Reproducing Kernel Hilbert Spaces

John Duchi

Prof. John Duchi

Motivation

Can always break down risk in terms of

$$
L(\widehat{h}) - \inf_{h} L(h) = L(\widehat{h}) - \inf_{h \in \mathcal{H}} L(h) + \inf_{h \in \mathcal{H}} L(h) - \inf_{h} L(h)
$$

estimation error approximation error

- \triangleright Generalization and other convergence guarantees get at estimation error (via complexity bounds on *H*, characteristics of risk L and loss ℓ , etc.)
- \blacktriangleright Approximation error requires understanding how expressive function class is

Motivation: nonlinear features

 \blacktriangleright Instead of using

$$
\langle \theta, x \rangle
$$

use

 $\langle \theta, \phi(x) \rangle$

Example (Polynomials) For $x \in \mathbb{R}$, use $\phi(x) = [1 \; x \; x^2 \; \cdots \; x^d]^T \in \mathbb{R}^{d+1}$ Example (Strings) For *x* a string, let

$$
\phi(x) = [\text{count of } a \in x]_{a \in \mathcal{S}}
$$

Can we cut down on computation and control complexities?

Data representations

Theorem (Representer theorem) *Let n*

$$
\widehat{L}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\langle \theta, \phi(x_i) \rangle, y_i) + \varphi(\|\theta\|_2)
$$

for any loss ℓ , non-decreasing regularizer $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$. Then *w.l.o.g. any minimizer of* L_n *can be taken of the form*

$$
\widehat{\theta} = \sum_{i=1}^{n} \alpha_i \phi(x_i)
$$

- \blacktriangleright Extends to populatin $(n = \infty)$ case too
- \blacktriangleright Key takeaway: future predictions are

$$
\langle \theta, \phi(x) \rangle = \sum_{i=1}^{n} \alpha_i \langle \phi(x_i), \phi(x) \rangle
$$

Polynomial features

For $x \in \mathbb{R}^k$, let

$$
\phi(x) = \begin{bmatrix} 1 \\ \sqrt{2}x_1 \\ \vdots \\ \sqrt{2}x_k \\ [x_ix_j]_{i,j=1}^k \end{bmatrix} \in \mathbb{R}^{1+k+k^2}
$$

Then

$$
\phi(x)^T \phi(z) = (1 + x^T z)^2
$$

More generally: for degree *d*,

$$
\langle \phi(x), \phi(z) \rangle = (1 + x^T z)^d
$$

Kernels: definitions

Definition (Positive definite function)

A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is *positive definite* if it is symmetric and for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathcal{X}$, the Gram matrix

$$
K = \begin{bmatrix} \mathsf{k}(x_1, x_1) & \cdots & \mathsf{k}(x_1, x_n) \\ \vdots & \ddots & \vdots \\ \mathsf{k}(x_n, x_1) & \cdots & \mathsf{k}(x_n, x_n) \end{bmatrix}
$$

is positive semidefinite, i.e. $\alpha^T K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^n$.

A function k is a *kernel* if and only if it is a positive semidefinite function

Examples

- \blacktriangleright Inner products: $\mathsf{k}(x,z) = x^Tz = \sum_{j=1}^d x_jz_j$
- \blacktriangleright Polynomials: $k(x, z) = (1 + x^Tz)^k$
- \blacktriangleright Min-kernel: $\mathsf{k}(x, z) = \min\{x, z\}$
- **Sequence mis-match kernel:** $\mathcal{X} = \Sigma^*$ is alphabet of all sequences over Σ
	- String $u \sqsubset x$ (*u* is a subsequence of *x*) if $len(u) = k$ and there are i_1, \ldots, i_k

$$
u = x_{i_1} x_{i_2} \cdots x_{i_k} = x(\mathbf{i}) \text{ for } \mathbf{i} = (i_1, \ldots, i_k)
$$

 \triangleright Kernel:

$$
\mathsf{k}(x,z) = \sum_{u \in \Sigma^*} \sum_{\mathbf{i}, \mathbf{j}: x(\mathbf{i}) = z(\mathbf{j}) = u} \lambda^{\mathrm{card}(\mathbf{i}) + \mathrm{card}(\mathbf{j})}
$$

Construction of kernels

\n- Any product
$$
k(x, z) = f(x)f(z)
$$
 is a Kernel
\n- $K = uu^T$ for $u = [f(x_1) \cdots f(x_n)]$
\n- Any sum: $k(x, z) = k_1(x, z) + k_2(x, z)$ because $K = K_1 + K_2 \succeq 0$
\n

Product kernels

For $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$ symmetric with $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ and $B = \sum_{i=1}^m \nu_i v_i v_i^T$, Kronecker product

$$
A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix}
$$

has spectral decomposition

$$
A \otimes B = \sum_{i=1}^{n} \sum_{j=1}^{m} \nu_i \lambda_j (u_i \otimes v_j)(u_i \otimes v_j)^T
$$

Product kernel $\mathsf{k}(x, z) = \mathsf{k}_1(x, z) \cdot \mathsf{k}_2(x, z)$ **,** $K = K_1 \odot K_2$ (Hadamard/elementwise product) is sub-matrix of Kronecker

Examples

- \blacktriangleright Inner products: $\mathsf{k}(x,z) = x^Tz = \sum_{j=1}^d x_jz_j$
- \blacktriangleright Polynomials: $k(x, z) = (1 + x^Tz)^k$
- \blacktriangleright Gaussian-like kernel:

$$
k(x, z) = \exp(\langle x, z \rangle) = \sum_{k=0}^{\infty} \frac{\langle x, z \rangle^k}{k!}
$$

The three views of kernel methods

Hilbert spaces

Note: we are lazy and usually work with *real* Hilbert spaces

Definition (Hilbert space)

A vector space *H* is a *Hilbert space* if it is a complete inner product space.

Definition (Inner product)

A bi-linear mapping $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an *inner product* if it satisfies

$$
\blacktriangleright \text{ Symmetry: } \langle f, g \rangle = \langle g, f \rangle
$$

▶ Linearity: $\langle \alpha f_1 + \beta f_2, g \rangle = \alpha \langle f_1, g \rangle + \beta \langle f_2, g \rangle$

Positive definiteness: $\langle f, f \rangle \ge 0$ and $\langle f, f \rangle = 0$ if and only if $f = 0$

This gives Euclidean norm

$$
\|f\|_{\mathcal{H}}:=\sqrt{\langle f,f\rangle}.
$$

Examples

- 1. Euclidean space \mathbb{R}^d , $\langle u, v \rangle = \sum_{j=1}^d u_j v_j$
- 2. Square-summable sequences:

$$
\ell_2:=\left\{u\in\mathbb{R}^\mathbb{N}~|~\sum_{j=1}^\infty u_j^2<\infty\right\}
$$

with $\langle u, v \rangle = \sum_{j=1}^{\infty} u_j v_j$

3. Square integrable functions against *any* probability distribution *p*:

$$
\langle f,g\rangle:=\int f(x)g(x)p(x)dx
$$

or, more generally,

$$
\langle f,g\rangle:=\mathbb{E}_P[f(X)g(X)]
$$

Fun example

Let

$$
\mathsf{k}(x,z) = \exp\left(-\frac{\|x-z\|_2^2}{2\sigma^2}\right)
$$

Feature maps and kernels

Definition (Feature mapping)

Given a Hilbert space H , a *feature mapping* $\phi : \mathcal{X} \to \mathcal{H}$, $\phi(x) \in \mathcal{H}$

Theorem

Any feature mapping defines a valid kernel.

Reproducing kernel Hilbert spaces

We want to be sure we can *evaluate* or prediction function *f*(*x*), where $f \in \mathcal{H}$ for some \mathcal{H}

Example

 $Hilbert space L²(0, 1] = {f : [0, 1] \rightarrow \mathbb{R} \mid ||f||_2 < \infty}$. If $f(x) = g(x)$ almost everywhere, then $||f - g||_2 = 0$

Definition

For Hilbert space H a linear functional $L: \mathcal{H} \to \mathbb{R}$ is *bounded* if

$$
|L(f)|\leq M\left\|f\right\|_{\mathcal{H}}\quad\text{for all }f\in\mathcal{H}
$$

Evaluation functionals

For Hilbert space H of $f : \mathcal{X} \to \mathbb{R}$, the evaluation functional

$$
L_x(f) := f(x).
$$

Example

For $\mathcal{X} = \mathbb{R}^d$, $\mathcal{H} = \{f_c \mid c \in \mathbb{R}^d\}$ where $f_c(x) = \langle c, x \rangle$, then $L_x(f_c) = \langle c, x \rangle$

Example (Unbounded evaluation)

Let $\mathcal{H} = L^2([0,1])$, then $L_x(f) = f(x)$ is *unbounded*.

Reproducing Kernel Hilbert Spaces

Definition (RKHS)

A *reproducing kernel Hilbert space* is any Hilbert space *H* for which the evaluation functional L_x is bounded for each $x \in \mathcal{X}$

RKHSs define kernels

Theorem Let *H* be an RKHS of $f : \mathcal{X} \to \mathbb{R}$. Then there is a unique $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ associated to H with

 $k(x, \cdot) \in \mathcal{H}$

where the k *is reproducing for* H *: for all* $f \in H$

 $\langle f, \mathsf{k}(x, \cdot) \rangle = f(x)$

Proof (continued)

Kernels define RKHSs

Theorem (Moore-Aronszajn)

Let $k: \mathcal{X} \to \mathcal{X} \to \mathbb{R}$. Then there is a unique RKHS H with *reproducing kernel* k

Proof: Let \mathcal{H}_0 be all linear combinations $f(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$

Kernels define RKHSs: inner products

Kernels define RKHSs: completeness

Reading and bibliography

- 1. N. Aronszajn. Theory of reproducing kernels. *Transactions of the American Mathematical Society*, 68(3): 337–404, May 1950
- 2. A. Berlinet and C. Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Kluwer Academic Publishers, 2004
- 3. G. Wahba. *Spline Models for Observational Data*. Society for Industrial and Applied Mathematics, Philadelphia, 1990
- 4. N. Cristianini and J. Shawe-Taylor. *Kernel Methods for Pattern Analysis*. Cambridge University Press, 2004