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Why convex analysis and optimization?

Consider problem

minimize f(x) subject to x € X.
I

When is this (efficiently) solvable?

» When things are convex

» |f we can formulate a numerical problem as minimization of a
convex function f over a convex set X, then (roughly) it is
solvable
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Convex sets

Definition
A set C' C R" is convex if for any x,y € C

tr+ (1 —t)yeC forallteC
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Examples

Hyperplane: Let a € R", b € R,

C:={xeR": (a,z) = b}.

Polyhedron: Let ay,a9,...,a,, € R", b € R™,

C:={z: Az < b} ={x € R" : (a;,x) < b;}
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Examples

Norm balls: let ||-|| be any norm,

C:={reR": |z <1}
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Basic properties

Intersections: If (', o € A, are all convex sets, then

C = ﬂ C',, s convex.
aceA

Minkowski addition: If C, D are convex sets, then
C+D:={x+y:xe€C,ye D} is convex.
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Basic properties

Convex hulls: If x4, ..., x,, are points,

m m
COHV{CEl,. .. ,wm} = {thfljz . ti Z O,Zti = 1}.
1=1 1=1
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Projections

Let (' be a closed convex set. Define

mo(z) = argmin{||z — y|3}.
yeC

Existence: Assume x = 0 and that 0 € C'. Show that if x,, is such
that ||z, ||, — inf,ec ||y||, then x,, is Cauchy.
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Projections

Characterization of projection

mo(x) ;= argmin { |z — ?J”g}
yeC

We have m¢(x) is the projection of x onto C' if and only if

(ro(x) —x,y —wo(x)) >0 forall y € C.
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Separation Properties

Separation of a point and convex set: Let C be closed convex
and z ¢ C. Then there exists a separating hyperplane: there is
v # 0 and a constant b such that

(v,x) >b and (v,y) < b forall y € C.
Proof: Show the stronger result

(v, 2) 2 (v, y) + ||lz — 7c(@)]3 -
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Separation Properties

Separation of two convex sets: Let C' be convex and compact
and D be closed convex. Then there is a non-zero separating
hyperplane v

inf (v,r) > s JY)
inf (v, z) sup (v,9)

Proof: D — C is closed convex and 0 € D — C
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Supporting hyperplanes

Supporting hyperplane: A hyperplane {z : (v,x) = b} supports
the set C' if C is contained in the halfspace {z : (v,x) < b} and for
some y € bd C we have (v,y) = b
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Supporting hyperplanes

Let (' be a convex set with 2 € bd (. Then there exists a

non-zero supporting hyperplane H passing through z. That is, a
v # 0 such that

CCly:{v,y) <b} and (v,x)=0>.

Proof:
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Convex functions

A function f is convex if its domain dom f is a convex set and for
all z,y € dom f we have

flte + 1 —t)y) <tf(x)+ (1 —1t)f(y) forall tel0,1].

(Define f(z) = +oo for z ¢ dom f)
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Convex functions and epigraphs

Duality between convex sets and functions. A function f is convex
if and only if its epigraph

epi f :={(x,t) : f(x) <t,t € R}

IS convex

Prof. John Duchi



Minima of convex functions

Why convex? Let x be a local minimizer of f on the convex set
C'. Then global minmization:

f(x) < f(y) for all y € C.

Proof: Note that for y € C,

fle+tly —=z) = f((A=t)z+ty) < (1 =) f(zx) +1f(y).
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Subgradients

A vector g is a subgradient of f at x if

fly) > f(x) +(g,y —x) forall y.
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Subdifferential

The subdifferential (subgradient set) of f at x is

Of(x) :={g: fly) = f(z) + {9,y —x) forall yj.

Prof. John Duchi



Subdifferential examples

Let f(x) = |z| = max{xz, —x}. Then

’

1 if x>0
Of(z) =4 —1 if x <0
1,1 ifxz=0.
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Existence of subgradients

Theorem: Let x € intdom f. Then 0f(x) # 0
Proof: Supporting hyperplane to epi f at the point (x, f(x))
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Optimality properties

Subgradient optimality A point £ minimizes f if and only if
0 € df(x). Immediate:

fly) = f(z) +(9,y — )
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Advanced optimality properties
Subgradient optimality Consider problem

minimize f(x) subject to x € C.
T

Then x solves problem if and only if there exists g € df(x) such
that
(g,y—x) >0 forall y € C.
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Subgradient calculus
Addition Let f1,..., f,, be convex and f=>"", fi;. Then

Of(z) = iaﬁ;(x) = {igi 1 gi € 3f7:(513)}

(Extends to infinite sums, integrals, etc.)
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Subgradient calculus

Composition Let A € R"*™ and f : R” — R be convex, with
h(x) = f(Az). Then

Oh(z) = ATof(Ax) = {Alg: g € Of(Ax)}.
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Subgradient calculus: maxima

Let f;, 2 =1,...,m, be convex
f(x) = mzax fi(x)

Then with I(x) = {i: fi(z) = f(z) = max; f;(x)},

0f(x) = Conv{g; : g; € 0fi(x),1 € I(x)}.
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Subgradient calculus: suprema

Let {fo : a € A} be a collection of convex functions,

f(ﬂ?) = Sup foz(x)'

acA

Then if the supremum is attained and A(x) = {a: fo(z) = f(x)},

Of(x) C Conv{gy : ga € Ofa(x),a € A(x)}
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Examples of subgradients
Norms: Recall /o-norm, ||-

oo!

]l oo = max ||

@)

Then

0] = Conv {{e; : (es,2) = |zl }U {—e: : (—eir ) = |zl o} }

Prof. John Duchi



Examples of subgradients

General norms: Recall dual norm ||-||, of norm ||-||

lyll, = sup (z,y) and ||z||= sup (z,¥).
x|z <1 yillyll. <1

Then
ozl ={y: llyll, <1, (y,z) = [|z] }.
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