The Multi-armed Bandit Problem

John Duchi

Prof. John Duchi

(Stochastic) Multi-armed bandit problems

Formal setting: there are d different means

 $\mu_1, \mu_2, \ldots, \mu_d$

 $\mu_{i^\star} \geq \mu_j$ for all $j \neq i^\star.$ Proceed sequentially as follows: at round t

(1) Choose arm $A_t \in \{1, ..., d\}$ (2) Observe Y_{A_t} with $\mathbb{E}[Y_{A_t}] = \mu_{A_t}$

Goal: Make the expected regret

$$
\text{\rm Reg}_T := \mathbb{E}\bigg[\sum_{t=1}^T \mu_{i^\star} - \mu_{A_t}\bigg]
$$

small

Motivation

- \blacktriangleright Two treatments for disease available
- ▶ Need to find treatment with best effect for population
- ▶ Don't want to give bad treatment to too many people
- \triangleright Strong relationship with causality

Exploration vs. exploitation

▶ Exploration: figure out performance of different arms

 \blacktriangleright Exploitation: pull the best arm!

Tension between the two! Idea: Some kind of confidence bounds

A few simple insights

Assume each arm *i* is σ^2 -sub-Gaussian, i.e.

$$
\mathbb{E}\left[\exp(\lambda(Y_i-\mu_i))\right] \leq \exp\left(\frac{\lambda^2\sigma^2}{2}\right).
$$

 \blacktriangleright $T_i(t) = \sum_{\tau \leq t} \mathbf{1} \{ A_\tau = i \}$ is count of arm *i* pulls at time *t* \blacktriangleright Have pretty good mean estimates

$$
\widehat{\mu}_i(t) := \frac{1}{T_i(t)} \sum_{\tau \le t : A_{\tau} = i} Y_{\tau}
$$

$$
\mathbb{P}\left(|\widehat{\mu}_i(t) - \mu_i(t)| \ge \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{T_i(t)}}\right) \le 2\delta.
$$

Upper confidence bound (UCB) algorithm

Input: Sub-gaussian parameter σ^2 and probabilities $\delta_1, \delta_2, \ldots$ **Initialization:** Play each arm $i = 1, ..., K$ ones Repeat: play arm maximizing

$$
\widehat{\mu}_i(t)+\sqrt{\frac{\sigma^2\log\frac{1}{\delta_t}}{T_i(t)}}
$$

Regret of UCB algorithm

Gaps
$$
\Delta_i = \mu_{i^*} - \mu_i
$$

\n
$$
\text{Reg}_T = \mathbb{E}\bigg[\sum_{t=1}^T \mu_{i^*} - \mu_{A_t}\bigg] = \sum_{i=1}^K \Delta_i \mathbb{E}\left[T_i(T)\right]
$$

Analysis goal: Show that $T_i(T)$ is small for all $i \neq i^*$ Proposition (Arm pulls in UCB) A *ssume* $\delta_1 \geq \delta_2 \geq \ldots$ *For all* T *and* $i \neq i^*$ *,*

$$
\mathbb{E}\left[T_i(T)\right] \le \left\lceil \frac{4\sigma^2 \log \frac{1}{\delta_T}}{\Delta_i^2} \right\rceil + 2 \sum_{t=2}^T \delta_t.
$$

Prof. John Duchi

Showing regret bound

Assume w.l.o.g. that $i^{\star} = 1$

 \blacktriangleright Three problematic events

$$
\mathcal{E}_1(t): \ \hat{\mu}_i(t) \ge \mu_i + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta_t}}{T_i(t)}}
$$

$$
\mathcal{E}_2(t): \ \hat{\mu}_1(t) \le \mu_1 - \sqrt{\frac{\sigma^2 \log \frac{1}{\delta_t}}{T_1(t)}}
$$

$$
\mathcal{E}_3(t): \ \Delta_i \le 2\sqrt{\frac{\sigma^2 \log \frac{1}{\delta_t}}{T_i(t)}}
$$

Prof. John Duchi

Counting the bad events

For any fixed $l \in \{1, \ldots, T\}$

$$
\mathbb{E}[T_i(T)] = \sum_{t=1}^T \mathbb{E} [1\{A_t = i\}] \le l + \sum_{t=l+1}^T \mathbb{E} [1\{A_t = i, T_i(t) > l\}]
$$

Counting the bad events

$$
\mathbb{E}[T_i(T)] \le \left\lceil \frac{4\sigma^2 \log \frac{1}{\delta_T}}{\Delta_i^2} \right\rceil + \sum_{t=l^*+1}^T \mathbb{P}(A_t = i, \mathcal{E}_3(t) \text{ fails})
$$

UCB Regret bound

Theorem (UCB regret) *Take* $\delta_t = \frac{1}{T}$ *for all t, then*

$$
\mathsf{Reg}_T \leq O(1) \left[\frac{K \sigma^2 \log T}{\min_{i \neq i^\star} \Delta_i} + \sum_{i=1}^K \Delta_i \right]
$$

Regret "smaller" than the number of arms

If $\Delta = \max_{i \neq i^*} \Delta_i$ small, should not really matter... Theorem (Alternate form of regret) Let $\delta_t = \frac{1}{T}$ for all *t*, then

$$
\mathsf{Reg}_T \leq O(1) \cdot \sqrt{K \sigma^2 T \log T}.
$$

Mirror descent for bandit problems

\n- $$
x \in \Delta_d = \{x \in \mathbb{R}^d_+ : \mathbf{1}^T x = 1\}
$$
\n- At round t , draw $i \sim x_t$ (treat $x_t \in \Delta_d$ as distribution)
\n- Loss
\n

$$
f(x) = \langle -\mu, x \rangle = -\sum_{j=1}^{a} \mu_j x_j = \mathbb{E}_{i \sim x}[-\mu_i]
$$

▶ Regret: let
$$
x^*
$$
 = e_{i^*} , then

$$
\operatorname{Reg}_{T} = \sum_{t=1}^{T} [f(x_t) - f(x^{\star})] = \sum_{t=1}^{T} [\mu_{i^{\star}} - \mathbb{E}_{i \sim x_t} [\mu_i]]
$$

A more careful regret bound for mirror descent

Proposition

Let $X = \Delta_d$ and play exponentiated gradient algorithm

$$
x_{t+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ \langle g_t, x \rangle + \frac{1}{\alpha} D_h(x, x_t) \right\}
$$

where
$$
h(x) = \sum_{j=1}^{d} x_j \log x_j
$$
. Then

$$
\sum_{t=1}^{T} \langle g_t, x_t - x^{\star} \rangle \le \frac{\log d}{\alpha} + \frac{\alpha}{2} \sum_{t=1}^{T} \sum_{j=1}^{d} x_{t,j} g_{t,j}^2
$$

Applying mirror descent: EXP3

Repeat: for $t = 1, 2, \ldots$

- \blacktriangleright Choose action $A_t = i$ with probability $x_{t,i}$
- \blacktriangleright Receive loss $Y_i(t)$ and set

$$
g_{t,j} := \begin{cases} -Y_j(t)/x_{t,j} & \text{if } A_t = j \\ 0 & \text{otherwise} \end{cases}
$$

$$
\blacktriangleright \text{ Update for } i = 1, \ldots, d
$$

$$
x_{t+1,i} = \frac{\exp(-\alpha g_{t,i})}{\sum_{j=1}^d \exp(-\alpha g_{t,j})}
$$

Regret bounds with mirror descent

Theorem

 \mathcal{A} ssume $Y_i \geq 0$ and $\mathbb{E}[Y_i^2] \leq \sigma^2$. The expected regret of the *exponentiation weights (EXP3) algorithm is*

$$
\operatorname{Reg}_T = \sum_{t=1}^T \mathbb{E}\left[\mu_{i^*} - \mu_{A_t}\right] \le \frac{\log d}{\alpha} + \frac{\alpha}{2}\sigma^2 KT.
$$

Proof of regret bound

Have

$$
\mathbb{E}[\mu_{A_t} \mid x_t] = \sum_{j=1}^d \mu_j x_{t,j} = \mathbb{E}[\langle g_t, x_t \rangle \mid x_t]
$$

so

$$
\text{Reg}_T = \sum_{t=1}^T \mathbb{E} \left[\langle g_t, x_t - x^\star \rangle \right]
$$

Extensions and other approaches

- 1. Thompson sampling—putting a Bayesian prior on the means, draw random mean according to posterior belief, play best arm according to random mean
- 2. Adversarial bandits—sequence $f_t: X \to \mathbb{R}$ chosen adversarially (arbitrarily), observe only $f_t(x_t)$
- 3. Contextual bandits—some side information availabe
- 4. "Batched" bandits—only a small number of rounds, but in each round, a large sample is available (e.g. in FDA trials)

Reading and bibliography

- 1. N. Cesa-Bianchi and G. Lugosi. *Prediction, learning, and games*. Cambridge University Press, 2006
- 2. S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends in Machine Learning*, 5(1):1–122, 2012
- 3. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47(2-3):235–256, 2002a
- 4. P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. *SIAM Journal on Computing*, 32(1):48–77, 2002b
- 5. J. C. Duchi. Stats311/EE377: Information theory and statistics. Course at Stanford University, Fall 2015.

URL http://web.stanford.edu/class/stats311