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Setting for the lecture

Binary classification problems: data X € X and labels
Y € {—1,1}. Hypothesis class H C {h : X — R}.
Goal: Find h € ‘H with

L(R) := E[1 {h(X)Y < 0}]

small
Loss is always

1 if sign(h(z)) #vy

{(h; (2,9)) = 1{h(a)y < 0} = {0 £ sign(h(@)) — 1
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Finite hypothesis classes

Theorem
Let ‘H be a finite class. Then

P <3h cH st. |L(h) — Ln(h)| > \/log ‘;‘n’ T t) <2t
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Finite hypothesis classes: generalization
Corollary

AN

Let H be a finite class, h,, € argmin, zn(h) Then (for numerical
constant C' < c0)

[#]

N log 7L
L(hy) <min L(h) +C %87
heH n
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Finite hypothesis classes: perfect classifiers

Possible to give better guarantees if there are good classifiers! We
won't bother looking at bad ones.

Theorem
Let H be a finite hypothesis class and assume miny L(h) = 0.

Then fort > 0

n

P (L(ﬁn) > L(ht) 4+ 08 t> <e .
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Do not pick the bad ones
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Finite function classes: Rademacher complexity

Idea: Use Rademacher complexity to understand generalization
even for these?

Let F be finite with |f| < 1 for f € F. Then

PINE

Ry (F) :=

ferF

satisfies

> 2R, (F) + t) < 2 exp(—cnt?)
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Finite function classes: sub-Gaussianity

» Let P, be empirical distribution

> Define ||f||L2(P = o D ie 1 f(z0)?

» What about sum

% Zé“zf(l’z)
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Finite function classes: Rademacher complexity

Proposition (Massart's finite class bound)
Let F be finite with M := maxser ||f|lp2(p,)- Then

R(F) < \/2M2 log(icard(f)).
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Infinite classes with finite labels

What if we had a classifier h : X — {—1, 1} that could only give a
certain number of different labelings to a data set?

Example (Sketchy)
Say X = R and hy(x) = sign(xz — t). Complexity of

F = {f(x) = 1{h(zx) < 0}}7
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Complexity of function classes

Define
Fzim) = A{(f(z1),..., f(zn)) | [ € F}.
Then

whenever F(x1.,) = F'(1.n)

Proposition

Rademacher complexity depends on values of F: if |f(x)| < M for
all x then

log card(F(z1.y,))
- .

R.(F)<c-M sup \/

$1,...,$n€X
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Proof of complexity
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Shatter coefficients

Given function class F, shattering coefficient (growth function) is

sp(F):= sup card (F(x1.))
T1,e.0, X EX
= sup card ((f(21),..., f(zn)) | f € F)
xl:nexn
Example

Thresholds in R
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Shatter coefficients and Rademacher complexity

Proposition
For any function class F with |f(x)| < M we have

F)

log sy,
Rn(F) < cM\/ Ogsn(
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VC Dimension

How do we use shatter coefficients to give complexity guarantees?

Definition (VC Dimension)

Let H be a collection of boolean functions. The Vapnik
Chervonenkis (VC) Dimension of H is

VC(H) :=sup{n e N:s,(H) =2"}.

Prof. John Duchi



VC Dimension: examples

Example (Thresholds in R)

Example (Intervals in R)
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VC Dimension: examples

Example (Half-spaces in R?)
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Finite dimensional hypothesis classes

Let F be functions f : X — R and suppose dim(F) = d

» Definition of dimension:

Example (Linear functlonals)

If F = {f(z) = w'z,w € R?} then dim(F) =d
(
(

Example Nonllnear functionals)
If F = {f(z) = w' ¢(z),w € R} then dim(F) =d
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VC dimension of finite dimensional classes

Let F have dim(F) = d and let

H:={h: X — {-1,1} s.t. h(x) =sign(f(z)), f € F}.
Proposition (Dimension bounds VC dimension)

VC(H) < dim(F)
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Finite dimensional hypothesis classes: proof
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Sauer-Shelah Lemma

Theorem
Let H be boolean functions with VC(H) = d. Then

d .
n 2™ ifn<d
Sn(ﬁ)g;(i> = {(ne)d ifn>d

d
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Rademacher complexity of VC classes

Proposition
Let H be collection of boolean functions with VC(H) = d. Then

dlog %
R,(H) <c 64

n

Proof is immediate (but a tighter result is possible):
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Generalization bounds for VC classes

Proposition
Let H have VC-dimension d and £(h; (x,y)) = 1{h(z) # y}. Then

dlog%

n

+t] < 2¢~ "t

P|3heHst |Lo(h)— Lh)| > c
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Things we have not addressed

» Multiclass problems (Natarajan dimension, due to Bala
Natarajan; see also Multiclass Learnability and the ERM
Principle by Daniely et al.)

» Extending “zero error” results to infinite classes

» Non-boolean classes
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