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Online learning problems

The setting: given domain X ⇢ Rd, we play the following game:

(1) We play a point x
t

2 X

(2) Nature gives us a function f
t

: X ! R
(3) We su↵er loss f

t

(x
t

)

Measure performance in terms of regret to a fixed predictor x?:

Reg
T

:=

T

X

t=1

[f
t

(x
t

)� f
t

(x?)]

Goal:
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Classification with experts

Setting: we have input space S and experts

e1, e2, . . . , e
d

: S ! {�1, 1}

We receive sequence s1, s2, . . . , s
T

2 S with labels y
t

2 {�1, 1}
One expert is perfect. Is there a good strategy?
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Online convex optimization

In online learning game, functions

f
t

: X ! R are convex
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Expert prediction in the convex setting

Question: Can we define expert prediction in a convex way?
Define loss vector

`
t

=

2

6

6

6

4

1 {e1(st) 6= y
t

}
1 {e2(st) 6= y

t

}
...

1 {e
d

(s
t

) 6= y
t

}

3

7

7

7

5

and
X = �

d

=

n

x 2 Rd

+ | 1Tx = 1

o

f
t

(x) = x>`
t

.
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Online convex optimization

Idea: Let’s just do (sub)gradient descent.
Initialize x1 2 X, repeat:

(1) Su↵er loss f
t

(x
t

)

(2) Update g
t

2 @f
t

(x
t

),

x
t+1 = argmin

x2X

⇢

hg
t

, xi+ 1

2↵
kx� x

t

k22
�
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A regret bound

Theorem
Let D2

X

� kx� yk22 for all x, y 2 X and assume f
t

are convex and
M -Lipschitz. Online gradient descent has regret

Reg
T

 1

2↵
D2

X

+

TM2

2

↵.
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Online mirror descent

Idea: If gradient descent worked, so must mirror descent.
Initialize x1 2 X, repeat:

(1) Su↵er loss f
t

(x
t

)

(2) Update g
t

2 @f
t

(x
t

),

x
t+1 = argmin

x2X

⇢

hg
t

, xi+ 1

↵
t

D
h

(x, x
t

)

�
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Online mirror descent

Theorem
Assume that h : X ! R is strongly convex with respect to the
norm k·k with dual norm k·k⇤. If ↵t

= ↵ is fixed, then

Reg
T

 1

↵
D

h

(x?, x1) +
T

X

t=1

↵

2

kg
t

k2⇤

If ↵
t

is non-increasing but otherwise arbitrary,

Reg
T

 1

↵
T

sup

x2X
D

h

(x?, x) +

T

X

t=1

↵
t

2

kg
t

k2⇤
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Prediction with expert advice

Setting: expert predictions e
j

: S ! {�1, 1} with loss vectors
`
t

= [1 {e
j

(s
t

) = y
t

}]d
j=1, simplex constraint X = �

d

, and
expected loss

f
t

(x) = x>`
t

= E
j⇠x

[1 {e
j

(s
t

) = y
t

}] .

Use entropy divergence h(x) =
P

d

j=1 xj log xj
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Online to batch conversions

New twist: Suppose that the f
t

are i.i.d. with F (x) = E[f
t

(x)]

Question: Does Reg
T

= o(T ) guarantee generalization?

Theorem
Suppose that f

t

are as above and sup

x,y2X{f
t

(x)� f
t

(y)}  B.
Then w.p. � 1� �

F (x
T

)� F (x?)  Reg
T

T
+O(1) ·

s

B log

1
�

T
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Generalization guarantees: proof

F (x
T

)� F (x?)  1

T

T

X

t=1

[F (x
t

)� F (x?)]
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Strongly convex case

Suppose that sequence f
t

is �-strongly convex, meaning

f
t

(y) � f
t

(x) + hg
t

, y � xi+ �

2

kx� yk22 all x, y 2 X.

Example (Regularized learning)

Suppose that f
t

(x) = `
t

(x) + �

2 kxk
2
2, X = Rd, `

t

� 0 convex and
M -Lipschitz.
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Strongly convex regret

Theorem (Regret)

Let f
t

: X ! R be �-strongly convex and M -Lipschitz over X.
Use stepsizes ↵

t

=

1
�t

in online gradient descent. Then

Reg
T

=

T

X

t=1

[f
t

(x
t

)� f
t

(x?)]  M2

�
log(T + 1)

Prof. John Duchi



Strongly convex generalization

Theorem (Generalization)

Under the conditions of the previous theorem, if the f
t

are i.i.d.
with E[f

t

] = F and �-strongly convex, then

F (x
T

)�F (x?)  Reg
T

T
+O(1)

2

4

s

M2
log

1
�

T
· RegT

�T
+

M2

�

log

1
�

T

3

5

Prof. John Duchi



Reading and bibliography

1. M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent.

In Proceedings of the Twentieth International Conference on Machine
Learning, 2003

2. J. C. Duchi. Introductory lectures on stochastic convex optimization,
2016

3. E. Hazan. The convex optimization approach to regret minimization.

In Optimization for Machine Learning, chapter 10. MIT Press, 2012

4. N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization
ability of on-line learning algorithms.

IEEE Transactions on Information Theory, 50(9):2050–2057,
September 2004

5. N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

Prof. John Duchi


