
How we show uniform laws

I
Show individual points converge

I
Argue that set is not “too” large somehow

This lecture: understand how “large” sets are
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Covering

Definition (Covering)

Let (T, ⇢) be a metric space. A collection N = {t
1

, . . . , t

N

} is an

✏-cover if

min

i

⇢(t, t

i

)  ✏ for all t 2 T
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Packing

Definition (Packing)

Let (T, ⇢) be a metric space. A collection M = {t
1

, . . . , t

M

} is a

�-packing if

⇢(t

i

, t

j

) > � for all i 6= j.
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Covering and packing numbers

Definition (Covering numbers)

The ✏-covering number of a metric space (T, ⇢) is

N(✏;T, ⇢) := inf {N 2 N s.t. 9 an ✏-cover t

1

, . . . , t

N

}

Definition (Packing numbers)

The �-packing number of a metric space (T, ⇢) is

M(�;T, ⇢) := sup {M 2 N s.t. 9 an�-packing t

1

, . . . , t

M

}
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Metric entropies

Definition (Entropies)

The metric entropy of a metric space (T, ⇢) is logN(✏;T, ⇢). The

packing entropy is logM(✏;T, ⇢)

Proposition

For any metric space (T, ⇢) and ✏ > 0 we have

M(2✏;T, ⇢)  N(✏;T, ⇢)  M(✏;T, ⇢)
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Example: Boolean hypercube

Let T = {0, 1}d with metric ⇢(u, v) =

P
d

j=1

|u
j

� v

j

|. Then there

is a numerical constant c > 0 such that

c · d  logN(d/4;T, ⇢)  d.
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Example: norm ball, covering, and volume

Let k·k be any norm on Rd

and B = {x 2 Rd

: kxk  1} its unit

ball. Then ✓
1

�

◆
d

 N(�;B, k·k) 
✓
1 +

2

�

◆
d

.
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Example: Lipschitz functions on [0, 1]

Let F ⇢ {f : [0, 1] ! R} be the 1-Lipschitz functions on [0, 1]

with f(0) = 0. Then

logN(�;F , k·k1) ⇣ 1

�
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An application: concentration of i.i.d. sums of Lipschitz
functions

Let ` : ⇥⇥ X ! R be 1-Lipschitz in ✓, i.e.

|`(✓, x)� `(✓

0
, x)| 

��
✓ � ✓

0��

and bounded with `(✓, x) 2 [0, B].

Proposition

Let

b
L

n

(✓) =

1

n

P
n

i=1

`(✓;X

i

). Then

P
✓
sup

✓2⇥
|bL

n

(✓)� L(✓)| � t+ ✏

◆
 N(✏;⇥, k·k) exp

✓
�nt

2

B

2

◆
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Concentration of i.i.d. sums of Lipschitz functions: picture
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Concentration of i.i.d. sums of Lipschitz functions: proof
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An application: matrix concentration

The matrix operator norm is

|||A|||
op

= sup

x:kxk21

kAxk
2

Suppose the matrix A 2 Rm⇥n

has independent entries. What do

we expect its operator norm to scale as?

Theorem
Let A

ij

be independent �

2

-sub-Gaussian. There exists a numerical

constant C such that

P
⇣
|||A|||

op

� C

p
n+ C

p
m+ Ct

⌘
 2e

�t

2
.

Idea: Show that u

T

Av ⇡ 0 with high probability, then cover.
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Proof of concentration: discretization

Lemma
Let N

n

,N
m

be ✏-covers of the unit spheres in Rn

and Rm

. Then

max

u2Nm,v2Nn

u

T

Av  |||A|||
op

 1

1� 2✏

max

u2Nm,v2Nn

u

T

Av
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Proof of concentration: sub-Gaussianity

Let N
n

,N
m

be minimal

1

4

-covers of the unit spheres in Rn

,Rm

.

P(|||A|||
op

� ✏)  P
✓
max

u2Nm

max

v2Nn

u

T

Av � ✏

4

◆
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Proof of concentration: union bound
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Sub-Gaussian processes and chaining

So far, we have seen

(i) Sub-Gaussian variables

(ii) Rademacher complexities

(iii) Covering numbers

Is there something that unifies them?
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Sub-Gaussian process

Definition (Sub-Gaussian Process)

A collection of zero-mean random variables {X
✓

, ✓ 2 T} is a

sub-Gaussian process with respect to a metric ⇢ on T if

E
h
e

�(X✓�X✓0 )
i
 exp

✓
�

2

⇢(✓, ✓

0
)

2

2

◆
.

Example

Take Z ⇠ N(0, I

d

) and T = Rd

, ⇢(✓, ✓

0
) = k✓ � ✓

0k
2

, X

✓

= hZ, ✓i
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Sub-Gaussian process: symmetrized functions

Example

Let F be collection of f : X ! R, "
i

iid⇠ {±1}, fix x

1

, . . . , x

n

Z

f

:=

1p
n

nX

i=1

"

i

f(x

i

)
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Sub-Gaussian process: symmetrized functions

Example

Let ` : ⇥⇥ X ! R be B-Lipschitz, "

i

iid⇠ {±1}, fix x

1

, . . . , x

n

, set

Z

✓

:=

1p
n

nX

i=1

"

i

`(✓, x

i

)
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Entropy integral

Question: Can we control Rademacher (or other complexities) by

metric entropies?

Definition (Entropy integral)

Dudley’s entropy integral is

J(D) :=

Z
D

0

p
logN(✏;T, ⇢)d✏.

Example

Lipschitz functions on [0, 1] with f(0) = 0: J(1) .
R
1

0

✏

� 1
2
d✏
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Entropy integral

Theorem (Dudley)

Let {X
✓

: ✓ 2 T} be a ⇢-sub-Gaussian process with

D � sup

✓,✓

02T ⇢(✓, ✓

0
). Then

E
"
sup

✓,✓

02T
(X

✓

�X

✓

0
)

#
.
Z

D

0

p
logN(✏;T, ⇢)d✏.

Example (Rademacher complexity of Lipschitz loss class)
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Proof of entropy integral

Assume that process is separable, i.e. that exists set T

0 ⇢ T with

T

0
countable, sup

✓2T 0 X
✓

= sup

✓2T X

✓

I
Step 1. Construct a series of finer and finer discretizations

Prof. John Duchi



Proof of entropy integral

I
Step 2. Construct projections (the chain)
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Proof of entropy integral

I
Step 3. Sum expected worst-case errors
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Proof of entropy integral

I
Step 4. Transform into integral
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Example: VC Dimension

Let F be a class of Boolean functions with VC-dimension d. Then

logN(✏;F , k·k
L

2
(Pn)

) . d log

1

✏

Proposition

We have R

n

(F)  C

p
d/n and thus

P
 
sup

f2F

�����
1

n

nX

i=1

f(X

i

)� E[f(X)]

����� � C

r
d

n

+ t

!
 2 exp(�nt

2

).
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Example: bounded Lipschitz functions

Let `(✓;x) be B-bounded and K-Lipschitz in ✓, suppose

logN(✏;⇥, k·k)  D log

1

✏

. Let F = {`(✓; ·) | ✓ 2 ⇥}. Then

R

n

(F) . BKDp
n
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Multiclass classification

Consider k-class classification problem,

✓ =

⇥
✓

1

✓

2 · · · ✓

k

⇤
2 Rd⇥k

Let margin s = ✓

T

x 2 Rk

, loss � : Rk ! R of form

`(✓;x, y) = �(⇧

y

s) = �(⇧

y

✓

T

x)

for some “labeling” matrix ⇧

y
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Rademacher complexity and generalization for multiclass
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Rademacher complexity and generalization for multiclass
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