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Setting for the lecture

Binary classification problems: data X 2 X and labels
Y 2 {�1, 1}. Hypothesis class H ⇢ {h : X ! R}.
Goal: Find h 2 H with

L(h) := E[1 {h(X)Y  0}]

small
Loss is always

`(h; (x, y)) = 1 {h(x)y  0} =

(
1 if sign(h(x)) 6= y

0 if sign(h(x)) = y
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Finite hypothesis classes

Theorem
Let H be a finite class. Then
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Finite hypothesis classes: generalization
Corollary
Let H be a finite class,
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Finite hypothesis classes: perfect classifiers

Possible to give better guarantees if there are good classifiers! We
won’t bother looking at bad ones.

Theorem
Let H be a finite hypothesis class and assume min

h

L(h) = 0.

Then for t � 0
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Do not pick the bad ones
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Finite function classes: Rademacher complexity

Idea: Use Rademacher complexity to understand generalization
even for these?

Let F be finite with |f |  1 for f 2 F . Then
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Finite function classes: sub-Gaussianity

I Let P
n

be empirical distribution

I Define kfk2
L

2(Pn) =
1
n

P
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i=1 f(xi)
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Finite function classes: Rademacher complexity

Proposition (Massart’s finite class bound)

Let F be finite with M := max

f2F kfk
L

2(Pn). Then
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Infinite classes with finite labels
What if we had a classifier h : X ! {�1, 1} that could only give a
certain number of di↵erent labelings to a data set?

Example (Sketchy)

Say X = R and h

t

(x) = sign(x� t). Complexity of

F := {f(x) = 1 {h
t

(x)  0}}?
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Complexity of function classes

Define
F(x1:n) := {(f(x1), . . . , f(xn)) | f 2 F} .

Then
b
R

n

(F) =

b
R

n

(F 0
)

whenever F(x1:n) = F 0
(x1:n)

Proposition
Rademacher complexity depends on values of F : if |f(x)|  M for

all x then
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Proof of complexity
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Shatter coe�cients

Given function class F , shattering coe�cient (growth function) is

s
n

(F) := sup

x1,...,xn2X
card (F(x1:n))

= sup

x1:n2Xn
card ((f(x1), . . . , f(xn)) | f 2 F)

Example
Thresholds in R
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Shatter coe�cients and Rademacher complexity

Proposition
For any function class F with |f(x)|  M we have
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VC Dimension

How do we use shatter coe�cients to give complexity guarantees?

Definition (VC Dimension)

Let H be a collection of boolean functions. The Vapnik

Chervonenkis (VC) Dimension of H is

VC(H) := sup {n 2 N : s
n

(H) = 2

n} .
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VC Dimension: examples

Example (Thresholds in R)

Example (Intervals in R)
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VC Dimension: examples

Example (Half-spaces in R2)
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Finite dimensional hypothesis classes

Let F be functions f : X ! R and suppose dim(F) = d

I Definition of dimension:

Example (Linear functionals)

If F = {f(x) = w

>
x,w 2 Rd} then dim(F) = d

Example (Nonlinear functionals)

If F = {f(x) = w

>
�(x), w 2 Rd} then dim(F) = d
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VC dimension of finite dimensional classes

Let F have dim(F) = d and let

H := {h : X ! {�1, 1} s.t. h(x) = sign(f(x)), f 2 F} .

Proposition (Dimension bounds VC dimension)

VC(H)  dim(F)
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Finite dimensional hypothesis classes: proof
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Sauer-Shelah Lemma

Theorem
Let H be boolean functions with VC(H) = d. Then
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Rademacher complexity of VC classes

Proposition
Let H be collection of boolean functions with VC(H) = d. Then
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Proof is immediate (but a tighter result is possible):
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Generalization bounds for VC classes

Proposition
Let H have VC-dimension d and `(h; (x, y)) = 1 {h(x) 6= y}. Then
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Things we have not addressed

I Multiclass problems (Natarajan dimension, due to Bala
Natarajan; see also Multiclass Learnability and the ERM
Principle by Daniely et al.)

I Extending “zero error” results to infinite classes

I Non-boolean classes
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