
The Multi-armed Bandit Problem

John Duchi

Prof. John Duchi



(Stochastic) Multi-armed bandit problems

Formal setting: there are d di↵erent means

µ1, µ2, . . . , µ
d

µ
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? � µ
j

for all j 6= i?. Proceed sequentially as follows: at round t

(1) Choose arm A
t

2 {1, . . . , d}
(2) Observe Y

At with E[Y
At ] = µ

At

Goal: Make the expected regret
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Motivation

I Two treatments for disease available

I Need to find treatment with best e↵ect for population

I Don’t want to give bad treatment to too many people

I Strong relationship with causality
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Exploration vs. exploitation

I Exploration: figure out performance of di↵erent arms

I Exploitation: pull the best arm!

Tension between the two!
Idea: Some kind of confidence bounds
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A few simple insights

Assume each arm i is �2-sub-Gaussian, i.e.
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= i} is count of arm i pulls at time t

I Have pretty good mean estimates
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Upper confidence bound (UCB) algorithm

Input: Sub-gaussian parameter �2 and probabilities �1, �2, . . .
Initialization: Play each arm i = 1, . . . ,K ones
Repeat: play arm maximizing
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Regret of UCB algorithm

Gaps �
i

= µı? � µ
i
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Analysis goal: Show that T
i

(T ) is small for all i 6= i?

Proposition (Arm pulls in UCB)

Assume �1 � �2 � . . .. For all T and i 6= i?,
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Showing regret bound

Assume w.l.o.g. that i? = 1

I Three problematic events
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Counting the bad events

For any fixed l 2 {1, . . . , T}

E[T
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(T )] =
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Counting the bad events
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UCB Regret bound

Theorem (UCB regret)

Take �
t

=

1
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for all t, then
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Regret “smaller” than the number of arms

If � = max

i 6=i

?
�

i

small, should not really matter...

Theorem (Alternate form of regret)

Let �
t

=

1
T

for all t, then
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Mirror descent for bandit problems

I x 2 �

d

= {x 2 Rd

+ : 1Tx = 1}
I At round t, draw i ⇠ x

t
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t

2 �

d

as distribution)

I Loss
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A more careful regret bound for mirror descent

Proposition

Let X = �

d

and play exponentiated gradient algorithm

x
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Applying mirror descent: EXP3

Repeat: for t = 1, 2, . . .

I Choose action A
t

= i with probability x
t,i

I Receive loss Y
i

(t) and set

g
t,j

:=

(
�Y

j

(t)/x
t,j

if A
t

= j

0 otherwise

I Update for i = 1, . . . , d

x
t+1,i =
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t,i

)

P
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)
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Regret bounds with mirror descent

Theorem

Assume Y
i

� 0 and E[Y 2
i

]  �2
. The expected regret of the

exponentiation weights (EXP3) algorithm is
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Proof of regret bound

Have

E[µ
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Extensions and other approaches

1. Thompson sampling—putting a Bayesian prior on the means,
draw random mean according to posterior belief, play best arm
according to random mean

2. Adversarial bandits—sequence f
t

: X ! R chosen adversarially
(arbitrarily), observe only f

t

(x
t

)

3. Contextual bandits—some side information availabe

4. “Batched” bandits—only a small number of rounds, but in each
round, a large sample is available (e.g. in FDA trials)
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