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Review of Classical Planningg
&

HTN Planning



The Planning Problem

• Given:• Given:
– A characterization of an Initial State
– A characterization of a (set of) Goal State(s)
– A characterization of possible actionsp

• Synthesize:
– A sequence of actions that when executed in the Initial State transitions the 

ld G l Sworld to a Goal State

Initial 
State

A1 Aj Ak Am
Goal
State



Applications

RobotsMilitary Logistics

Games

Autonomous 
SpacecraftManufacturing

More comprehensive treatment of applications in the next lecture



Dimensions of Planning
Simple Complex

State Scope Finite Non-finite

Action DeterminismAction Determinism
Deterministic Nondeterministic

Action Duration Instantaneous Durative

World ObservabilityWorld Observability
Full Partial

World Dynamics Static Exogenous events

Goal Attainment F ll P ti lGoal Attainment Full Partial 

Time No time points Rich model of time

Classical Planning Problem



Background in Planning from CS221g g

• Planning is a search problem over states that can be structured (ie, 
expressed as logical formulas)

• Classical planning algorithms
– Progression, regression, plan space searchg g p p

• Efficient algorithms based on planning graphs (Graph Plan)
• Use of heuristics

– For example A*For example, A

• For more details, refer to CS221 lecture notes
http://www stanford edu/class/cs221/notes/cs221 lecture2 ppt– http://www.stanford.edu/class/cs221/notes/cs221-lecture2.ppt

– http://www.stanford.edu/class/cs221/notes/cs221-lecture9.ppt
or
Chapter on Planning in Russell & Norvig textbookChapter on Planning in Russell & Norvig textbook



Goals for this Lecture

• Make a connection to the situation calculus representation that we 
covered during the last lecture

• Build on what you learned in CS221
– Refresh some basic concepts as per the B&L textbookp p

• Primarily aimed to keep consistency in the course material
– Discuss application of classical planning to video games
– Introduce FF – a state of the art planning algorithm that uses classical 

planning techniques + graph plan + heuristics
• Cover in-depth a knowledge-based planning technique

– Hierarchical Task Network Planning





The textbook has a detailed example on how it can be doneThe textbook has a detailed example on how it can be done

Modern planning algorithms use techniques that are customized to planning



STRIPS
 Stanford Research 

Institute Problem SolverInstitute Problem Solver
 Fikes & Nilsson, 1971

 Term used generally to 
refer to classical planning 
formulations

 O i i l STRIPS l   Original STRIPS planner 
performed an incomplete 
form of backward form of backward 
chaining













Heuristics, graph plan



Application of STRIPS Planning to a Gamepp g

• F.E.A.R. (short for First Encounter Assault Recon) is 
a horror-themed first-person shooter developed 
by Monolith Productions
– Gamespot’s Best AI Award in 2005

• http://www.gamespot.com/pages/features/bestof2005/ind
ex.php?day=2&page=10

– Ranked 2nd in the list of most influential AI games
• http://aigamedev com/open/highlights/top ai games/• http://aigamedev.com/open/highlights/top-ai-games/

• Technical overview available at
– http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fe

ar zipar.zip



Design Philosophy behind F.E.A.Rg p y

• Designer’s job is: Create environments that allow AI to showcase 
their behaviors.

• Designer’s job is NOT: Script behavior of individual AI
– The behavior is a function of the plans that AI comes up with based on p p

its goals and actions available to it

Adapted from Jeff Orkin



Actions Available to Key Charactersy

Adapted from Jeff Orkin



Benefits of Planningg

• Separation of Goals and Actions
• Layering of behavior
• Dynamic Problem Solving

– Example video clipsExample video clips

Adapted from Jeff Orkin



Fast Forward Planning Algorithmg g

• Proposed by Hoffman and Nebel
• Winner of the 2000 planning competition
• Approach

– Compile problem into grounded STRIPSCompile problem into grounded STRIPS
– Perform Enforced-Hill-Climbing (EHC) until either solved or no further 

progress can be made.
• Sound, not complete

– Perform Best-First-Search
• Sound, complete.



Using FF in the context of a Gameg

Iceblox Sokoban

As part of HW3, Iceblox will be provided as an example use of FF
We will use FF planner to solve three configurations of Sokoban 



Goals for this Lecture

• Make a connection to the situation calculus representation that we 
covered during the last lecture

• Build on what you learned in CS221
– Refresh some basic concepts as per the B&L textbookp p

• Primarily aimed to keep consistency in the course material
– Discuss application of classical planning to video games
– Introduce FF – a state of the art planning algorithm that uses classical 

planning techniques + graph plan + heuristics
• Cover in-depth a knowledge-based planning technique

– Hierarchical Task Network Planning



Motivation
 We may already have an idea how to go about solving 

problems in a planning domain
E l t l t d ti ti th t’ f Example: travel to a destination that’s far away:
 Domain-independent planner:

» many combinations of vehicles and routes» many combinations of vehicles and routes
 Experienced human: small number of “recipes”

e.g., flying:g , y g
1. buy ticket from local airport to remote airport
2. travel to local airport
3 fl t t i t3. fly to remote airport
4. travel to final destination
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 How to enable planning systems to make use of such recipes?



HTN Planningg

 Problem reduction
Tasks (activities) rather than goals
Methods to decompose tasks into subtasks
Enforce constraints

» E.g., taxi not good for long distances
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Backtrack if necessary



Task:

Method: taxi-travel(x,y)

travel(x,y)

Method: air-travel(x,y)

get-taxi ride(x,y) pay-driver travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))
fly(a(x),a(y))

HTN Planning
travel(UMD, LAAS)

get-ticket(IAD, TLS)get-ticket(BWI, TLS)g g ( , )
go-to-travel-web-site
find-flights(IAD,TLS)
buy-ticket(IAD,TLS) Problem reduction

g ( , )
go-to-travel-web-site
find-flights(BWI,TLS)

BACKTRACK
travel(UMD, IAD)

get-taxi
ride(UMD, IAD)
pay-driver

Tasks (activities) rather than goals
Methods to decompose tasks into subtasks

travel(TLS, LAAS)
get-taxi

pay driver
Enforce constraints

» E.g., taxi not good for long distances
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g
ride(TLS,Toulouse)
pay-driver

Backtrack if necessary



HTN Planning
 HTN planners may be domain-specific
 Or they may be domain-configurable

Domain-independent planning engine
Domain description that defines not only the operators, but 

also the methodsalso the methods
Problem description

» domain description, initial state, initial task networkp , ,

Task: travel(x,y)

Method: taxi-travel(x,y)

get taxi ride(x y) pay driver

Method: air-travel(x,y)

l( ( ) )
get-ticket(a(x),a(y))

fl ( ( ) ( ))
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get-taxi ride(x,y) pay-driver travel(a(y),y)
travel(x,a(x))

fly(a(x),a(y))



Simple Task Network (STN) Planning
 A special case of HTN planning
 States and operators

The same as in classical planning
 Task: an expression of the form  t(u1,…,un)

 t i t k b l d h i t t is a task symbol, and each ui is a term
Two kinds of task symbols (and tasks):

» primitive: tasks that we know how to execute directly» primitive: tasks that we know how to execute directly
• task symbol is an operator name

» nonprimitive: tasks that must be decomposed into subtasksp p
• use methods (next slide)
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Methods
 Totally ordered method: a 4-tupley p

m = (name(m), task(m), precond(m), subtasks(m))
 name(m): an expression of the form n(x1,…,xn)

» x x are parameters variable symbols» x1,…,xn are parameters - variable symbols
 task(m): a nonprimitive task
 precond(m): preconditions (literals)

travel(x,y)

air-travel(x,y)p ( ) p ( )
 subtasks(m): a sequence

of tasks t1, …, tk long-distance(x,y)

( ,y)

air-travel(x,y)
task: travel(x y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

task: travel(x,y)
precond: long-distance(x,y)
subtasks: buy-ticket(a(x), a(y)),  travel(x,a(x)),  fly(a(x), a(y)),
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travel(a(y),y)



 Partially ordered method: a 4-tuple
Methods (Continued)

y p
m = (name(m), task(m), precond(m), subtasks(m))

 name(m): an expression of the form n(x1,…,xn)
» x x are parameters variable symbols» x1,…,xn are parameters - variable symbols

 task(m): a nonprimitive task
 precond(m): preconditions (literals)

travel(x,y)

air-travel(x,y)p ( ) p ( )
 subtasks(m): a partially ordered

set of tasks {t1, …, tk} long-distance(x,y)

( ,y)

air-travel(x,y)
task: travel(x y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

task: travel(x,y)
precond: long-distance(x,y)
network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x), a(y))
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u4= travel(a(y),y),  {(u1,u3), (u2,u3), (u3 ,u4)}



Domains, Problems, Solutions
 STN planning domain: methods, operators
 STN planning problem: methods, operators, initial state, task list
 Total-order STN planning domain and planning problem:

Same as above except that
all methods are totally ordered nonprimitive taskall methods are totally ordered

 Solution: any executable plan

p

method instance
y p

that can be generated by
recursively applying 
 th d t

precond

primitive taskprimitive task
methods to

non-primitive tasks
operators to

operator instance operator instance
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 p
primitive tasks s0 precond effects precond effectss1 s2



Example
S h k f i i h Suppose we want to move three stacks of containers in a way that 
preserves the order of the containers
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Example (continued)
 A way to move each stack:

 first move the
containers
from p to anp
intermediate 
pile r

 then move
them from 
r to q
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Partial-Order 
FormulationFormulation
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Total-Order 
FormulationFormulation
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Solving Total-Order STN Planning Problems

state s; task list T=( t1 ,t2,…); ( 1 , 2, )

action a

state (s,a) ; task list T=(t2, …)( ) ; ( 2, )

task list T=( t1 ,t2,…)

method instance m
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task list T=( u1,…,uk ,t2,…)



Comparison to
Forward and Backward SearchForward and Backward Search

 In state-space planning, must choose whether to search
forward or backward

s0 s1 s2 … …op1 op2 opiSi–1

 In HTN planning, there are two choices to make about direction:
 forward or backward
 up or down

 TFD goes

task t0

g
down and
forward

task tm … task tn

S
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s0 s1 s2 … …op1 op2 opiSi–1



Comparison to
Forward and Backward SearchForward and Backward Search

 Like a backward search,
TFD is goal directed

task t0
TFD is goal-directed
Goals

correspond task tm … task tn

to tasks
s0 s1 s2 … …op1 op2 opiSi–1

 Like a forward search, it generates actions
in the same order in which they’ll be executedy

 Whenever we want to plan the next task
we’ve already planned everything that comes before it
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Thus, we know the current state of the world



Limitation of Ordered-Task Planning

 TFD requires totally ordered
methods

get-both(p,q)

get(p) get(q)

pickup(p)walk(a,b) walk(b,a) Pickup(q)walk(a,b) walk(b,a)

 Can’t interleave subtasks of different tasks
 Sometimes this makes things awkward

pickup(p)walk(a,b) walk(b,a) Pickup(q)walk(a,b) walk(b,a)

 Sometimes this makes things awkward
Need to write methods that reason 

globally instead of locally get-both(p,q)

goto(b) pickup-both(p,q) goto(a)
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pickup(p) pickup(q)walk(a,b) walk(b,a)



Partially Ordered Methods

 With partially ordered methods, the subtasks can be interleaved

get-both(p,q)

get(p) get(q)

 Fit l i d i b tt

walk(a,b) pickup(p)stay-at(b) pickup(q) walk(b,a) stay-at(a)

 Fits many planning domains better
 Requires a more complicated planning algorithm
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Algorithm for Partial-Order STNs

π={a1,…, ak};  w={ t1 ,t2, t3…}

π={a1 …, ak,  a };  w' ={t2, t3, …}

operator instance  a

w={ t1 ,t2,…}

method instance m
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w' ={ t11,…,t1k ,t2,…}



Algorithm for Partial-Order STNs

 Intuitively, w is a partially ordered set of tasks {t1, t2, …}
 But w may contain a task more than once

π={a1,…, ak};  w={ t1 ,t2, t3…}

» e.g., travel from UMD to LAAS twice
 The mathematical definition of a set doesn’t allow this

 Define w as a partially ordered set of task nodes {u1 u2 }

π={a1 …, ak,  a };  w' ={t2, t3, …}

operator instance  a
 Define w as a partially ordered set of task nodes {u1, u2, …}

 Each task node u corresponds to a task tu

 In my explanations, I talk about t and ignore u

w={ t1 ,t2,…}

method instance m
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w' ={ t11,…,t1k ,t2,…}



Algorithm for Partial-Order STNs

π={a1,…, ak};  w={ t1 ,t2, t3…}

π={a1 …, ak,  a };  w' ={t2, t3, …}

operator instance  a

w={ t1 ,t2,…}

method instance m
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w' ={ t11,…,t1k ,t2,…}



Algorithm for Partial-Order STNs

(w, u, m, ) has a complicated definition in the book.  Here’s 
h t it

π={a1,…, ak};  w={ t1 ,t2, t3…}

what it means:
 We nondeterministically selected t1 as the task to do first
 Must do t1’s first subtask before the first subtask of every ti ≠ t1

π={a1 …, ak,  a };  w’={t2,t3 …}

operator instance  a Insert ordering constraints to ensure that this happens

w={ t1 ,t2,…}

method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 43

w' ={ t11,…,t1k ,t2,…}



Comparison to Classical Planning
STN planning is strictly more expressive than classical planning

 Any classical planning problem can be translated into an ordered- Any classical planning problem can be translated into an ordered
task-planning problem in polynomial time

 Several ways to do this.  One is roughly as follows:
 For each goal or precondition e, create a task te

 For each operator o and effect e, create a method mo,e

» Task: t» Task: te

» Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the 
preconditions of o

i l d i i h d» Partial-ordering constraints: each tci precedes o

 (I left out some details, such as how to handle deleted-condition 
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interactions)



Comparison to Classical Planning (cont.)
 Some STN planning problems aren’t expressible in classical planning
 Example:

t t
 Two STN methods:

» No arguments
» No preconditions

method1

t

method2

t

p

 Two operators, a and b
» Again, no arguments and no preconditions

bta ba

g , g p
 Initial state is empty, initial task is t
 Set of solutions is {anbn | n > 0}
 No classical planning problem has this set of solutions No classical planning problem has this set of solutions

» The state-transition system is a finite-state automaton
» No finite-state automaton can recognize {anbn | n > 0}
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 Can even express undecidable problems using STNs



SHOP2

 SHOP2:  implementation of PFD-like algorithm + generalizations
Won one of the top four awards in the AIPS-2002 Planning 

Competition
Freeware open sourceFreeware, open source
 Implementation available at

http://www.cs.umd.edu/projects/shopp // /p j / p
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HTN Planning
 HTN planning is even more general

Can have constraints associated with tasks and methods
» Things that must be true before, during, or afterwards

Some algorithms use causal links and threats like those in PSP
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Domain-Configurable Planners
Compared to Classical Plannersp

 Disadvantage: writing a knowledge base can be more 
complicated than just writing classical operatorscomplicated than just writing classical operators

 Advantage: can encode “recipes” as collections of methods 
and operators
Express things that can’t be expressed in classical planning
Specify standard ways of solving problems

Oth i th l i t ld h t d i» Otherwise, the planning system would have to derive 
these again and again from “first principles,” every time 
it solves a problem

» Can speed up planning by many orders of magnitude 
(e.g., polynomial time versus exponential time)
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Goals for this Lecture
 Make a connection to the situation calculus representation that we 

covered during the last lecture
B ild h t l d i CS221 Build on what you learned in CS221
Refresh some basic concepts as per the B&L textbook

» Primarily aimed to keep consistency in the course material» Primarily aimed to keep consistency in the course material
Discuss application of classical planning to video games
 Introduce FF – a state of the art planning algorithm that uses p g g

classical planning techniques + graph plan + heuristics
 Cover in-depth a knowledge-based planning technique

Hierarchical Task Network Planning
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Readingsg

• Required
– Chapter 15 in B&L Textbook
– Chapter 11  of Automated Planning by Ghallab, Nau and Traverso

• Optional p
– Jeff Orkin: Three States and a Plan: The AI of F.E.A.R. Proceedings 

of the Game Developer's Conference (GDC). [paper | slides]
– Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture 

to Support Arcade Game Playing


