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Best rates from uniform laws

What do our uniform laws give us?

~ ~ 1 —
h = argmin {Ln(h) = — Zﬁ(h; Xz)}
n
1=1

heH

and

Sup ‘zn<h) — L(h)| 5
heH

Best this can be?

with high probability

Bl

L(h) — L(h*) = Ly(h) — Lo(h*) + L(h) — L(h) + Lo (h*) — L (h*)
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The best rate from this approach

Central limit theorems: Consider the third error term involving A™:

V1 (L(h*) — Zn(h*)) B % Z [L(h") — €(h"; X5)]
LN (0, Var(¢£(h*; X)))

Is this right?
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Estimating a mean

Goal: We want to estimate 0* = E| X], use loss

1

0(0;) = 5(60 - )*
with risk
L(9) = SE[(6 — X)) = SE[(6 ~ E[X] + E[X] - X)?
1

=50~ E[X])* + Var(X).

Gap in risks: Subtracting we have

L(0) — L(6") = =(6 — 6*)? + Var(X) — Var(X) = %(9 _ )2

1
2
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Estimating a sub-Gaussian mean

Let X; be independent o*-sub-Gaussian, so that

. 1 <& R
0, = — X,; = argmin L, (6
£ X = aegmin ()

and for ¢ > 0 we have

P(|6,, — 0| > t) < 2ex _n_t2
" =1 = 2P T
Lemma
With probability at least 1 — 0, we have
o log %

L@,) — L(0") = %(@1 ~e? <0

Prof. John Duchi



Uniform law for means?

sup {En(e) _ L(H)} = fo0
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Convexity: heuristic and graphical explanation
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Convexity: definitions

Definition
A function f : R? — R is convex if

Fu+ (1= Xv) < Af(u) + (1= A)f(v)

for all u,v € R% and X € [0, 1]
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Basic properties

A few properties of convex functions

» |If f:R — R is twice differentiable, then f is convex if and
only if f”(t) >0

» If f:R"™ — R is convex and A € R"™*" b € R™, then
g(x) := f(Ax + b) is convex

» If f1, fo are convex, then f; + fo is convex
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Examples
Example

Logistic loss: ¢(t) = log(1 + e~ *) and
0(0; 2, y) =log(1 + e7¥" %) = ¢(y2T0)

Example

Any norm ||-||.

Example
¢1-regularized linear regression:

1
— [1X0 = yl13 + A6l
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Convex functions have no local minima

Theorem

Let B=4{0:]0| <1}, S={0:]0| =1}, suppose f is convex
and satisfies

f(0) > f(0%) for6 € 6" + €S.
For 68 ¢ 6™ + €B, define

€ €
0, = 0 + (1 — ) 0
16 — 6~ 160 — 6~

10 — 07|

€

Then
f(0) — f(0%) =

f(0c) — £(07)]
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Proof of theorem

<1

Note that 0. € 0% + €S, so for t = = < 1,

€

€
0. = 0+<1— )9*:t9+(1—t)9*,
16— 0~]] 16— 6~]]

and

f(0c) <tf(0)+ (1 —1)f(0%)
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Convex loss functions

Suppose that we use a convex loss, i.e. £(0; X) is convex in 6.
Then R R
L, (0) > L,(0) forall 8 € 8% + €S

implies that

Fa P

0, = argmin L, () satisfies [|6,, — 0*| < e
0
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A picture of how we achieve fast rates
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Growth and smoothness

Let us fix some radius > 0, and assume
A
[Growth] L(0) > L(0%) + 5 160 — 0*”2 for |0 — 67| <r
and that

[Smoothness]  /(-;x) is M-Lipschitz on {0 : ||0 — 0| < r}

Example (linear regression with bounded x)
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Fast rates under growth conditions

Theorem
Let the conditions on growth and smoothness hold, define

O, :={0cO||f—06<e

and the localized Rademacher complexity

Rn(0,) := Zez (0; X;) — 0(6%: X;)]

sup
0cO,

|

n

Fixt > 0 and choose any ¢ < r such that

e’ M
>0 ) 2 ¢
5 R,(© )+f\/ﬁte

Then R ;
P (He — 9 > e) < 2¢7mt

Prof. John Duchi



Bounding the local Rademacher complexity

Under the conditions of the theorem, for © C R? we have

— < > 1 _ —nt .
16 — 0| C)\\/ﬁ (\/g—l—t) w.p. >1—2e
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Bounding the local Rademacher complexity

Under the conditions of the theorem, for © C R? we have

~ O(stuff) log 5
L(0) — L") < (stuff) log 5 w.p. >1-—0.

n
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Multiclass classification

Suppose we have multiclass logistic loss for 8 = |01 --- 0],
g R, ye{l,... k} o, < M

k
0(0;x,y) = log (Z exp (:I?T(Hl — %))) :

[=1

Then
M~/ dk

/n

€

Rn(©c) S
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Proof of theorem

Part 1: Consider the event L, () < L,,(6*) for some 6 € O,
which implies
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Proof of theorem
Part 2: Consider localized excess risk for 6 € O,

n

> (805 X;) — £(6%; X5)) — (L(0) — L(6*))]

1=1

and get (for all t > 0)

P <sup
0cO.
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Proof of theorem

Part 3: Implications: H@\— 0| > €

— L,(0) — L,(6*) <0 for some 6 € O,

= sup Zn(ﬁ) — L(0) — (En(Q*) — L(0%))] > —)\262
0cO,

= sup Zn(ﬁ) — L(6) — (Zn(ﬁ*) — L(6%))| > 2R, (0,) + \@% t-e
HcO. V1
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