Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: hitp://cs224w.Stanford.edu

Stanford CS224W:

Large Language Models and
GNNs

http://cs224w.stanford.edu/

Announcements

Exam is tomorrow! (11/19, 6-8PM)

See Ed for your assigned room

If taking an OAE or makeup exam, you should have
received details by email already

Colab 4 due Tuesday 12/2
Colab 5 due Thursday 12/4
Project Report due Thursday 12/11

11/18/2025 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, http://cs224w.stanford.edu

NVIDIA

GNNs & LLMs in PyG

Neo4j Case Study 2.

e Neodj* Cyphers w/ PyG 2.6 G-retriever on Stark Prime (https:/stark.stanford.edu/)

e 2x hit@1!
o (.16->.32) (7B LLM Agentic GraphRAG vs PyG GNN+LLM)
o PyG GNN+LLM Solution: LLAMAS3.1-8B w/ LoRA + 10M param GAT
o Even outperforms agentic GraphRAG w/ much larger frontier models:
m claude-3-opus (.18) and gpt-4-turbo (.2) (Agentic GraphRAGS)

® htips://qithub.com/neo4i-product-examples/neo4j-ann-lim-example

e https://developer.nvidia.com/blog/boosting-ga-accuracy-with-graphrag-using-pyg-and-graph-databases/

indication/contraindication

present/absent 1 Name: GM1
gangliosidosis type I
% Definiton:
i ' GM1 gangliosidosis
expression type 1 is the severe

Phenotype present infantile form of GM1
gangliosidosis with
variable neurological
manifestations...
Epidemioclogy:
Type 1 is the most
frequent form but the
exact prevalence is
not known.

Name: GPANK1L
Alias: DYRK1AP3,
PAHX-AP, PAHXAP1
Description:

This gene encodes
a protein which is 2
thought to play a carrier
role in immunity. \
Multiple alternatively
spliced variants, >
encoding the same tr;_::“{‘w
protein, have been g AN
identified. 3

carrier

interact with

Gene Pathway Molecular function

Prime Semi-structured Knowledge Base

Neo4j (Graph Database and Analytics): hitps://neo4j.com/

https://stark.stanford.edu/
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fneo4j-product-examples%2Fneo4j-gnn-llm-example&data=05%7C02%7Criship%40nvidia.com%7C7ec0f1a727e64128dd0a08dcfeba9eda%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638665324716964109%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=%2Bp40TJCqAG8eyzrJk363LO0zUBPjtpe0%2FpDGZFIL%2FGY%3D&reserved=0
https://developer.nvidia.com/blog/boosting-qa-accuracy-with-graphrag-using-pyg-and-graph-databases/
https://neo4j.com/

LLM/Transformer Intro

LLMs (Transformer) excel at predicting the next token in sequences

“Attention is all you need” is plateauing

LLM’s pretrained for single hop logic:

©)

Given context tokens, predict next tokens

Single hop logic -> associative memory

@)

Fails out of distribution

O

Infinite out of distribution tasks in NLP, robotics, medicine, etc

NVIDIA.
Output
Probabilities
(A
Add & Norm
Feed
Forward
e 1 ~\ I Add & Norm |<_:
[—-—]Add S Multi-Head
Feed Attention
Forward 7 7 Nx
|
K& Add & Norm
(—>| Add & Norm | Niaskod
Multi-Head Multi-Head
Attention Attention
At At
_ J . —)
Positional Positional
Encodi D & i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Today's LLMs = Associative Memory >R
e Imagine: Goal is learn “2, 4, 6, 8, 10, 12, 14, ...”

e General Human Intelligence (Won't Fail out of Distribution):
o Given a number, return that number + 2
e Associative Memory Model (Will Fail out of Distribution)
o Training: For 500GB worth of numbers, store the next token in the
sequence
m 2->4,4->6, 6->8, ...
o Testing: passes within distribution, fails out of distribution

m output undefined -> hallucinate

e LI Ms close to associative memory than human intelligence

Y. LeCun

BEmme—r =

Auto-Regressive Gener

. Full Lecture: macdais
» Auto-Regressive LLMs are doomed. T

» They cannot be made factual, non-toxic, etc. Subtree of
» They are not controllable EOHREL diENEhs

. f i
» Probability e that any produced token takes gfeenoésgu%?gg'e
us outside of the set of correct answers

» Probability that answer of length n is correct
(assuming independence of errors):

> P(correct) = (1-e)"
» This diverges exponentially.
» It’s not fixable (without a major redesign).

;

» See also [Dziri...Choi, ArXiv:2305.18654]

GNN Intro

Graph Neural Networks (GNNs) update node representations by repeatedly
transforming and aggregating representations of direct neighbors

:MESSAGEo(th), hi’, ei1) |

Neural Message Passing Scheme
e data-dependent computation graphs, generalization of any network architecture

From From

CNNs Transformers
to to

GNNs GNNs

Matthias Fey Graph Learning Conference Talk 2023

GNN Intro >

e N layer GNN -> N hops of logic

e GNNs can improve LLM accuracy
o (semi-orthogonal information)

e size(LLM) >> size(GNN)

o “Transformer layer can be seen as a special GNN that runs on a
fully connected “word” graph” - Jure Leskovec

o -> almost no added params for adding GNN

O
- & 81\ -y
o P — Bk — ()\\
S [L /’A“ S
)\, —
O @— §1‘: B — Oy N

—
k
L > i
o 0 o FE—O*
— ‘"\:/’ d //‘\)
— { A
() (~— O ol 1263: -

GNNs are Deterministic, LLMs are Not!

e For any given input, output deterministic for most GNNs
e Not the case for LLMs... They are Generative Al
o Learn the distribution, then randomly generate outputs
that align with that distribution
o 1 prompt, 2+ right answers
m -> high chance of plausible sounding hallucination
o Toy Example: Train LLM predict next tokenin 2, 4, 6, 8
and 2, 6, 18, 54
m \What does the LLM predict for 2->7

GNNs are Deterministic, LLMs are Not!

Real World: Task + Python Solution

Almost always multiple valid solutions

Outcome: inference outputs that look valid but have issues

Why: combining random chunks from correct codebases often

doesn’t work

e Problem Caused:

o Devs using Al spend substantial time debugging

o Extremely damaging bugs can slip through ->
crashes/being hacked/etc

LLMs Strengths and Weaknesses

e Basic LLMs great for creative tasks that don't need

absolute precision:
o Writing, Art, etc

= -

e Not ideal for precise tasks like coding or making high impact

decisions
e Running out of public data for LLM, GNNs enable a whole new
world of data

e GNNs won’t solve all problems, but step in right direction.

RAG: VectorRAG vs GraphRAG

e RAG = Retrieval Augmented Generation

e \ectorRAG: retrieve top K relevant docs based on their embedding vector

o Good enough when answer requires single doc

e GraphRAG: retrieve relevant subgraph [&

R =i
etrieval
=}
o Good when answer requires multiple docs with S
related entities Vaghir st

Index

@

\'
v
(5@

<3

NVIDIA.

GraphRAG Example: Made Up NVIDIA Org Chart

Question:

Who is the shared coworker between Bob Joe and Ronald Coleyman?

Answer:
Arno Swarzfinger

node_id,node_attr

0,Ron Wonald
1,Jensen Huang

2,Ronald Coleyman
3,Arno Swarzfinger

4,Bob Joe
5,Joe Bob
6,Richard Preor
7,Breance Owls
8,Justin Brogard
9,Ash Katchoop

[[stop]]

LLM:

src,edge_attr,dst
0,reports.to,5
9,reports.to,8
8,mentors,4
2,leads,5
1,leads,6
4,works.with,3
3,works.with,2
1,leads,9
1,leads,8
3,works.with,6
6,works.with,9

[[stop]]

Wrong X

GNN+LLM: Correct {4

Bob Joe
Ron Wonald 4
0

l'ep o/'[s ;
-0

Joe Bob

\636‘5 .
Ronald Coleyman works.with

2

Justin Brogard
8

Breance Owls
(independent
contractor)

Jensen Huang
1

2 works.with
6

Ash Katchoop
9

GNNs Meet LLMs (History Lesson)
e ‘“Attention is All You Need” (June 12, 2017 on Arxiv)

e GraphSAGE paper (June 7, 2017 on Arxiv)
e Since 2017, the industry has poured majority of effort into LLMs
e In parallel, small but strong PyG community grows in Academia
o + Small Group of Companies Capitalizing on GNNs:
m Pinterest, Kumo, Spotify ...
e PyG GNN+LLM aims to combine the learnings of both work streams

o Goal: Add GNNs to Advance Al systems past the limitations of LLMs

S
GNN+LLM Graph RAG (GNN Feeds LLM) i

° Given a query at inference time...

Knowledge
Graph

(KG)

Retrieve
Subgraph
Context

Retrieved
Node/Edge
Features

GNN
Encoder —

Natural Concatenate

Embeddings

Language
Query

Natural
Language
Response

LLM Decoder

»| LLM Encoder —

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

https://arxiv.org/abs/2402.07630

<
GNN+LLM Graph RAG (GNN Feeds LLM) i

® Given a query at inference time:

Knowledge

Graph 1.Tokenize and encode the query using the LLM Encoder

. LLM complexity = O(n”2)
iyt n=num_tokens

Context

Retrieved
Node/Edge
Features

GNN
Encoder —

Natural
Language
Query

Concatenate
Embeddings

Natural
Language
Response

LLM Decoder

LLM Encoder I

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM) A

N Given a query at inference time:

[|]

Knovﬁedge 1.Tokenize and encode the query using the LLM Encoder
Graph

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

Retrieve
—3%—»| Subgraph

conext GNN Complexity = ~Free
Node/Edge Embedding: siides 18-20
Retrieval Complexity: siide 21: Current Retrieval Algorithm

Retrieved
Node/Edge
Features

Textifted Graph

»| LLM Encoder -

GNN
Encoder —

Natural
Language
Query

Concatenate
Embeddings

Natural
Language
Response

LLM Decoder

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

https://arxiv.org/abs/2402.07630

>
GNN+LLM Graph RAG (GNN Feeds LLM)

" Given a query at inference time:

Knowledge
Graph

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

Retrieve
Subgraph
Context

2a. (Pass textified subgraph to LLM Encoder)

Retrieved
Node/Edge
Features

GNN
Encoder

Natural
Language
Query

Concatenate
Embeddings

Natural
Language
Response

LLM Decoder

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

https://arxiv.org/abs/2402.07630

GNN+LLM Graph

L
Knowledge
Graph

Retrieve
Subgraph
Context

Retrieved
Node/Edge
Features

Natural
Language
Query

*RAG = Retrieval Augmented Generation

<3

NVIDIA.

RAG (GNN Feeds LLM)

Given a query at inference time:
1.Tokenize and encode the query using the LLM Encoder
2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

3. Jointly embed the GNN embedding with the LLM embedding

GNN
Encoder

Concatenate
Embeddings

Natural
Language
Response

LLM Decoder

LLM Encoder

*G-retriever: https://arxiv.ora/abs/2402.07630

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM)

Knowledge
Graph

Retrieve
Subgraph
Context

A

Retrieved
Node/Edge
Features

Natural
Language
Query

»
=

*RAG = Retrieval Augmented Generation

GNN
Encoder

LLM Encoder

<3

NVIDIA.

Given a query at inference time:

1.Tokenize and encode the query using the LLM Encoder

2. Retrieve a subgraph of the KG relevant to the query and encode it using a GNN

3. Jointly embed the GNN embedding with the LLM embedding

4.Utilize LLM Decoder to decode joint embedding and generate a response

Concatenate
Embeddings

LLM Decoder

Natural
——/ Language
Response

*G-retriever: https://arxiv.ora/abs/2402.07630

https://arxiv.org/abs/2402.07630

GNN+LLM Graph RAG (GNN Feeds LLM) i

Knowledge
Graph
Options:
Retrieve 1) Full finetune (best test acc)

—— | Subgraph
Context

2) Lora for LLM (next best)
3) Frozen LLM (least good)

Retrieved
Node/Edge
Features

GNN
Encoder —

Natural
Language
Query

Concatenate
Embeddings

Natural
LLM Decoder ——»/ Language
Response

*RAG = Retrieval Augmented Generation *G-retriever: https://arxiv.org/abs/2402.07630

LLM Encoder —

A

https://arxiv.org/abs/2402.07630

<
Text KG -> PyG Graph? nvipiA
e PyG expects:
o feature vector for each node
o Optionally for each edge too
e Entities and relations are short phrases...
o Example Triple: (cats, eat, dogs)

e Need Model(str) -> feature vector

<

NVIDIA.

Sentence Transformer Intro

device = torch. ("cuda" if torch.cuda. () else "cpu")
model = ntei | (

model_name='sentence-transformers/all-roberta-large-vl').to(device)

e Sentence Transformer: model(List[str]) -> Embedding Tensor
e Need to call model (3 * num_edges)
o For each edge, call on both entities and the relation

o ->Use small LM (SLM) like ModernBert for efficiency

<3

NVIDIA.

Why Are Small LMs Okay as SentenceTransformers?

Small LMs have sufficient understanding of short phrases
Only need large LM for large/complex bodies of text
Future work: Measure tradeoffs for SLM vs LLM

Latest PyG supports VisionTransformer now!

23

<X

NVIDIA.

Basic Retrieval Algorithm (GNN Feeds LLM)

L RO 3
| 1

Remote Knowledge Untrimmed Subgraph Pruned Subgraph
Graph & Prompt (thousands of nodes) (dozens of nodes)
(millions of nodes)
X nodeS, n hopS, fanout=f (S|m||ar|ty based graph traversal)

> O(X*K*fAn) Linear on thousands -> Free

GNN Feeds LLM vs LLM Feeds GNN <3

NVIDIA.

e GNN Feeds LLM:
o Data: prompt conditioned on graph
o Tasks: Token-level tasks (Ex. Question Answering)
o Flow:
m Graph -> GNN = GNN_out
m (GNN_out + prompt) -> LLM = Answer Tokens
e LLM Feeds GNN:
o Data: Graph where every node/edge has tokens attributed to it
o Task: Graph learning (Ex. node classification or link prediction)
o Flow:
m feature vector for each node/edge (Sentence/VisionTransformer)
m Feed this graph to GNN for Graph Learning Task

<X

NVIDIA.

Node Classification: GLEM (LLM Feeds GNN)

e GLEM = SOTA Node Classification for Text Attributed Graphs (TAGs)
o https://arxiv.org/abs/2210.14709
o Ex: OGBN-Products (https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-products)

OWB .o o T T

OPEN GRAPH BENCHMARK Text Attribute OS5 MaLs s e
Dataloader s ,

Text -
Ogbn-dataset Attributed S Nl LT As augmented
Graph training data M External
Prediction

-
g
-
-
-
-

Tokenize Graph

Graph GNN Training GNN Preds

(M-step) (Pseudo Labels)
Raw Text of Node Dataloader

Objects For M-Step: concatenate pseudo-

[
output with original node feature EM-step i

https://arxiv.org/abs/2210.14709
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-products

<3

NVIDIA.

Node Classification in PyG (LLM Feeds GNN)

Implementation in PyG 7x faster than original paper’s code for OGBN-Products
New Text Attributed Graph (TAG) Interface
Also adds optional support for LLM finetuning w/ LORA* (uses PEFT™ library)

See examples/lim/glem.py on PyG GitHub

PEFT = https://pyg.org/

LoRA = https://arxiv.org/abs/2106.09685 PEFT = https://hugaingface.co/docs/peft/en/index

http://glem.py
https://huggingface.co/docs/peft/en/index
https://arxiv.org/abs/2106.09685
https://pyg.org/

<

NVIDIA.

TAG Usage (LLM Feeds GNN)

dataset = F Propl - (f'ogbn-products', root=root)
split_idx = dataset. IX_S| ()

tag_dataset = 1 ata ("/root/path", dataset, "prajjwall/bert-tiny",
token_on_disk=token_on_disk)

e TJakes in path, dataset, and LM of choice

e Optional: save tokens on disk

GLEM Set Up (LLM Feeds GNN) 2.

num_classes = dataset.num_classes

gnn = (in_channels=1024,
hidden_channels=1024,
num_layers=4,
out_channels=num_classes,
heads=4,

EM(1m_to_use="prajjwall/bert-tiny"”, gnn_to_use=gnn, out_channels=num_classes,
Im_use_lora=1lm_use_lora, device=device)

e GLEM model: LM of choice, GNN of choice, num_classes
e Optional:

o Use LoRa

o Device (default cpu but cpu is SUPER slow)

G-retriever (GNN Feeds LLM) Set Up i

in_channels=1024,
hidden_channels=1024,
out_channels=1024,
num_layers=4,
heads=4,

)

llm = LLM(model _name="meta-1lama/Meta-Llama-3.1-8B-Instruct")
model = GRetriever(1lm=1lm, gnn=gnn)

e GRetriever: LLM + GNN
e Auto GPU Set Up!

S

NVIDIA.

G-retriever: Get Loss

batch.
batch.
batch.
batch.
batch.
batch.
batch.

question, # ["list", "of", "questions", "here"]
X, # [num_nodes, num_features]

edge_index, # [2, num_edges]

batch, # which nodes belong to which question
label, # list answers (labels)

edge_attr, # [num_edges, num_features]

desc # list of text graph descriptions

<3

NVIDIA.

G-retriever Inference

model.inference(["list", "of", "questions", "here"],
batch.x # node features,
batch.edge_index,

batch.batch, # batch vector, assigns each element to a specific example.

batch.edge_attr, # edge attributes, optional but recommended
["list", "of", "textified graphs", "here"]) # optional but recommended

<

NVIDIA.

Knowledge Graph Creation

e Most RAG Datasets only have unstructured text context
e Task: unstructured text -> KG
o Format: (entity 1, relation, entity 2)

e LLMs specialized for unstructured text -> ideal model for task

i—]]*

<

NVIDIA.

TXT2KG Class in PyG
e Releasedin PyG 2.7
® Prompt engineering + python filters

SYSTEM_PROMPT = "Please convert the above \

text into alist of knowledge triples with the form \
(‘entity', 'relation', 'entity'). \

Seperate each with a new line. \

Do not output anything else. \

Try to focus on key triples \

that form a connected graph. \

Try to focus on re-using the \

same entities whenever possible.”"

for context_doc in tqdm(context_docs, desc="Extracting KG triples"):
kg_maker. a) KG(txt=context_doc)

<3

RAG+VectorRAG (PyG-RAG)(torch_geometric.llm) NVIDIA

Natural
Language
Query

2

\Knowledge

Graph

Retrieve
——» Subgraph
Context

v

Retrieved
Node/Edge
Features

Textified Graph

GNN
Encoder

=JfLLM Encoder i—E

| Doc/Chunk
Retrieval

PyG-RAG is seeing adoption
across Fortune 500 companies
and internally at NVIDIA!

See:
examples/lim/txt2kg_rag.py on
PyG’s GitHub

Concatenate
Embeddings

Natural
LLM Decoder Language
Response

Accuracy on Multi-Hop Synthetic Q & A for Lecture Corpus

253B-Nemotron-Ultra LLM Judge Accuracy, for LLAMA3-8b Generator

90

*253b Nemotron fol

TXT2KG.
80
70 *ModernBert for
vector embeddings.

60
50

Basic RAG Basic RAG + Agentic RAG Basic Graph RAG Basic Graph RAG GNN+LLM RAG Golden Retrieval* *Feed generator

Finetune LLM (NV AlQ) + Finetune LLM (also Finetuned) (speed of light) same docs used to

generate synthetic

Synthetic Q n A made with NVIDIA TrueQuery Q&A pairs.

https://docs.google.com/presentation/d/1ZHwUsvwhbobmj0I46p9QnffSDF3z4nWkutKxHA81gnM/edit?usp=sharing

Vibe COded GUI NVIDIA.

e PyG Codebase is easy to build with
o Example: Our PM Santosh Bhavani Vibe Coded a GUI using Cursor

bt —

I EANVIDIA

Text-to-Graph on
NVIDIA DGX Spark

https://build.nvidia.com/spark/txt2kg
http://www.youtube.com/watch?v=8iA_f_UpzHc

Next Steps

e Continued improvements of codebase...
o Speed, usability, accuracy, understandability, etc
e Accelerate retrieval w/ CuGraph+CuVs
o Scale up to and beyond trillion edges
o Align TXT2KG w/ KGGen:
e More modalities and interesting new problems to solve...

e New retrieval techniques

https://github.com/stair-lab/kg-gen

<3

NVIDIA.

More Modalities...

e |dea of GNN embeddings to prefix Transformer/LLM is highly general...

<3

NVIDIA.

Scientific GNN+LLM Community Sprint (Biology/Chemistry)

e Goal: Add GNN+LLM support for the sciences like biology and chemistry
e 3 Biology papers & 1 Chemistry paper
e General goal: advance medicine and science

e see examples/lim/README.md on PyG GitHub or NVIDIA Container

PyG Example link:

Example: MoleculeGPT
e "Talk to your Molecule” (GNN+LLM)

MoleculeGPT Paper link: -

How is the color and odor of
molecule C1=CC=C(C=C1)C=07?

It appears a clear colorless to yellow

liquid with a bitter almond odor.

<3

NVIDIA.

More Modalities...

e I|dea of GNN embeddings to prefix sequence prompt is highly general
m Ex 1. Graphs = molecule/cell/etc, NLP task=Bio/Chem/Drug
Discovery
m Ex 2: Graphs = customer data, NLP task=talk to customer data
m Ex 3: Graphs = docs w hyperlinks, NLP task=talk to docs
e Imagine graphs that include multiple modalities.
o EX:
o Amazon products, where each node has a text review and a photo
o Relational Database heterographs as seen in RelBench*/Kumo.ai*
o Node features could be:
Text: Natural Language or Code
Images
Audio
Video

Molecule/Cell/etc embeddings * https://relbench.stanford.edu/
* https://kumo.ai/

https://relbench.stanford.edu/
https://kumo.ai/

<3

NVIDIA.

Unstructured vs Structured Graph Data

RELBENCH

RELATIONAL DEEP LEARNING BENCHMARK

.'.I o

e LessAccurate e They Likely cover different knowledge e Highly Accurate
e Most enterprises have multiple
e Combine:
o Separate GNN per Graph Type

Graph Transformers vs Message Passing (Future) f,%\.
e Today 2 Kinds of GNN:
o Message Passing (traditional)

o Graph Transformer (newer)

e More Graph Transformers Coming Soon to PyG
o Future Goal: See how effects accuracy of previously

discussed GNN+LLM systems

<3

NVIDIA.

Conclusion

General Al rule: Data is King!

Ex: Even the best model can’t learn on randomly labeled data
Key Takeaway:

o Structured Data(GNN) + Unstructured Data(LLM) = Better GenAl
Built & Optimized for NVIDIA PyG container

o https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pvag

Stay tuned to LinkedIn for new updates

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg

Acknowledgements 2

-

Junhao Shen

N

Brian Shi

Ralph Liu

And all the PyG contributors: htips://github.com/pyg-team/pytorch_geometric/graphs/contributors

https://github.com/pyg-team/pytorch_geometric/graphs/contributors

Thank You!

	Slide 1: Stanford CS224W: Large Language Models and GNNs
	Slide 2: Announcements

