG) Interface

● Also adds optional support for LLM finetuning w/ LoRA* (uses PEFT* library)

● See examples/llm/glem.py on PyG GitHub

PEFT = https://huggingface.co/docs/peft/en/index LoRA = https://arxiv.org/abs/2106.09685

PEFT = https://pyg.org/

http://glem.py
https://huggingface.co/docs/peft/en/index
https://arxiv.org/abs/2106.09685
https://pyg.org/

TAG Usage (LLM Feeds GNN)

● Takes in path, dataset, and LM of choice

● Optional: save tokens on disk

GLEM Set Up (LLM Feeds GNN)

● GLEM model: LM of choice, GNN of choice, num_classes
● Optional:

○ Use LoRa
○ Device (default cpu but cpu is SUPER slow)

G-retriever (GNN Feeds LLM) Set Up

● GRetriever: LLM + GNN
● Auto GPU Set Up!

G-retriever: Get Loss

G-retriever Inference

Knowledge Graph Creation

● Most RAG Datasets only have unstructured text context

● Task: unstructured text -> KG

○ Format: (entity_1, relation, entity_2)

● LLMs specialized for unstructured text -> ideal model for task

TXT2KG Class in PyG
● Released in PyG 2.7
● Prompt engineering + python filters

GraphRAG+VectorRAG (PyG-RAG)(torch_geometric.llm)

Doc/Chunk
Retrieval

Textified Graph

PyG-RAG is seeing adoption
across Fortune 500 companies
and internally at NVIDIA!!
See:
examples/llm/txt2kg_rag.py on
PyG’s GitHub

Accuracy on Multi-Hop Synthetic Q & A for Lecture Corpus

*Feed generator
same docs used to
generate synthetic
Q&A pairs.

*ModernBert for
vector embeddings.

*253b Nemotron for
TXT2KG.

Synthetic Q n A made with NVIDIA TrueQuery

https://docs.google.com/presentation/d/1ZHwUsvwhbobmj0I46p9QnffSDF3z4nWkutKxHA81gnM/edit?usp=sharing

Vibe Coded GUI
● PyG Codebase is easy to build with

○ Example: Our PM Santosh Bhavani Vibe Coded a GUI using Cursor

● https://build.nvidia.com/spark/txt2kg

https://build.nvidia.com/spark/txt2kg
http://www.youtube.com/watch?v=8iA_f_UpzHc

Next Steps
● Continued improvements of codebase…

○ Speed, usability, accuracy, understandability, etc

● Accelerate retrieval w/ CuGraph+CuVs

○ Scale up to and beyond trillion edges

● Align TXT2KG w/ KGGen: https://github.com/stair-lab/kg-gen

● More modalities and interesting new problems to solve…

● New retrieval techniques

https://github.com/stair-lab/kg-gen

More Modalities…

● Idea of GNN embeddings to prefix Transformer/LLM is highly general…

Scientific GNN+LLM Community Sprint (Biology/Chemistry)

● Goal: Add GNN+LLM support for the sciences like biology and chemistry

● 3 Biology papers & 1 Chemistry paper

● General goal: advance medicine and science

● see examples/llm/README.md on PyG GitHub or NVIDIA Container

Example: MoleculeGPT
PyG Example link:

MoleculeGPT Paper link:

● “Talk to your Moleculeˮ GNNLLM

Qformer Paper:

More Modalities…
● Idea of GNN embeddings to prefix sequence prompt is highly general

■ Ex 1: Graphs = molecule/cell/etc, NLP task=Bio/Chem/Drug
Discovery

■ Ex 2: Graphs = customer data, NLP task=talk to customer data
■ Ex 3: Graphs = docs w hyperlinks, NLP task=talk to docs

● Imagine graphs that include multiple modalities.
● Ex:

○ Amazon products, where each node has a text review and a photo
○ Relational Database heterographs as seen in RelBench*/Kumo.ai*
○ Node features could be:

■ Text: Natural Language or Code
■ Images
■ Audio
■ Video
■ Molecule/Cell/etc embeddings * https://relbench.stanford.edu/

* https://kumo.ai/

https://relbench.stanford.edu/
https://kumo.ai/

Unstructured vs Structured Graph Data

● Highly Accurate● Less Accurate ● They Likely cover different knowledge
● Most enterprises have multiple
● Combine:

○ Separate GNN per Graph Type

Graph Transformers vs Message Passing (Future)

● Today 2 Kinds of GNN:

○ Message Passing (traditional)

○ Graph Transformer (newer)

● More Graph Transformers Coming Soon to PyG

○ Future Goal: See how effects accuracy of previously

discussed GNN+LLM systems

Webinar:

Conclusion
● General AI rule: Data is King!

● Ex: Even the best model can’t learn on randomly labeled data

● Key Takeaway:

○ Structured Data(GNN) + Unstructured Data(LLM) = Better GenAI

● Built & Optimized for NVIDIA PyG container

○ https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg

● Stay tuned to LinkedIn for new updates

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg

Acknowledgements

Junhao ShenZachary Aristei

And all the PyG contributors: https://github.com/pyg-team/pytorch_geometric/graphs/contributors

Serge Panev

Rick Ratzel Erik WelchRalph Liu Fay Wang

Xiaoyun WangVibhor Agrawal

Joseph NkeAlfred Clemedtson Zach Blumenfeld

Brian Shi

https://github.com/pyg-team/pytorch_geometric/graphs/contributors

Thank You!

	Slide 1: Stanford CS224W: Large Language Models and GNNs
	Slide 2: Announcements

