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Standard recipe

In machine learning problem (say of predicting y € Y from =z € X)

1 Choose data representation for x and parameter space © (said
differently, hypothesis class H)

2 Choose loss function ¢
3 Given sample (X1,Y1),...,(X,,Y,), minimize

—Zz (X;,Y))

What is actual goal? Minimize risk /expected loss

LO):=E/(0;(X,Y))] or L(h):=E[{(h;(X,Y))]
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Does ML work?

P AN P

0, € argmin L, (6) where L,(0) :

0cO

Fixed 6:

L,(6) = L(6)

But @\n depends on data.
Example: Failure when X; n N(0, 1),
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Does ML work?

Definition (Uniform law of large numbers)

sup | T, (6) — L(H)‘ L

0cO

More generally, a collection of functions F, f : X — R, satisfies
ULLN if

p

sup — 0.

ferF

LS7 f(X0) — E[F(X)]

n “

Consequence for risk minimization
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One picture of ULLNs

Covering idea (come back later)
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Bounded differences and martingales

Definition (Martingales)

Let X1, Xo,... be random vectors and 21, Z5, ... be a sequence of
random variables. Then {X,,} is a martingale sequence adapted to

{Zn}if
I X, is a function of £y, Zo, ..., Z;
i EX; | Z1,...,Z;—1] = X;—1.

Example: independent sums
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Concentration of martingales

Definition (Martingale differences)

Let {X;} be a martingale adapted to {Z;} and define
D; =X, — X;_1. Then {D;} is a martingale difference sequence

Example: independent sums

Definition (Sub-gaussian martingale)

D; is a o?-sub-Gaussian martingale difference if

2 2

E[e*li | Z1, 1] <e 3 forall A€ R

Prof. John Duchi



Azuma-Hoeffding inequality

If D; is a o°-sub-Gaussian martingale difference sequence, for t > 0

P (2 D, > t) <o (~50s)
P ;Di < —t| <exp (— 2n02>
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Doob martingales

Let X,...,X,, € X be a sequence of independent random
variables and f : X" — R. The Doob martingale difference is

D; = E|f(X1:) | X14] — E[f(X1:n) | X1:-1]

Remark: look at expectations and sums
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Concentration of functions with bounded differences

A function f : X" — R has bounded differences if

| f(@10-1, @, Tig1m) — [(T1:0-1, T Tigim) | < ¢
for all 7 and z, 2/

Theorem (McDiarmid's or bounded-differences inequality)

Let f satisfy bounded differences and X; be independent RVs.
Then

IP)(|]B(X1:n) — E[f(Xln)H > t) < exp ( 2! )

2
el
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Proof of McDiarmid's inequality
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Bounded differences in risk minimization

Let /: © X X — [a,b]. Then

sup | L, (0) — = sup |—
0cO 0cO

satisfies bounded differences
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From probability to expectation

Corollary
Let /: © x X — R take values in |a,b]. Then
P (sup L, (0) — L(@)‘ > E [sup L, (0) — L(@)u + t)
0cO 0cO

S
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Symmetrization

Proposition (Symmetrization inequality)

Let F be a collection of f : X — R and X4,...,X,, be
independent. Then

E ZSif(Xz')

1=1

sup < 2K

feF

sup
feF

> (X)) - E[f(Xi)])|

1=1

|

where ¢; € {—1,1} are i.i.d. random signs
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Rademacher complexity

Let 1,...,x, € X be arbitrary and F a collection of f : X — R.
The empirical Rademacher complexity of F on x1.,, Is

Z&f(fﬁz‘) }

i=1
where ¢; € {—1,1} are i.i.d. random signs. The Rademacher
complexity of F is

ﬁn(]—") = E | sup

feF

R, (F) :=E {En(f)}

where expectation is over Xq,..., X,
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Rademacher complexity and losses

Theorem (Concentration and Rademacher complexity)

Let F :={{(0,-) | 0 € ©} (viewed as functions on X ) and
0(6,x) € [a,b]. Then

L, (0) — L(0)| > 2R, (F) + t) < exp (— 2nt” )

P (39 € O s.t. b= a)?
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Rademacher complexity of norm balls (/)
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Rademacher complexity of norm balls (/1)
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Properties of Rademacher complexity
(1) Containment: if F C H then R,,(F) < Rn(H)
(2) Convex hulls: R,,(F) = R,(Conv(F)) = R, (absConv(F))

(3) Single functions: R,({f}) < ﬁ 11l 2p,)

(4) Sums of function classes: R
Ro(Fi+Fo+ -+ Fp) <S5 Ra(F)

(5) Contraction [Ledoux & Talagrand, Thm. 4.12]: if ¢ : R — R is
Ly-Lipschitz and ¢(0) = 0, then

Rp(¢o F) < 2Lg R, (F)
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Example: margin-based classification

Setting: Data (X,Y) € R% x {—1,1} where

0(0; (z,y)) = ¢(y8' z) for ¢ : R — R, non-increasing
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Margin-based classification and generalization

Theorem
Assume that ¢ is cy-Lipschitz, that ||z||, < bx and ||0||, < be.
Then with probability at least 1 — ¢, for all 8 € ©

L(6) < L,(0) + O(1) -

log = 1 2N/
Vi V5T

Lobxbe 1 (b(O)} |
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Proof of margin-based classifiers
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Multiclass classification

Consider k-class classification problem,
0=1[0t 6> --- 0% e R
Let margin s = 812 € R¥, loss ¢ : R¥ — R of form

005 2,y) = ¢(Ilys) = ¢(IL,0" x)

for some “labeling” matrix 11,

Prof. John Duchi



Multiclass margin-based losses

1. Multiclass logistic

2. Multiclass hinge/SVM
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Additional comments
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