
Background on Convex Analysis

John Duchi

Prof. John Duchi



Outline

I Convex sets

1.1 Definitions and examples
2.2 Basic properties
3.3 Projections onto convex sets
4.4 Separating and supporting hyperplanes

II Convex functions

1.1 Definitions
2.2 Subgradients and directional derivatives
3.3 Optimality properties
4.4 Calculus rules

Prof. John Duchi



Why convex analysis and optimization?

Consider problem

minimize

x

f(x) subject to x 2 X.

When is this (e�ciently) solvable?

I When things are convex

I
If we can formulate a numerical problem as minimization of a
convex function f over a convex set X, then (roughly) it is
solvable
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Convex sets

Definition
A set C ⇢ Rn is convex if for any x, y 2 C

tx+ (1� t)y 2 C for all t 2 C
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Examples

Hyperplane: Let a 2 Rn, b 2 R,

C := {x 2 Rn

: ha, xi = b}.

Polyhedron: Let a1, a2, . . . , am 2 Rn, b 2 Rm,

C := {x : Ax  b} = {x 2 Rn

: ha
i

, xi  b
i

}
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Examples

Norm balls: let k·k be any norm,

C := {x 2 Rn

: kxk  1}
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Basic properties

Intersections: If C
↵

, ↵ 2 A, are all convex sets, then

C :=

\

↵2A
C
↵

is convex.

Minkowski addition: If C,D are convex sets, then
C +D := {x+ y : x 2 C, y 2 D} is convex.
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Basic properties

Convex hulls: If x1, . . . , xm are points,

Conv{x1, . . . , xm} :=

⇢

m

X

i=1

t
i

x
i

: t
i

� 0,
m

X

i=1

t
i

= 1

�

.
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Projections

Let C be a closed convex set. Define

⇡
C

(x) := argmin

y2C
{kx� yk22}.

Existence: Assume x = 0 and that 0 62 C. Show that if x
n

is such
that kx

n

k2 ! inf

y2C kyk2 then x
n

is Cauchy.
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Projections

Characterization of projection

⇡
C

(x) := argmin

y2C

n

kx� yk22
o

We have ⇡
C

(x) is the projection of x onto C if and only if

h⇡
C

(x)� x, y � ⇡
C

(x)i � 0 for all y 2 C.
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Separation Properties

Separation of a point and convex set: Let C be closed convex
and x 62 C. Then there exists a separating hyperplane: there is
v 6= 0 and a constant b such that

hv, xi > b and hv, yi  b for all y 2 C.

Proof: Show the stronger result

hv, xi � hv, yi+ kx� ⇡
C

(x)k22 .
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Separation Properties

Separation of two convex sets: Let C be convex and compact
and D be closed convex. Then there is a non-zero separating
hyperplane v

inf

x2C
hv, xi > sup

y2D
hv, yi .

Proof: D � C is closed convex and 0 62 D � C
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Supporting hyperplanes

Supporting hyperplane: A hyperplane {x : hv, xi = b} supports

the set C if C is contained in the halfspace {x : hv, xi  b} and for
some y 2 bdC we have hv, yi = b
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Supporting hyperplanes

Let C be a convex set with x 2 bdC. Then there exists a
non-zero supporting hyperplane H passing through x. That is, a
v 6= 0 such that

C ⇢ {y : hv, yi  b} and hv, xi = b.

Proof:
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Convex functions

A function f is convex if its domain dom f is a convex set and for
all x, y 2 dom f we have

f(tx+ (1� t)y)  tf(x) + (1� t)f(y) for all t 2 [0, 1].

(Define f(z) = +1 for z 62 dom f)
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Convex functions and epigraphs

Duality between convex sets and functions. A function f is convex
if and only if its epigraph

epi f := {(x, t) : f(x)  t, t 2 R}

is convex
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Minima of convex functions

Why convex? Let x be a local minimizer of f on the convex set
C. Then global minmization:

f(x)  f(y) for all y 2 C.

Proof: Note that for y 2 C,

f(x+ t(y � x)) = f((1� t)x+ ty)  (1� t)f(x) + tf(y).
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Subgradients

A vector g is a subgradient of f at x if

f(y) � f(x) + hg, y � xi for all y.
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Subdi↵erential

The subdi↵erential (subgradient set) of f at x is

@f(x) := {g : f(y) � f(x) + hg, y � xi for all y} .
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Subdi↵erential examples

Let f(x) = |x| = max{x,�x}. Then

@f(x) =

8

>

<

>

:

1 if x > 0

�1 if x < 0

[�1, 1] if x = 0.
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Existence of subgradients

Theorem: Let x 2 int dom f . Then @f(x) 6= ;
Proof: Supporting hyperplane to epi f at the point (x, f(x))
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Optimality properties

Subgradient optimality A point x minimizes f if and only if
0 2 @f(x). Immediate:

f(y) � f(x) + hg, y � xi
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Advanced optimality properties
Subgradient optimality Consider problem

minimize

x

f(x) subject to x 2 C.

Then x solves problem if and only if there exists g 2 @f(x) such
that

hg, y � xi � 0 for all y 2 C.
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Subgradient calculus
Addition Let f1, . . . , fm be convex and f =

P

m

i=1 fi. Then

@f(x) =
m

X

i=1

@f
i

(x) =

⇢

m

X

i=1

g
i

: g
i

2 @f
i

(x)

�

(Extends to infinite sums, integrals, etc.)
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Subgradient calculus

Composition Let A 2 Rn⇥m and f : Rn ! R be convex, with
h(x) = f(Ax). Then

@h(x) = AT@f(Ax) = {AT g : g 2 @f(Ax)}.
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Subgradient calculus: maxima

Let f
i

, i = 1, . . . ,m, be convex

f(x) = max

i

f
i

(x)

Then with I(x) = {i : f
i

(x) = f(x) = max

j

f
j

(x)},

@f(x) = Conv{g
i

: g
i

2 @f
i

(x), i 2 I(x)}.
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Subgradient calculus: suprema

Let {f
↵

: ↵ 2 A} be a collection of convex functions,

f(x) = sup

↵2A
f
↵

(x).

Then if the supremum is attained and A(x) = {↵ : f
↵

(x) = f(x)},

@f(x) ⇢ Conv {g
↵

: g
↵

2 @f
↵

(x),↵ 2 A(x)}
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Examples of subgradients
Norms: Recall `1-norm, k·k1,

kxk1 = max

j

|x
j

|

Then

@ kxk1 = Conv

n

{e
i

: he
i

, xi = kxk1}[{�e
i

: h�e
i

, xi = kxk1}
o

Prof. John Duchi



Examples of subgradients

General norms: Recall dual norm k·k⇤ of norm k·k

kyk⇤ = sup

x:kxk1
hx, yi and kxk = sup

y:kyk⇤1
hx, yi .

Then
@ kxk = {y : kyk⇤  1, hy, xi = kxk}.
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