
16.16.

Review of Classical Planningg
&

HTN Planning

The Planning Problem

• Given:• Given:
– A characterization of an Initial State
– A characterization of a (set of) Goal State(s)
– A characterization of possible actionsp

• Synthesize:
– A sequence of actions that when executed in the Initial State transitions the

ld G l Sworld to a Goal State

Initial
State

A1 Aj Ak Am
Goal
State

Applications

RobotsMilitary Logistics

Games

Autonomous
SpacecraftManufacturing

More comprehensive treatment of applications in the next lecture

Dimensions of Planning
Simple Complex

State Scope Finite Non-finite

Action DeterminismAction Determinism
Deterministic Nondeterministic

Action Duration Instantaneous Durative

World ObservabilityWorld Observability
Full Partial

World Dynamics Static Exogenous events

Goal Attainment F ll P ti lGoal Attainment Full Partial

Time No time points Rich model of time

Classical Planning Problem

Background in Planning from CS221g g

• Planning is a search problem over states that can be structured (ie,
expressed as logical formulas)

• Classical planning algorithms
– Progression, regression, plan space searchg g p p

• Efficient algorithms based on planning graphs (Graph Plan)
• Use of heuristics

– For example A*For example, A

• For more details, refer to CS221 lecture notes
http://www stanford edu/class/cs221/notes/cs221 lecture2 ppt– http://www.stanford.edu/class/cs221/notes/cs221-lecture2.ppt

– http://www.stanford.edu/class/cs221/notes/cs221-lecture9.ppt
or
Chapter on Planning in Russell & Norvig textbookChapter on Planning in Russell & Norvig textbook

Goals for this Lecture

• Make a connection to the situation calculus representation that we
covered during the last lecture

• Build on what you learned in CS221
– Refresh some basic concepts as per the B&L textbookp p

• Primarily aimed to keep consistency in the course material
– Discuss application of classical planning to video games
– Introduce FF – a state of the art planning algorithm that uses classical

planning techniques + graph plan + heuristics
• Cover in-depth a knowledge-based planning technique

– Hierarchical Task Network Planning

The textbook has a detailed example on how it can be doneThe textbook has a detailed example on how it can be done

Modern planning algorithms use techniques that are customized to planning

STRIPS
 Stanford Research

Institute Problem SolverInstitute Problem Solver
 Fikes & Nilsson, 1971

 Term used generally to
refer to classical planning
formulations

 O i i l STRIPS l  Original STRIPS planner
performed an incomplete
form of backward form of backward
chaining

Heuristics, graph plan

Application of STRIPS Planning to a Gamepp g

• F.E.A.R. (short for First Encounter Assault Recon) is
a horror-themed first-person shooter developed
by Monolith Productions
– Gamespot’s Best AI Award in 2005

• http://www.gamespot.com/pages/features/bestof2005/ind
ex.php?day=2&page=10

– Ranked 2nd in the list of most influential AI games
• http://aigamedev com/open/highlights/top ai games/• http://aigamedev.com/open/highlights/top-ai-games/

• Technical overview available at
– http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fe

ar zipar.zip

Design Philosophy behind F.E.A.Rg p y

• Designer’s job is: Create environments that allow AI to showcase
their behaviors.

• Designer’s job is NOT: Script behavior of individual AI
– The behavior is a function of the plans that AI comes up with based on p p

its goals and actions available to it

Adapted from Jeff Orkin

Actions Available to Key Charactersy

Adapted from Jeff Orkin

Benefits of Planningg

• Separation of Goals and Actions
• Layering of behavior
• Dynamic Problem Solving

– Example video clipsExample video clips

Adapted from Jeff Orkin

Fast Forward Planning Algorithmg g

• Proposed by Hoffman and Nebel
• Winner of the 2000 planning competition
• Approach

– Compile problem into grounded STRIPSCompile problem into grounded STRIPS
– Perform Enforced-Hill-Climbing (EHC) until either solved or no further

progress can be made.
• Sound, not complete

– Perform Best-First-Search
• Sound, complete.

Using FF in the context of a Gameg

Iceblox Sokoban

As part of HW3, Iceblox will be provided as an example use of FF
We will use FF planner to solve three configurations of Sokoban

Goals for this Lecture

• Make a connection to the situation calculus representation that we
covered during the last lecture

• Build on what you learned in CS221
– Refresh some basic concepts as per the B&L textbookp p

• Primarily aimed to keep consistency in the course material
– Discuss application of classical planning to video games
– Introduce FF – a state of the art planning algorithm that uses classical

planning techniques + graph plan + heuristics
• Cover in-depth a knowledge-based planning technique

– Hierarchical Task Network Planning

Motivation
 We may already have an idea how to go about solving

problems in a planning domain
E l t l t d ti ti th t’ f Example: travel to a destination that’s far away:
 Domain-independent planner:

» many combinations of vehicles and routes» many combinations of vehicles and routes
 Experienced human: small number of “recipes”

e.g., flying:g , y g
1. buy ticket from local airport to remote airport
2. travel to local airport
3 fl t t i t3. fly to remote airport
4. travel to final destination

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

 How to enable planning systems to make use of such recipes?

HTN Planningg

 Problem reduction
Tasks (activities) rather than goals
Methods to decompose tasks into subtasks
Enforce constraints

» E.g., taxi not good for long distances

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Backtrack if necessary

Task:

Method: taxi-travel(x,y)

travel(x,y)

Method: air-travel(x,y)

get-taxi ride(x,y) pay-driver travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))
fly(a(x),a(y))

HTN Planning
travel(UMD, LAAS)

get-ticket(IAD, TLS)get-ticket(BWI, TLS)g g (,)
go-to-travel-web-site
find-flights(IAD,TLS)
buy-ticket(IAD,TLS) Problem reduction

g (,)
go-to-travel-web-site
find-flights(BWI,TLS)

BACKTRACK
travel(UMD, IAD)

get-taxi
ride(UMD, IAD)
pay-driver

Tasks (activities) rather than goals
Methods to decompose tasks into subtasks

travel(TLS, LAAS)
get-taxi

pay driver
Enforce constraints

» E.g., taxi not good for long distances

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

g
ride(TLS,Toulouse)
pay-driver

Backtrack if necessary

HTN Planning
 HTN planners may be domain-specific
 Or they may be domain-configurable

Domain-independent planning engine
Domain description that defines not only the operators, but

also the methodsalso the methods
Problem description

» domain description, initial state, initial task networkp , ,

Task: travel(x,y)

Method: taxi-travel(x,y)

get taxi ride(x y) pay driver

Method: air-travel(x,y)

l(())
get-ticket(a(x),a(y))

fl (() ())

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

get-taxi ride(x,y) pay-driver travel(a(y),y)
travel(x,a(x))

fly(a(x),a(y))

Simple Task Network (STN) Planning
 A special case of HTN planning
 States and operators

The same as in classical planning
 Task: an expression of the form t(u1,…,un)

 t i t k b l d h i t t is a task symbol, and each ui is a term
Two kinds of task symbols (and tasks):

» primitive: tasks that we know how to execute directly» primitive: tasks that we know how to execute directly
• task symbol is an operator name

» nonprimitive: tasks that must be decomposed into subtasksp p
• use methods (next slide)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

Methods
 Totally ordered method: a 4-tupley p

m = (name(m), task(m), precond(m), subtasks(m))
 name(m): an expression of the form n(x1,…,xn)

» x x are parameters variable symbols» x1,…,xn are parameters - variable symbols
 task(m): a nonprimitive task
 precond(m): preconditions (literals)

travel(x,y)

air-travel(x,y)p () p ()
 subtasks(m): a sequence

of tasks t1, …, tk long-distance(x,y)

(,y)

air-travel(x,y)
task: travel(x y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

task: travel(x,y)
precond: long-distance(x,y)
subtasks: buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

travel(a(y),y)

 Partially ordered method: a 4-tuple
Methods (Continued)

y p
m = (name(m), task(m), precond(m), subtasks(m))

 name(m): an expression of the form n(x1,…,xn)
» x x are parameters variable symbols» x1,…,xn are parameters - variable symbols

 task(m): a nonprimitive task
 precond(m): preconditions (literals)

travel(x,y)

air-travel(x,y)p () p ()
 subtasks(m): a partially ordered

set of tasks {t1, …, tk} long-distance(x,y)

(,y)

air-travel(x,y)
task: travel(x y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

task: travel(x,y)
precond: long-distance(x,y)
network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x), a(y))

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

u4= travel(a(y),y), {(u1,u3), (u2,u3), (u3 ,u4)}

Domains, Problems, Solutions
 STN planning domain: methods, operators
 STN planning problem: methods, operators, initial state, task list
 Total-order STN planning domain and planning problem:

Same as above except that
all methods are totally ordered nonprimitive taskall methods are totally ordered

 Solution: any executable plan

p

method instance
y p

that can be generated by
recursively applying
 th d t

precond

primitive taskprimitive task
methods to

non-primitive tasks
operators to

operator instance operator instance

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

 p
primitive tasks s0 precond effects precond effectss1 s2

Example
S h k f i i h Suppose we want to move three stacks of containers in a way that
preserves the order of the containers

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Example (continued)
 A way to move each stack:

 first move the
containers
from p to anp
intermediate
pile r

 then move
them from
r to q

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32

Partial-Order
FormulationFormulation

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 33

Total-Order
FormulationFormulation

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 34

Solving Total-Order STN Planning Problems

state s; task list T=(t1 ,t2,…); (1 , 2,)

action a

state (s,a) ; task list T=(t2, …)() ; (2,)

task list T=(t1 ,t2,…)

method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

task list T=(u1,…,uk ,t2,…)

Comparison to
Forward and Backward SearchForward and Backward Search

 In state-space planning, must choose whether to search
forward or backward

s0 s1 s2 … …op1 op2 opiSi–1

 In HTN planning, there are two choices to make about direction:
 forward or backward
 up or down

 TFD goes

task t0

g
down and
forward

task tm … task tn

S

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

s0 s1 s2 … …op1 op2 opiSi–1

Comparison to
Forward and Backward SearchForward and Backward Search

 Like a backward search,
TFD is goal directed

task t0
TFD is goal-directed
Goals

correspond task tm … task tn

to tasks
s0 s1 s2 … …op1 op2 opiSi–1

 Like a forward search, it generates actions
in the same order in which they’ll be executedy

 Whenever we want to plan the next task
we’ve already planned everything that comes before it

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 37

Thus, we know the current state of the world

Limitation of Ordered-Task Planning

 TFD requires totally ordered
methods

get-both(p,q)

get(p) get(q)

pickup(p)walk(a,b) walk(b,a) Pickup(q)walk(a,b) walk(b,a)

 Can’t interleave subtasks of different tasks
 Sometimes this makes things awkward

pickup(p)walk(a,b) walk(b,a) Pickup(q)walk(a,b) walk(b,a)

 Sometimes this makes things awkward
Need to write methods that reason

globally instead of locally get-both(p,q)

goto(b) pickup-both(p,q) goto(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 38

pickup(p) pickup(q)walk(a,b) walk(b,a)

Partially Ordered Methods

 With partially ordered methods, the subtasks can be interleaved

get-both(p,q)

get(p) get(q)

 Fit l i d i b tt

walk(a,b) pickup(p)stay-at(b) pickup(q) walk(b,a) stay-at(a)

 Fits many planning domains better
 Requires a more complicated planning algorithm

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 39

Algorithm for Partial-Order STNs

π={a1,…, ak}; w={ t1 ,t2, t3…}

π={a1 …, ak, a }; w' ={t2, t3, …}

operator instance a

w={ t1 ,t2,…}

method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 40

w' ={ t11,…,t1k ,t2,…}

Algorithm for Partial-Order STNs

 Intuitively, w is a partially ordered set of tasks {t1, t2, …}
 But w may contain a task more than once

π={a1,…, ak}; w={ t1 ,t2, t3…}

» e.g., travel from UMD to LAAS twice
 The mathematical definition of a set doesn’t allow this

 Define w as a partially ordered set of task nodes {u1 u2 }

π={a1 …, ak, a }; w' ={t2, t3, …}

operator instance a
 Define w as a partially ordered set of task nodes {u1, u2, …}

 Each task node u corresponds to a task tu

 In my explanations, I talk about t and ignore u

w={ t1 ,t2,…}

method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 41

w' ={ t11,…,t1k ,t2,…}

Algorithm for Partial-Order STNs

π={a1,…, ak}; w={ t1 ,t2, t3…}

π={a1 …, ak, a }; w' ={t2, t3, …}

operator instance a

w={ t1 ,t2,…}

method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 42

w' ={ t11,…,t1k ,t2,…}

Algorithm for Partial-Order STNs

(w, u, m, ) has a complicated definition in the book. Here’s
h t it

π={a1,…, ak}; w={ t1 ,t2, t3…}

what it means:
 We nondeterministically selected t1 as the task to do first
 Must do t1’s first subtask before the first subtask of every ti ≠ t1

π={a1 …, ak, a }; w’={t2,t3 …}

operator instance a Insert ordering constraints to ensure that this happens

w={ t1 ,t2,…}

method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 43

w' ={ t11,…,t1k ,t2,…}

Comparison to Classical Planning
STN planning is strictly more expressive than classical planning

 Any classical planning problem can be translated into an ordered- Any classical planning problem can be translated into an ordered
task-planning problem in polynomial time

 Several ways to do this. One is roughly as follows:
 For each goal or precondition e, create a task te

 For each operator o and effect e, create a method mo,e

» Task: t» Task: te

» Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the
preconditions of o

i l d i i h d» Partial-ordering constraints: each tci precedes o

 (I left out some details, such as how to handle deleted-condition

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 44

interactions)

Comparison to Classical Planning (cont.)
 Some STN planning problems aren’t expressible in classical planning
 Example:

t t
 Two STN methods:

» No arguments
» No preconditions

method1

t

method2

t

p

 Two operators, a and b
» Again, no arguments and no preconditions

bta ba

g , g p
 Initial state is empty, initial task is t
 Set of solutions is {anbn | n > 0}
 No classical planning problem has this set of solutions No classical planning problem has this set of solutions

» The state-transition system is a finite-state automaton
» No finite-state automaton can recognize {anbn | n > 0}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 45

 Can even express undecidable problems using STNs

SHOP2

 SHOP2: implementation of PFD-like algorithm + generalizations
Won one of the top four awards in the AIPS-2002 Planning

Competition
Freeware open sourceFreeware, open source
 Implementation available at

http://www.cs.umd.edu/projects/shopp // /p j / p

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 46

HTN Planning
 HTN planning is even more general

Can have constraints associated with tasks and methods
» Things that must be true before, during, or afterwards

Some algorithms use causal links and threats like those in PSP

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 47

Domain-Configurable Planners
Compared to Classical Plannersp

 Disadvantage: writing a knowledge base can be more
complicated than just writing classical operatorscomplicated than just writing classical operators

 Advantage: can encode “recipes” as collections of methods
and operators
Express things that can’t be expressed in classical planning
Specify standard ways of solving problems

Oth i th l i t ld h t d i» Otherwise, the planning system would have to derive
these again and again from “first principles,” every time
it solves a problem

» Can speed up planning by many orders of magnitude
(e.g., polynomial time versus exponential time)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 48

Goals for this Lecture
 Make a connection to the situation calculus representation that we

covered during the last lecture
B ild h t l d i CS221 Build on what you learned in CS221
Refresh some basic concepts as per the B&L textbook

» Primarily aimed to keep consistency in the course material» Primarily aimed to keep consistency in the course material
Discuss application of classical planning to video games
 Introduce FF – a state of the art planning algorithm that uses p g g

classical planning techniques + graph plan + heuristics
 Cover in-depth a knowledge-based planning technique

Hierarchical Task Network Planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 49

Readingsg

• Required
– Chapter 15 in B&L Textbook
– Chapter 11 of Automated Planning by Ghallab, Nau and Traverso

• Optional p
– Jeff Orkin: Three States and a Plan: The AI of F.E.A.R. Proceedings

of the Game Developer's Conference (GDC). [paper | slides]
– Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture

to Support Arcade Game Playing

