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The problem

Problem for now:
minimize

x

f(x)

where f convex, not necessarily di↵erentiable
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Gradient method

Consider
minimize

x

f(x)

where f convex and continuously di↵erentiable
Gradient method: For some stepsize sequence ↵

k

, iterate
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Subgradient method

Iterate

Choose any g

k

2 @f(x

k

)

Update x

k+1 = x

k

� ↵

k

g

k

I Not a descent method

I
↵

k

> 0 is kth step size
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Convergence proof start

A few assumptions to make our lives easier:

I Optimal point: f?

= inf

x

f(x) > �1 and there is x? 2 Rn

with f(x

?

) = f

?

I Lipschitz condition: kgk2  M for all g 2 @f(x) and all x

I kx1 � x

?k2  R

(Stronger than needed but whatever)
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Convergence proof
Key quantity: distance to optimal point x?
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Convergence proof II
Key step: recursion
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Convergence guarantee
Have guarantees
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Convergence guarantee

For fixed stepsize ↵ and x

K

=

1
K

P
K

k=1 xk, have

f(x
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)� f(x

?

)  R
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Example: robust regression

minimize f(x) =

1

m

kAx� bk1 =
1

m

mX

i=1

|aT
i

x� b

i

|.

(Recall: @ kxk1 = sign(x), so @f(x) = A

T

sign(Ax� b))

I Perform subgradient descent with fixed stepsize
↵ 2 {10�2

, 10

�1
, 1, 10}.

I Plot f(x
k

)� f

?

I Use f

best
k

= min

ik

f(x

i

) and plot fbest
k

� f

?
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Robust regression example

f
(
x

k

)
�
f
(
x

?

)

Fixed stepsizes, showing f(x

k

)� f(x

?

) for f(x) = kAx� bk1.
Here A 2 R100⇥50
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Robust regression example

f

b
es
t

k

�
f
(
x

?

)

Fixed stepsizes, showing f

best
k

� f(x

?

) for f(x) = kAx� bk1. Here
A 2 R100⇥50
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Projected subgradient method

Solve problem

minimize

x

f(x) subject to x 2 C

where C is a closed convex set
Projected gradient method Iterate:

I Pick g

k

2 @f(x

k

)

I Update

x

k+1 = ⇡

C

(x

k

� ↵

k

g

k

)

= argmin

x2C

⇢
hg

k

, xi+ 1

2↵

k

kx� x

k

k22
�

where
⇡

C

(x) := argmin

y2C
kx� yk22 .
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Projected subgradient method
I Pick g

k

2 @f(x

k

)

I Update

x

k+1 = ⇡

C

(x

k

� ↵

k

g

k

)

where
⇡

C

(x) := argmin

y2C
kx� yk22 .

Prof. John Duchi



Projected subgradient method: Convergence
Assume: kx� x

?k22  R

2 for all x 2 C

One inequality to rule them all

k⇡
C

(x)� yk22  kx� yk22

for y 2 C
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Projected subgradient method: Convergence II
Variant on recursion:

f(x
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Projected subgradient method: Convergence III
Variant on recursion:

KX
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Example

`2-constraint:
Let C = {x 2 Rn

: kxk2  R}. Then kx� x

?k2  2R for all x, x?

and

⇡

C

(x) =

(
x if kxk2  R

R

x

kxk2
otherwise.
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Stochastic subgradient methods

Stochastic subgradient: Given function f , a stochastic

subgradient for a point x is a random vector with

E[g | x] 2 @f(x).

Standard example: Expectations. Let S be random variable,

f(x) = E[F (x;S)] =

Z
F (x; s)dP (s)

where F (·; s) is convex. Given x, draw S ⇠ P and set

g = g(x;S) 2 @F (x;S).
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(Projected) stochastic subgradient method

Problem:
minimize f(x) subject tox 2 C

given access to stochastic gradients of f

Method: Iterate with stepsizes ↵
k

> 0

I Get stochastic gradient g
k

for f at x
k

, i.e. E[g
k

| x
k

] 2 @f(x

k

)

I Update
x

k+1 = ⇡

C

(x

k

� ↵

k

g

k

)
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Motivation and example

f(x) =

1

N

NX

i=1

F (x;S

i

)

for very large sample {S1, . . . , S
N

}.
I True subgradient: take g

i

2 @F (x;S

i

) and

g =

1

N

NX

i=1

g

i

I Stochastic subgradient: choose i 2 {1, . . . , N} uniformly at
random, take g 2 @F (x;S

i

).
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Motivation and example

f(x) =

1

N

NX

i=1

F (x;S

i

)

for very large sample {S1, . . . , S
N

}.
I True subgradient: take g

i

2 @F (x;S

i

) and

g =

1

N

NX

i=1

g

i

I Stochastic subgradient: choose i 2 {1, . . . , N} uniformly at
random, take g 2 @F (x;S

i

).
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Example: robust regression

f(x) =

1

m

kAx� bk1 =
1

m

mX

i=1
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Convergence proof

I Compact set C, so kx� yk2  R for all x, y 2 C

I E[kgk22]  M

2 for stochastic subgradients

I Define error ⇠
k

= g

k

� f

0
(x
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| x
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0
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)
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Convergence proof II
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Convergence of Stochastic Gradient Descent

Final convergence guarantee if C compact and kx� yk2  R for
x, y 2 C:

KX
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Take Expectations:
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Convergence of Stochastic Gradient Descent II

Expected convergence guarantee: If ↵
k

= R/M

p
k and

x
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1
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P
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k=1 xk,
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High Probability Convergence

Question: Can we get convergence with high probability?

Theorem: (Azuma-Hoe↵ding inequality). Let Z1, Z2, . . . , Z
K

be a
sequence of conditionally mean-zero random variables with
|Z

k

|  B for all k, i.e.

E[Z
k

| Z1, . . . , Z
k�1] = 0 and max
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|  B < 1.
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for all t � 0.
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High Probability Convergence

Assume that kgk2  M for any stochastic subgradient g. Have
guarantee (always)
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High Probability Convergence

Theorem: If ↵
k

> 0 is non-increasing, kx� yk2  R for all
x, y 2 C, and kgk2  M for all stochastic gradients, then
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with probability at least 1� exp(�✏
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