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Standard recipe

In machine learning problem (say of predicting y 2 Y from x 2 X )

1 Choose data representation for x and parameter space ⇥ (said
di↵erently, hypothesis class H)

2 Choose loss function `

3 Given sample (X1, Y1), . . . , (Xn, Yn), minimize

1

n

nX

i=1

`(✓; (Xi, Yi)).

What is actual goal? Minimize risk/expected loss

L(✓) := E[`(✓; (X,Y ))] or L(h) := E[`(h; (X,Y ))]
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Does ML work?

b✓n 2 argmin

✓2⇥
bLn(✓) where bLn(✓) :=

1

n

nX

i=1

`(✓; (Xi, Yi))

Fixed ✓:
bLn(✓) ! L(✓)

But b✓n depends on data.

Example: Failure when Xi
iid⇠ N(0, Id), Yi ? Xi, ⇥ = Rd
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Does ML work?

Definition (Uniform law of large numbers)

sup

✓2⇥

���bLn(✓)� L(✓)
��� p! 0

More generally, a collection of functions F , f : X ! R, satisfies
ULLN if

sup

f2F

�����
1

n

nX

i=1

f(Xi)� E[f(X)]

�����
p! 0.

Consequence for risk minimization
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One picture of ULLNs

Covering idea (come back later)
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Bounded di↵erences and martingales

Definition (Martingales)

Let X1, X2, . . . be random vectors and Z1, Z2, . . . be a sequence of
random variables. Then {Xn} is a martingale sequence adapted to

{Zn} if

i Xi is a function of Z1, Z2, . . . , Zi

ii E[Xi | Z1, . . . , Zi�1] = Xi�1.

Example: independent sums
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Concentration of martingales

Definition (Martingale di↵erences)

Let {Xi} be a martingale adapted to {Zi} and define
Di = Xi �Xi�1. Then {Di} is a martingale di↵erence sequence

Example: independent sums

Definition (Sub-gaussian martingale)

Di is a �2
-sub-Gaussian martingale di↵erence if

E[e�Di | Z1:i�1]  e
�2�2

2 for all � 2 R
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Azuma-Hoe↵ding inequality

If Di is a �2-sub-Gaussian martingale di↵erence sequence, for t � 0

P
 

nX

i=1

Di � t

!
 exp

✓
� t2

2n�2

◆

P
 

nX

i=1

Di  �t

!
 exp

✓
� t2

2n�2

◆
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Doob martingales

Let X1, . . . , Xn 2 X be a sequence of independent random
variables and f : X n ! R. The Doob martingale di↵erence is

Di := E[f(X1:n) | X1:i]� E[f(X1:n) | X1:i�1]

Remark: look at expectations and sums
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Concentration of functions with bounded di↵erences

A function f : X n ! R has bounded di↵erences if

��f(x1:i�1, xi, xi+1:n)� f(x1:i�1, x
0
i, xi+1:n)

��  ci

for all i and x, x0

Theorem (McDiarmid’s or bounded-di↵erences inequality)

Let f satisfy bounded di↵erences and Xi be independent RVs.

Then

P (|f(X1:n)� E[f(X1:n)]| � t)  exp

 
� 2t2

kck22

!
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Proof of McDiarmid’s inequality
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Bounded di↵erences in risk minimization

Let ` : ⇥⇥ X ! [a, b]. Then

sup

✓2⇥

���bLn(✓)� L(✓)
��� = sup

✓2⇥

�����
1

n

nX

i=1

`(✓;Xi)� L(✓)

�����

satisfies bounded di↵erences
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From probability to expectation

Corollary
Let ` : ⇥⇥ X ! R take values in [a, b]. Then

P
✓
sup

✓2⇥

���bLn(✓)� L(✓)
��� � E


sup

✓2⇥

���bLn(✓)� L(✓)
���
�
+ t

◆

 exp

✓
� 2nt2

(b� a)2

◆
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Symmetrization

Proposition (Symmetrization inequality)

Let F be a collection of f : X ! R and X1, . . . , Xn be

independent. Then

E
"
sup

f2F

�����

nX

i=1

(f(Xi)� E[f(Xi)])

�����

#
 2E

"
sup

f2F

�����

nX

i=1

"if(Xi)

�����

#

where "i 2 {�1, 1} are i.i.d. random signs
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Rademacher complexity

Let x1, . . . , xn 2 X be arbitrary and F a collection of f : X ! R.
The empirical Rademacher complexity of F on x1:n is

bRn(F) := E
"
sup

f2F

�����

nX

i=1

"if(xi)

�����

#

where "i 2 {�1, 1} are i.i.d. random signs. The Rademacher

complexity of F is

Rn(F) := E
h
bRn(F)

i

where expectation is over X1, . . . , Xn
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Rademacher complexity and losses

Theorem (Concentration and Rademacher complexity)

Let F := {`(✓, ·) | ✓ 2 ⇥} (viewed as functions on X ) and

`(✓, x) 2 [a, b]. Then

P
⇣
9✓ 2 ⇥ s.t.

���bLn(✓)� L(✓)
��� � 2Rn(F) + t

⌘
 exp

✓
� 2nt2

(b� a)2

◆
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Rademacher complexity of norm balls (`
2

)
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Rademacher complexity of norm balls (`
1

)
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Properties of Rademacher complexity

(1) Containment: if F ⇢ H then bRn(F)  bRn(H)

(2) Convex hulls: bRn(F) =

bRn(Conv(F)) =

bRn(absConv(F))

(3) Single functions: bRn({f})  1p
n
kfkL2(Pn)

(4) Sums of function classes:
bRn(F1 + F2 + · · ·+ Fk) 

Pk
i=1

bRn(Fi)

(5) Contraction [Ledoux & Talagrand, Thm. 4.12]: if � : R ! R is
L�-Lipschitz and �(0) = 0, then

bRn(� � F)  2L�
bRn(F)
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Example: margin-based classification

Setting: Data (X,Y ) 2 Rd ⇥ {�1, 1} where

`(✓; (x, y)) = �(y✓Tx) for � : R ! R, non-increasing
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Margin-based classification and generalization

Theorem
Assume that � is c�-Lipschitz, that kxk2  bX and k✓k2  b⇥.
Then with probability at least 1� �, for all ✓ 2 ⇥

L(✓)  bLn(✓) +O(1) ·
"
L�bX b⇥p

n

r
log

1

�
+

�(0)p
n

#
.
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Proof of margin-based classifiers

Prof. John Duchi



Multiclass classification

Consider k-class classification problem,

✓ =

⇥
✓1 ✓2 · · · ✓k

⇤ 2 Rd⇥k

Let margin s = ✓Tx 2 Rk, loss � : Rk ! R of form

`(✓;x, y) = �(⇧ys) = �(⇧y✓
Tx)

for some “labeling” matrix ⇧y
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Multiclass margin-based losses

1. Multiclass logistic

2. Multiclass hinge/SVM
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Additional comments

Prof. John Duchi



Reading and bibliography

1. M. Ledoux and M. Talagrand. Probability in Banach Spaces.
Springer, 1991

2. P. L. Bartlett and S. Mendelson. Rademacher and Gaussian
complexities: Risk bounds and structural results.
Journal of Machine Learning Research, 3:463–482, 2002

3. S. Boucheron, O. Bousquet, and G. Lugosi. Theory of
classification: a survey of some recent advances.
ESAIM: Probability and Statistics, 9:323–375, 2005

4. S. Boucheron, G. Lugosi, and P. Massart. Concentration
Inequalities: a Nonasymptotic Theory of Independence.
Oxford University Press, 2013

Prof. John Duchi


