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(Stochastic) Multi-armed bandit problems

Formal setting: there are d different means
M1y U2, - -5 Ud

pix > i for all j # ¢*. Proceed sequentially as follows: at round ¢

(1) Choose arm A; € {1,...,d}
(2) Observe YAt with E[YAt] = A,

Goal: Make the expected regret

T
Regr := E[Zuw — uAt]

t=1

small
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Motivation

» Two treatments for disease available
» Need to find treatment with best effect for population

» Don't want to give bad treatment to too many people

» Strong relationship with causality
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Exploration vs. exploitation

» Exploration: figure out performance of different arms

» Exploitation: pull the best arm!

Tension between the two!
Idea: Some kind of confidence bounds
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A few simple insights

Assume each arm i is o2-sub-Gaussian, i.e.

E [exp(A(Y; — )] < exp (Azf) |

> Ti(t) = > _;<; 1{A; =i} is count of arm ¢ pulls at time ¢

» Have pretty good mean estimates

W)= > Y,

T<t:Ar=1
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Upper confidence bound (UCB) algorithm

Input: Sub-gaussian parameter o2 and probabilities 61, ds, . . .

Initialization: Play each arm 1 =1,..., K ones
Repeat: play arm maximizing

(7210g5L
0t 5
il )+\/ T;(t)
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Regret of UCB algorithm

Gaps Az — Myx — g

Regy = E [ sz i — M] - fjAE T,(T)]

Analysis goal: Show that T;(T') is small for all ¢ # ¢*
Proposition (Arm pulls in UCB)
Assume 61 > 09 > .... For all T and © # ©*,

T

+2Z(5t.

t=2

407 log %
A2

E[Ti(T)] <
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Showing regret bound

Assume w.l.o.g. that i* =1

» Three problematic events
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Counting the bad events

For any fixed [ € {1,...,T}

T

ET(T)] =) E[1{A,=d]<l+ > E[1{A=iTt)>1}]
t—1 t=1+1
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Counting the bad events

407 log %
A

T
+ Y P(Ay =1, E(t) fails)
t=0*+1

E[T;(T)] <
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UCB Regret bound

Theorem (UCB regret)
Take 0y = % for all t, then

Regr < O(1)
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Regret “smaller” than the number of arms

If A = max;-;x A; small, should not really matter...

Theorem (Alternate form of regret)
Let 0; = % for all t, then

Regr < O(1) - \/Ko2T1ogT.
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Mirror descent for bandit problems

»reNg={zeR:: 1Tz =1}
» At round t, draw i ~ x; (treat x; € Ay as distribution)
> Loss
d
@) = (—pw) == pjwj = Bina[—pui
j=1
» Regret: let ™ = e;+, then

T T

Regr = > [f(z) = f(a)] = D [pir — Birea, 1] ]

t=1 t=1
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A more careful regret bound for mirror descent

Proposition
Let X = A, and play exponentiated gradient algorithm

, 1
T¢y1 = argmin {(gt, x) + —Dp(x, xt)}
reX 8

where h(x) = Z;-lzl zjlogx;. Then

T d

T
Z g, Tt — x7) < 10§d T g szwgt,y
t—1

t=1 7=1
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Applying mirror descent: EXP3

Repeat: fort =1,2,...
» Choose action A; = ¢ with probability x; ;

> Receive loss Y;(t) and set

=Yt i A =
0 otherwise

» Update for:=1,...,d

eXp(—Oégt,z')
d
Zj:l exp(—agt,;)

Lt+1,5 —
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Regret bounds with mirror descent

Theorem
Assume Y; > 0 and E[Y?] < 0°. The expected regret of the
exponentiation weights (EXP3) algorithm is

log d
Q

T
Regr = ZE i — pa] <
t=1

n %02KT.
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Proof of regret bound

Have

d
Elpa, | 2] =) pjwej = El{gr, ze) | ]
j=1
SO

T
Regr = Y E[{gs, x — *)]
=1
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Extensions and other approaches

1. Thompson sampling—putting a Bayesian prior on the means,
draw random mean according to posterior belief, play best arm
according to random mean

2. Adversarial bandits—sequence f; : X — R chosen adversarially
(arbitrarily), observe only f;(x;)

3. Contextual bandits—some side information availabe

“Batched” bandits—only a small number of rounds, but in each
round, a large sample is available (e.g. in FDA trials)
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