16.

Review of Classical Planning
&
HTN Planning

The Planning Problem

Given:

— A characterization of an Initial State

— A characterization of a (set of) Goal State(s)
— A characterization of possible actions

Synthesize:
— A sequence of actions that when executed in the Initial State transitions the
world to a Goal State

a I
Lo)
State State

N J

Applications

Military Logistics Robots

R N L T T

Games

Autonomous
Manufacturing Spacecraft

More comprehensive treatment of applications in the next lecture

Dimensions of Planning

Simple

<€

Complex
>

State Scope

Finite

Non-finite

Action Determinism

Deterministic

Nondeterministic

Action Duration

Instantaneous

Durative

World Observability

Full

Partial

World Dynamics

Static

Exogenous events

Goal Attainment

Full

Partial

Time

No time points

Rich model of time

y,

Classical Planning Problem

Background in Planning from CS221

Planning is a search problem over states that can be structured (ie,
expressed as logical formulas)

Classical planning algorithms
— Progression, regression, plan space search
Efficient algorithms based on planning graphs (Graph Plan)

Use of heuristics
— For example, A*

For more details, refer to CS221 lecture notes

— http://www.stanford.edu/class/cs221/notes/cs221-lecture2.ppt
— http://www.stanford.edu/class/cs221/notes/cs221-lecture9.ppt
or

Chapter on Planning in Russell & Norvig textbook

Goals for this Lecture

Make a connection to the situation calculus representation that we
covered during the last lecture
Build on what you learned in CS221

— Refresh some basic concepts as per the B&L textbook
* Primarily aimed to keep consistency in the course material

— Discuss application of classical planning to video games

— Introduce FF — a state of the art planning algorithm that uses classical
planning techniques + graph plan + heuristics

Cover in-depth a knowledge-based planning technique
— Hierarchical Task Network Planning

Using the situation calculus

The situation calculus can be used to represent what is known
about the current state of the world and the available actions.

The planning problem can then be formulated as follows:

Given a formula Goal(s), find a sequence of actions a such that
KB |= Goal(do(a, S;)) n Legal(do(a, S;))

where do({a,,...,a,), S,) is an abbreviation for
do(a, do(a,,, ..., do(a,, do(a,, S,)) ...))

and where Legal({a,,....a,), S,) is an abbreviation for

Poss(a,, S,) A Poss(a,, do(a,, S;)) n ... A Poss(a,, doa,,....a,_), S,)

m

So: given a goal formula, we want a sequence of actions such that

« the goal formula holds in the situation that results from executing the
actions, and

* itis possible to execute each action in the appropriate situation

KR&R © Brachman & Levesque 2005 257

Planning by answer extraction

Having formulated planning in this way, we can use Resolution
with answer extraction to find a sequence of actions:

KB |= ds. Goal(s) A Legal(s)

The textbook has a detailed example on how it can be done

Modern planning algorithms use techniques that are customized to planning

STRIPS

Stanford Research
I nstitute Problem Solver
B Fikes & Nilsson, 1971

Term used generally to
refer to classical planning
formulations

Original STRIPS planner
performed an incomplete
form of backward
chaining

The STRIPS representation

STRIPS is an alternative representation to the pure situation
calculus for planning.

from work on a robot called Shaky at SRI International in the 60’s.

In STRIPS, we do not represent histories of the world, as in the
situation calculus.

Instead, we deal with a single world state at a time, represented
by a database of ground atomic wffs (e.g., In(robot,room,))

This is like the database of facts used in procedural representations and
the working memory of production systems

Similarly, we do not represent actions as part of the world model
(cannot reason about them directly), as in the situation calculus.

Instead, actions are represented by operators that syntactically
transform world models

An operator takes a DB and transforms it to a new DB

KR &R © Brachman & Levesque 2005 261

STRIPS operators

Operators have pre- and post-conditions
« precondition = formulas that need to be true at start

+ “delete list” = formulas to be removed from DB

« “add list” = formulas to be added to DB

Example: PushThru(o,d,r,r,)
“the robot pushes object o through door ¢ from room r,to room r,”
« precondition: InRoom(robot,»,), InRoom(o,r,), Connects(d,r,,7,)
+ delete list: InRoom(robot,r,), InRoom(o,r,)

« add list: InRoom(robot,r,), InRoom(o,r,)

initial world model, DB (list of ground atoms)

STRIPS problem space = | set of operators (with preconds and effects)

goal statement (list of atoms)

desired plan: sequence of ground operators

KR&R © Brachman & Levesque 2005 262

STRIPS Example

In addition to PushThru, consider

GoThru(d,r,,r,):
precondition: InRoom(robot,r,), Connects(d,r,,7,)

delete list: InRoom(robot,r;)

add list: InRoom(robot,r,)

DB,:
InRoom(robot,room,) InRoom(box,,room,)
Connects(door,,room,,room,) Box(box,)
Connects(door,,room,,room,)

Goal: [Box(x) A InRoom(x,room,) |

ROOM; ROOM,
DOOR i
1
ROBOT (]
DOOR,
ROOM,

KR&R © Brachman & Levesque 2005

263

Progressive planning

Here is one procedure for planning with a STRIPS like
representation:

Input : a world model and a goal
Output : a plan or fail.
ProgPlan[DB,Goal] =
If Goal is satisfied in DB, then return empty plan
For each operator o such that precond(o) is satisfied in the current DB:
Let DB" = DB + addlist(o) — dellist(o)
Let plan = ProgPlan[DB",Goal]
If plan = fail, then return [act(o) ; plan]
End for
Return fail

(ignoring variables)

This depth-first planner searches forward from the given DB, for
a sequence of operators that eventually satisfies the goal

DB’ is the progressed world state

KR&R © Brachman & Levesque 2005 264

Regressive planning

Here is another procedure for planning with a STRIPS like
representation:

Input : a world model and a goal
Output : a plan or fail.
RegrPlan[DB,Goal] =
If Goal is satisfied in DB, then return empty plan
For each operator o such that dellist(o) N Goal = {}:
Let Goal” = Goal + precond(o) — addlist(o)
Let plan = RegrPlan[DB,Goal’]
If plan # fail, then return [plan ; act(o)]
End for
Return fall

(ignoring variables)

This depth-first planner searches backward for a sequence of
operators that will reduce the goal to something satisfied in DB,

Goal’ is the regressed goal

KR&R © Brachman & Levesque 2005 265

Computational aspects

Even without variables, STRIPS planning is NP-hard.

Many methods have been proposed to avoid redundant search

e.g. partial-order planners, macro operators

Heuristics, graph plan

KR &R © Brachman & Levesque 2005 266

Application of STRIPS Planning to a Game

 F.E.A.R. (short for First Encounter Assault Recon) is
a horror-themed first-person shooter developed
by Monolith Productions

— Gamespot’s Best Al Award in 2005

e http://www.gamespot.com/pages/features/bestof2005/ind
ex.php?day=2&page=10

ERITORS

— Ranked 2" in the list of most influential Al games P ;;;535{2; ;
* http://aigamedev.com/open/highlights/top-ai-games/

B D iurRA

 Technical overview available at
— http://web.media.mit.edu/~jorkin/gdc2006 orkin |eff fe
ar.zip

Design Philosophy behind F.E.A.R

* Designer’s job is: Create environments that allow Al to showcase
their behaviors.
* Designer’s job is NOT: Script behavior of individual Al

— The behavior is a function of the plans that Al comes up with based on
Its goals and actions available to it

Adapted from Jeff Orkin

Actions Available to Key Characters

ﬁoldier

B Action

WO o~ S A R L R e

Fa e T —
F‘E'-ﬁ'hﬂﬂ‘iiﬂ-l-ﬂﬁ}l-'-ﬁ

=
:
[
F

AL/ Actions/Attack

AL/ Actions, AttackCrouch

Al Actions/Suppressionfire

Al Actions)/SuppressionFireFromiCower
Al Actions FlushDut WithGrenade
Al/Actions/AttackFromCover

Al Actions) BlindFireFromCover

Al Actions /AttackGrenadefromCover
Al Actions/ AttackFromYiew

Al Actions, DrawW eapon

Al Actions/HolsterWeapon

AL Actions/ReloadCrouch
AlSActions/ReloadCovered

AL/ Actions, InspectDisturbance
Al Actions,/LookAtDisturbance
AL Actions/Surveyfrea

AL/ Actions) DodgeRoll

AL/ Actions/DodgeShulffle

Al Actions DodgeCovered

AL/ Actions, Lncover
AlSActions/AttackMeles

Assassin

B Action

L B I - (I T .

P =l el K=l By e
o odg P = O

Aozl s m

AL/ Actions/ Attack

AL/ Actions Inspect Disturbance

Al Actions/LookAtDisturbance

Al Actions) Surveyfirea
Al/Actions/Attack™MeleeUncloaked

Al Actions) TraverseBlockedDoor
ALfActions/ UseSmartObjectNoderiounted

AL Actions MMount ModelLinc loaked
A1/ Aetions Dismount Model incloalosd

AlLfActions/ TraverseLinkUncloaked
AL/ Actions, AttackFromAmbush

AL/ Actions DodgeRollParamwid

AL/ Actions/ AttackLungelncloaked
Al Actions/LopeToTargetUncloaked

Adapted from Jeff Orkin

Rat

El Action

2
3
4
+

Alf ActionsAnimate
Al/Actions,Tdle

Al Actions GotoNode

Al Actions UseSmartObjectNode

Benefits of Planning

« Separation of Goals and Actions
» Layering of behavior

 Dynamic Problem Solving
— Example video clips

Adapted from Jeff Orkin

Fast Forward Planning Algorithm

* Proposed by Hoffman and Nebel
* Winner of the 2000 planning competition
e Approach

— Compile problem into grounded STRIPS

— Perform Enforced-Hill-Climbing (EHC) until either solved or no further
progress can be made.

« Sound, not complete
— Perform Best-First-Search
* Sound, complete.

Using FF in the context of a Game

Iceblox Sokoban

As part of HW3, Iceblox will be provided as an example use of FF
We will use FF planner to solve three configurations of Sokoban

Goals for this Lecture

Make a connection to the situation calculus representation that we
covered during the last lecture
Build on what you learned in CS221

— Refresh some basic concepts as per the B&L textbook
* Primarily aimed to keep consistency in the course material

— Discuss application of classical planning to video games

— Introduce FF — a state of the art planning algorithm that uses classical
planning techniques + graph plan + heuristics

Cover in-depth a knowledge-based planning technique
— Hierarchical Task Network Planning

Motivation

e We may already have an 1dea how to go about solving
problems 1n a planning domain

e Example: travel to a destination that’s far away:
¢ Domain-independent planner:
» many combinations of vehicles and routes
¢ Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport

3. fly to remote airport
4. travel to final destination

e How to enable planning systems to make use of such recipes?

Dana Nau: Lecture slides for Automated Planning 23
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

® Problem reduction
& Tasks (activities) rather than goals
¢ Methods to decompose tasks into subtasks
¢ Enforce constraints
» E.g., taxi not good for long distances

¢ Backtrack if necessary

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

24

Task: | travel(x,y)

Wi

" Method: taxi-travel(x,y) Method: air-travel(x,y) A
: : . get-ticket(a(x),a(y))

get-taxi[=| ride(X,y) |=>|pay-driver) fly(a(x),a(y)) || travel(a(y).y)

_ / _ travel(x,a(X)))

HTN Planning

travel (UMD, LAAS)

get-ticket(BWI, TLYS)
go-to-travel-web-site

/

4
7

& Tasks (activities) rather than goals
¢ Methods to decompose tasks into subtasks
¢ Enforce constraints

» E.g., taxi not good for long distances

¢ Backtrack if necessary

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

find-flights(BWI, TLS) y
® Problem reduction BACKTRACK F-

/

0 \
I

1

1

1

get

ticket(IAD, TLS)

\

go-to-travel-web-site
find-flights(IAD,TLS)
buy-ticket(IAD,TLS)

travel(UMD, 1AD)

\

get-taxi
ride(UMD, IAD)
pay-driver

travel(TLS, LAAS)

\

get-taxi
ride(TLS, Toulouse)
pay-driver

25

HTN Planning

e HTN planners may be domain-specific
® Or they may be domain-configurable
4 Domain-independent planning engine

4 Domain description that defines not only the operators, but
also the methods

¢ Problem description

» domain description, 1nitial state, initial task network

Task: | travel(x,y)

a Method: taxi-travel(x,y) \/ a Method: air-travel(x,y) A
)) - . get-ticket(a(x),a(y))

get-taxi[= ride(X,y) |—>|pay-driver) fly(a(x),a(y)) | travel(a(y),y)

_ J _ | travel(x,a(x)) Y,

Dana Nau: Lecture slides for Automated Planning 26
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Simple Task Network (STN) Planning
® A special case of HTN planning

e States and operators
¢ The same as 1n classical planning
e Task: an expression of the form t(u,,...,u,)
t is a task symbol, and each u; is a term
¢ Two kinds of task symbols (and tasks):
» primitive: tasks that we know how to execute directly
* task symbol i1s an operator name
» nonprimitive: tasks that must be decomposed into subtasks
* use methods (next slide)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

27

Methods

e Totally ordered method: a 4-tuple
m = (name(M), task(m), precond(m), subtasks(m))

¢ name(M): an expression of the form n(x;,...,X,)

» Xq,-...,X, are parameters - variable symbols

¢ task(m): a nonprimitive task

precond(m): preconditions (literals) @

¢ subtasks(m): a sequence

travel(X,y)

/

long-distance(X,y)

B —

travel (X, a(x))

fly (a(x), a(y))

travel (a(y), Y)

of tasks (t;, ..., t,)
-tick
air-travel(x,y) Sl G G, O
task: travel(x,y)

precond: long-distance(X,y)
subtasks: (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y))

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

28

Methods (Continued)

e Partially ordered method: a 4-tuple

m = (name(M), task(m), precond(m), subtasks(m))

¢ name(M): an expression of the form n(x;,...,X,)

» Xq,-...,X, are parameters - variable symbols

travel(X,y)

¢ task(m): a nonprimitive task el

precond(m): preconditions (literals)

¢ subtasks(m): a partially ordered

set of tasks {t;, ..., t,} long-distance(X,Y)

// \\\

air-travel(x,y)

buy-ticket (a(x), a(y))||travel (X, a(X))||fly (a(X), a(y))||travel (a(y), ¥)

N~ —

task: travel(x,y)
precond: long-distance(x,y)

N~

network: u,=buy-ticket(a(x),a(y)), u,= travel(x,a(x)), u,= fly(a(x), a(y))

u,= travel(ay),y), {(u;,us), (Uy,Us), (Us,U,)}

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

Domains, Problems, Solutions

® STN planning domain: methods, operators
e STN planning problem: methods, operators, 1nitial state, task list
e Total-order STN planning domain and planning problem:

4 Same as above except that
all methods are totally ordered

nonprimitive task

1
@od ins@
e Solution: any executable plan

that can be generated by precog
recursively applying <

primitive task primitive task
¢ methods to

non-primitive tasks @tor ,ns@ @tor ms@

@ operators to
primitive tasks

So precond effects Sy precond effects S,

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

I

Example

® Suppose we want to move three stacks of containers in a way that
preserves the order of the containers

l cranel # cranel ‘ crane3
c31
/7| c2l a—d g7
cll . plc c22 . p2c c33 - pP3c
cl?2 P c23 s 7 c34 A
pla plb YE p2b : 53 p3b |
locl loc2 loc3
(a) initial state
|""r I I_,_-
l crane] ‘ crang? ‘ cranel €31
c21 c32
cl1 cl22 c33
clz2 c23 c34
. plc . p2c - p3c
ST 7 S 7 A
S 51D sl 7 52b A 53D
pla _ pla : p3a ;
locl loc2 loc3

(b) goal

31

Example (continued)

® A way to move each stack:

& first move the

al

COntainerS cranel crane2 crane3
from p to an 31
: : | i /7| 32 J—
1ntermed1ate cii plc c22 p2c c33 p3c
. cl2 A c23 sl 7 c34 A4
pile r pla i pZ5 P2 p3a 2n
locl loc2 loc3

(a) initial state

& then move

them from -
cranel crane2 * cranes c31
£21 32
r tO q cll c22 c33
cl2 c23 c34
plc plc p3c
A4 A4 A
z 7 oib g7 n2b L7 p3b
pla . pZa : p3a ;
locl loc2 loc3

(b) goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

tHkE-Eﬂd-pUt(C, k: El} EE}plz«pE} L1y ..Tg]:
task: move-topmost-container(p1, p2)
precond: top(ec,p1), on(e,z1), true if p1 is not empty

Partial-Order

attached(p1,11), belong(k,l1), ; bindl; and k FO FMmu I atl on

attached(ps, l2), top(x2,p2) ; bind I3 and x4
subtasks: {take(k, "!11 c, -Tflapl)- pUt(k: EE: c, $2=PE)>

recursive-move(p, g, ¢, z):
task: move-stack(p, q)
precond: top(e,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, q))
;; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice()

task: move-all-stacks()
precond: ; no preconditions
network: ; move each stack twice:

u; =move-stack(pla,plb), us =move-stack(plb,plc),
uz =move-stack(p2a,p2b), us =move-stack(p2b,p2c),
us =move-stack(p3a,p3b), ug =move-stack(p3b,p3c),

{(u1,u2), (u3, ua), (us, us) }

z

lcranel
L 7
cll L plc
cl2 A P
nia plb
locl
I..f
\ cranel
clil
clz
o plc
VA
a—— 5
locl

33

ta ke-and-put(c, k: El} EE}plz«pE} L1 :E?]:
task: move-topmost-container(p1, p2)
precond: top(e,p1), on(ec,z1), ; true if p1 is not empty

Total-Order

attached(p1,11), belong(k,l1), ; bindl; and k Form U I atl on

attached(ps, [2), top(z2,p2) ; bind l2 and x4
subtasks: {take(ﬁc, "!11 c, -Tflapl)- pUt(ka EE? c, mﬂ:pﬂ)}

recursive-move(p, q, ¢, T):
task: move-stack(p, q)
precond: top(e,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, q))
;; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () , no subtasks, because we are done

move-each-twice()

task: move-all-stacks()
precond: ; no preconditions
subtasks: ; move each stack twice:

(move-stack(pla,plb), move-stack(plb,plc),
move-stack(p2a,p2b), move-stack(p2b,p2c),
move-stack(p3a,p3b), move-stack(p3b,p3c))

z

lcranel
L 7
cll L plc
cl2 A P
nia plb
locl
I..f
\ cranel
clil
clz
o plc
VA
a—— 5
locl

34

Solving Total-Order STN Planning Problems

TFD(s, (t15..., 1), O, M)
if k = 0 then return () (i.e., the empty plan)
if t; 1s primitive then
active < {(a,o’) | a is a ground instance of an operator in O,
o 1s a substitution such that a is relevant for o (t;),
and a is applicable to s}
if active = @ then return failure
nondeterministically choose any (a,0) € active

state S; task list T=(|t; t,,...)

a <« TFD(y(s,a),o({t2,..., %)), O, M) action|a
if w = failure then return failure
else return a. st state|y(s,a) |; task list T=(t,, ...)

else if #; 15 nonprimitive then
active < {m | m is a ground instance of a method in M,
o 1s a substitution such that m is relevant for o (1;),

and m is applicable to s} task list T=(t,t,,...)
if active = @ then return failure

method instance m

nondeterministically choose any (m, o) € active
w < subtasks(m).o({ts,..., 1)) o t
return TFD(s, w, O, M) task list T=(|uy, .. Uy

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Comparison to
Forward and Backward Search

® [n state-space planning, must choose whether to search
forward or backward < >

So S Sy > ... Si |

® In HTN planning, there are two choices to make about direction:

¢ forward or backward >
4 up or down task t,
o TFD goes / \
down and task t| . task t,
forward >\ /4>\

v
HarEHoHEr -~ Ede-

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

36

Comparison to

Forward and Backward Search

e [ike a backward search,
TFD 1s goal-directed

¢ Goals
correspond

to tasks /L >\
S S

e Like a forward search, it generates actions
in the same order in which they’ll be executed

e Whenever we want to plan the next task

task t

m

Hopy

task t,

¢ we’ve already planned everything that comes before it

& Thus, we know the current state of the world

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

37

Limitation of Ordered-Task Planning

® TFD requires totally ordered

get-both(p,q)

methods / \
get(p) get(q)
_
— T~ — i —~—
walk(a,b) | | pickup(p) | | walk(b,a) | | walk(a,b) | | Pickup(q) | | walk(b,a)
e Can’t interleave subtasks of different tasks
e Sometimes this makes things awkward
Nced to write methods that reason SN0
globally 1nstead of locally A)/%\
goto(b) pickup-both(p,q) | | goto(a)
/ N, \
N
walk(a,b) | | pickup(p) | | pickup(q) || walk(b,a)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

38

Partially Ordered Methods

e With partially ordered methods, the subtasks can be interleaved

get-both(p,q)

get(p) get(q)
P N

walk(a,b) | | stay-at(b) | | pickup(p) | | pickup(q) || walk(b,a) | | stay-at(a)

e Fits many planning domains better

® Requires a more complicated planning algorithm

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

o w0 Algorithm for Partial-Order STNs

if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t,, is a primitive task then
active < {(a,o) | a is a ground instance of an operator in O,
o 1s a substitution such that name(a) = o (t,),
and a is applicable to s}
if active = { then return failure m={a,,..., a}; W={[t;|t), t;...}
nondeterministically choose any (a, o) € active
m <« PFD(y(s,a),0(w —{u}),O, M)
if m = failure then return failure
else return a.
else
active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (t,).
and m is applicable to s}

operator instance| a

. . . =4t |,t,...
if active = () then return failure | W=t b,
nondeterministically choose any (m, o) € active method instance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w', O, M)

I —
. . W _{ tll""’tlk ,tz,...}
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

n={a, ..., q, |a}; W ={t,, t;, ..

3

(s o) A ithm for Partial-Order STNs

if w = @ then return the emphy plan

inw
® Intuitively, W is a partially ordered set of tasks {t;, t,, ...}
4 But w may contain a task more than once),
» e.g., travel from UMD to LAAS twice (t),

¢ The mathematical definition of a set doesn’t allow this
e Define W as a partially ordered set of task nodes {u,, u,, ...}
¢ Each task node u corresponds to a task t,

e In my explanations, I talk about t and ignore u
— CESETETNT 8.7

else
active < {(m,o) | m is a ground instance of a method in M,

o 1s a substitution such that name(m) = o (t,),
and m is applicable to s}

k}a W:{ tl 7t29 t3}

instance| a

all; W={t,t, ...}

. . . w={t,,t,...
if active = @ then return failure {tapt---}
nondeterministically choose any (m, o) € active method instance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

f
return(PFD(s, w', O, M) W=ty trhty.)
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 41

o w0 Algorithm for Partial-Order STNs

if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t,, is a primitive task then
active < {(a,o) | a is a ground instance of an operator in O,
o 1s a substitution such that name(a) = o (t,),
and a is applicable to s}
if active = { then return failure m={a,,..., a}; W={[t;|t), t;...}
nondeterministically choose any (a, o) € active
m <« PFD(y(s,a),0(w —{u}),O, M)
if m = failure then return failure
else return a.
else
active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (t,).
and m is applicable to s}

operator instance| a

. . . =4t |,t,...
if active = () then return failure | W=t b,
nondeterministically choose any (m, o) € active method instance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w', O, M)

I —
. . W _{ tll""’tlk ,tz,...}
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

n={a, ..., q, |a}; W ={t,, t;, ..

3

o w0 Algorithm for Partial-Order STNs

if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t,, is a primitive tack then
active < O(W, U, m, o) has a complicated definition in the book. Here’s
what it means:

e We nondeterministically selected t; as the task to do first

if active | ¢ Must do t,’s first subtask before the first subtask of every t; # t,
nondeter

m <« PFI

if w = failure then return failure

else return a.

else

active < {(m,o) | m is a ground instance of\§ method in M,
o is a substitution such that namel\n) = o (t..).
and m is applicable to s}

if active = @ then return failure

nondeterministically choose any (m, o) € active

nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w', O, M) W ={{ti bt}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

e Insert ordering constraints to ensure that this happens

n={a, ..., q, |af}; W={t,,t; ...}

W:{ tl 9t29'-'}

method instance|m

Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

® Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

® Scveral ways to do this. One 1s roughly as follows:
¢ For each goal or precondition e, create a task t,
For each operator o and effect €, create a method m,
» Task: t,

» Subtasks: t., t.,, ..., t,,, 0, where C;, C,, ..., C, are the

preconditions of 0
» Partial-ordering constraints: each t; precedes 0

e (I left out some details, such as how to handle deleted-condition
interactions)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

44

Comparison to Classical Planning (cont.)

e Some STN planning problems aren’t expressible in classical planning

e Example:
¢ Two STN methods: t t
» No arguments —othod 1 @v@
» No preconditions %)

b a b

¢ Two operators, a and b
» Again, no arguments and no preconditions

Initial state 1s empty, initial task is t

¢ Sct of solutions is {a"b" | n > 0}

¢ No classical planning problem has this set of solutions
» The state-transition system is a finite-state automaton
» No finite-state automaton can recognize {a"b" | n > 0}

e (Can even express undecidable problems using STNs

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

SHOP2

e SHOP2: implementation of PFD-like algorithm + generalizations

¢ Won one of the top four awards in the AIPS-2002 Planning
Competition

¢ Freeware, open source
¢ Implementation available at

http://www.cs.umd.edu/projects/shop

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

46

HTN Planning

e HTN planning 1s even more general
4 Can have constraints associated with tasks and methods
» Things that must be true before, during, or afterwards

¢ Some algorithms use causal links and threats like those in PSP

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

47

Domain-Configurable Planners
Compared to Classical Planners

e Disadvantage: writing a knowledge base can be more
complicated than just writing classical operators

® Advantage: can encode “recipes’ as collections of methods
and operators

¢ Express things that can’t be expressed 1n classical planning
¢ Specify standard ways of solving problems

» Otherwise, the planning system would have to derive
these again and again from “first principles,” every time
it solves a problem

» Can speed up planning by many orders of magnitude
(e.g., polynomial time versus exponential time)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

48

Goals for this Lecture

® Make a connection to the situation calculus representation that we
covered during the last lecture

e Build on what you learned in CS221
¢ Refresh some basic concepts as per the B&L textbook
» Primarily aimed to keep consistency in the course material
Discuss application of classical planning to video games

Introduce FF — a state of the art planning algorithm that uses
classical planning techniques + graph plan + heuristics

e Cover in-depth a knowledge-based planning technique
¢ Hierarchical Task Network Planning

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 49

Readings

 Required
— Chapter 15 in B&L Textbook
— Chapter 11 of Automated Planning by Ghallab, Nau and Traverso
e Optional
— Jeff Orkin: Three States and a Plan: The Al of F.E.A.R. Proceedings
of the Game Developer's Conference (GDC). [paper | slides]

— Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture
to Support Arcade Game Playing

