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Best rates from uniform laws

What do our uniform laws give us?
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The best rate from this approach

Central limit theorems: Consider the third error term involving h?:
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Is this right?
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Estimating a mean

Goal: We want to estimate ✓? = E[X], use loss

`(✓;x) =
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2

(✓ � x)2

with risk
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Gap in risks: Subtracting we have
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Estimating a sub-Gaussian mean

Let X
i

be independent �2-sub-Gaussian, so that

b✓
n

=

1

n

n

X

i=1

X
i

= argmin

✓

bL
n

(✓)

and for t � 0 we have

P(|b✓
n

� ✓?| � t)  2 exp

✓

�

nt2

2�2

◆

Lemma
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Uniform law for means?
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Convexity: heuristic and graphical explanation
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Convexity: definitions

Definition
A function f : Rd

! R is convex if

f(�u+ (1� �)v)  �f(u) + (1� �)f(v)

for all u, v 2 Rd and � 2 [0, 1]
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Basic properties

A few properties of convex functions

I If f : R ! R is twice di↵erentiable, then f is convex if and
only if f 00

(t) � 0

I If f : Rm

! R is convex and A 2 Rm⇥n, b 2 Rm, then
g(x) := f(Ax+ b) is convex

I If f1, f2 are convex, then f1 + f2 is convex
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Examples

Example

Logistic loss: �(t) = log(1 + e�t

) and

`(✓;x, y) = log(1 + e�yx

T
✓

) = �(yxT ✓)

Example

Any norm k·k.

Example

`1-regularized linear regression:

1

2n
kX✓ � yk22 + � k✓k1 .
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Convex functions have no local minima

Theorem
Let B = {✓ : k✓k  1}, S = {✓ : k✓k = 1}, suppose f is convex

and satisfies

f(✓) � f(✓?) for ✓ 2 ✓? + ✏S.

For ✓ 62 ✓? + ✏B, define

✓
✏

:=

✏

k✓ � ✓?k
✓ +

✓

1�

✏

k✓ � ✓?k

◆

✓?

Then

f(✓)� f(✓?) �
k✓ � ✓?k

✏
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Proof of theorem

Note that ✓
✏

2 ✓? + ✏S, so for t = ✏

k✓�✓
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Convex loss functions

Suppose that we use a convex loss, i.e. `(✓;X) is convex in ✓.
Then

bL
n

(✓) > bL
n

(✓?) for all ✓ 2 ✓? + ✏S

implies that
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n
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A picture of how we achieve fast rates
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Growth and smoothness

Let us fix some radius r > 0, and assume

[Growth] L(✓) � L(✓?) +
�

2

k✓ � ✓?k2 for k✓ � ✓?k  r

and that

[Smoothness] `(·;x) is M -Lipschitz on {✓ : k✓ � ✓?k  r}

Example (linear regression with bounded x)
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Fast rates under growth conditions

Theorem
Let the conditions on growth and smoothness hold, define
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Bounding the local Rademacher complexity

Under the conditions of the theorem, for ⇥ ⇢ Rd we have

k

b✓ � ✓k  C
M

�
p

n

⇣

p

d+ t
⌘

w.p. � 1� 2e�nt
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Bounding the local Rademacher complexity

Under the conditions of the theorem, for ⇥ ⇢ Rd we have

L(b✓)� L(✓?) 
O(stu↵) log

1
�

n
w.p. � 1� �.
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Multiclass classification

Suppose we have multiclass logistic loss for ✓ = [✓1 · · · ✓
k

],
✓
l

2 Rd, y 2 {1, . . . , k}, kxk2  M

`(✓;x, y) = log

 

k

X

l=1

exp

�

xT (✓
l

� ✓
y

)

�

!

.

Then

R
n

(⇥

✏

) . M
p

dk
p

n
✏

Prof. John Duchi



Proof of theorem

Part 1: Consider the event bL
n
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,
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Proof of theorem

Part 2: Consider localized excess risk for ✓ 2 ⇥
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Proof of theorem

Part 3: Implications: kb✓ � ✓?k � ✏
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