VC Dimension and classification

John Duchi

Outline

- I Setting: classification problems
- Il Finite hypothesis classes
 - 1 Union bounds
 - 2 Zero error case
- III Shatter coefficients and Rademacher complexity
- IV VC Dimension

Prof. John Duchi

Setting for the lecture

Binary classification problems: data $X \in \mathcal{X}$ and labels $Y \in \{-1,1\}$. Hypothesis class $\mathcal{H} \subset \{h: \mathcal{X} \to \mathbb{R}\}$. Goal: Find $h \in \mathcal{H}$ with

$$L(h) := \mathbb{E}[\mathbf{1}\{h(X)Y \le 0\}]$$

small Loss is always

$$\ell(h; (x, y)) = \mathbf{1} \{h(x)y \le 0\} = \begin{cases} 1 & \text{if } sign(h(x)) \ne y \\ 0 & \text{if } sign(h(x)) = y \end{cases}$$

Finite hypothesis classes

Theorem

Let \mathcal{H} be a finite class. Then

$$\mathbb{P}\left(\exists h \in \mathcal{H} \text{ s.t. } |L(h) - \widehat{L}_n(h)| \ge \sqrt{\frac{\log |\mathcal{H}| + t}{2n}}\right) \le 2e^{-t}.$$

Finite hypothesis classes: generalization Corollary

Let \mathcal{H} be a finite class, $\widehat{h}_n \in \operatorname{argmin}_h \widehat{L}_n(h)$. Then (for numerical constant $C < \infty$)

$$L(\widehat{h}_n) \le \min_{h \in \mathcal{H}} L(h) + C\sqrt{\frac{\log \frac{|\mathcal{H}|}{\delta}}{n}}$$

w.p.
$$\geq 1 - \delta$$

Finite hypothesis classes: perfect classifiers

Possible to give better guarantees if there are good classifiers! We won't bother looking at bad ones.

Theorem

Let \mathcal{H} be a finite hypothesis class and assume $\min_h L(h) = 0$. Then for $t \geq 0$

$$\mathbb{P}\left(L(\widehat{h}_n) \ge L(h^*) + \frac{\log |\mathcal{H}| + t}{n}\right) \le e^{-t}.$$

Prof. John Duchi

Do not pick the bad ones

Finite function classes: Rademacher complexity

Idea: Use Rademacher complexity to understand generalization even for these?

Let \mathcal{F} be finite with $|f| \leq 1$ for $f \in \mathcal{F}$. Then

$$R_n(\mathcal{F}) := \mathbb{E}\left[\max_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(Z_i) \right| \right]$$

satisfies

$$\mathbb{P}\left(\max_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_i) - \mathbb{E}[f(X_i)]\right| \ge 2R_n(\mathcal{F}) + t\right) \le 2\exp(-cnt^2)$$

Finite function classes: sub-Gaussianity

ightharpoonup Let P_n be empirical distribution

▶ Define
$$||f||_{L^2(P_n)}^2 = \frac{1}{n} \sum_{i=1}^n f(x_i)^2$$

► What about sum

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i f(x_i)$$

Finite function classes: Rademacher complexity

Proposition (Massart's finite class bound)

Let \mathcal{F} be finite with $M := \max_{f \in \mathcal{F}} \|f\|_{L^2(P_n)}$. Then

$$\widehat{R}_n(\mathcal{F}) \le \sqrt{\frac{2M^2 \log(2\operatorname{card}(\mathcal{F}))}{n}}.$$

Infinite classes with finite labels

What if we had a classifier $h: \mathcal{X} \to \{-1, 1\}$ that could only give a certain number of different labelings to a data set?

Example (Sketchy)

Say $\mathcal{X} = \mathbb{R}$ and $h_t(x) = \operatorname{sign}(x - t)$. Complexity of

$$\mathcal{F} := \{ f(x) = \mathbf{1} \{ h_t(x) \le 0 \} \}$$
?

Complexity of function classes

Define

$$\mathcal{F}(x_{1:n}) := \{ (f(x_1), \dots, f(x_n)) \mid f \in \mathcal{F} \}.$$

Then

$$\widehat{R}_n(\mathcal{F}) = \widehat{R}_n(\mathcal{F}')$$

whenever $\mathcal{F}(x_{1:n}) = \mathcal{F}'(x_{1:n})$

Proposition

Rademacher complexity depends on values of \mathcal{F} : if $|f(x)| \leq M$ for all x then

$$R_n(\mathcal{F}) \le c \cdot M \sup_{x_1, \dots, x_n \in \mathcal{X}} \sqrt{\frac{\log \operatorname{card}(\mathcal{F}(x_{1:n}))}{n}}.$$

Proof of complexity

Shatter coefficients

Given function class \mathcal{F} , shattering coefficient (growth function) is

$$s_n(\mathcal{F}) := \sup_{x_1, \dots, x_n \in \mathcal{X}} \operatorname{card} (\mathcal{F}(x_{1:n}))$$

$$= \sup_{x_{1:n} \in \mathcal{X}^n} \operatorname{card} ((f(x_1), \dots, f(x_n)) \mid f \in \mathcal{F})$$

Example

Thresholds in $\mathbb R$

Shatter coefficients and Rademacher complexity

Proposition

For any function class \mathcal{F} with $|f(x)| \leq M$ we have

$$R_n(\mathcal{F}) \le cM\sqrt{\frac{\log \mathsf{s}_n(\mathcal{F})}{n}}.$$

VC Dimension

How do we use shatter coefficients to give complexity guarantees?

Definition (VC Dimension)

Let \mathcal{H} be a collection of boolean functions. The Vapnik Chervonenkis (VC) Dimension of \mathcal{H} is

$$VC(\mathcal{H}) := \sup \{ n \in \mathbb{N} : s_n(\mathcal{H}) = 2^n \}.$$

Prof. John Duchi

VC Dimension: examples

Example (Thresholds in \mathbb{R})

Example (Intervals in \mathbb{R})

VC Dimension: examples

Example (Half-spaces in \mathbb{R}^2)

Finite dimensional hypothesis classes

Let \mathcal{F} be functions $f: \mathcal{X} \to \mathbb{R}$ and suppose $\dim(\mathcal{F}) = d$

Definition of dimension:

Example (Linear functionals)

If
$$\mathcal{F} = \{f(x) = w^{\top}x, w \in \mathbb{R}^d\}$$
 then $\dim(\mathcal{F}) = d$

Example (Nonlinear functionals)

If
$$\mathcal{F} = \{f(x) = w^{\top}\phi(x), w \in \mathbb{R}^d\}$$
 then $\dim(\mathcal{F}) = d$

VC dimension of finite dimensional classes

Let \mathcal{F} have $\dim(\mathcal{F}) = d$ and let

$$\mathcal{H} := \{h : \mathcal{X} \to \{-1, 1\} \text{ s.t. } h(x) = \operatorname{sign}(f(x)), f \in \mathcal{F}\}.$$

Proposition (Dimension bounds VC dimension)

$$VC(\mathcal{H}) \leq dim(\mathcal{F})$$

Finite dimensional hypothesis classes: proof

Sauer-Shelah Lemma

Theorem

Let \mathcal{H} be boolean functions with $VC(\mathcal{H}) = d$. Then

$$\mathsf{s}_n(\mathcal{H}) \leq \sum_{i=0}^d \binom{n}{i} \leq \begin{cases} 2^n & \text{if } n \leq d \\ \left(\frac{ne}{d}\right)^d & \text{if } n > d \end{cases}$$

Rademacher complexity of VC classes

Proposition

Let \mathcal{H} be collection of boolean functions with $VC(\mathcal{H}) = d$. Then

$$R_n(\mathcal{H}) \le c \sqrt{\frac{d \log \frac{n}{d}}{n}}.$$

Proof is immediate (but a tighter result is possible):

Prof. John Duchi

Generalization bounds for VC classes

Proposition

Let \mathcal{H} have VC-dimension d and $\ell(h;(x,y)) = \mathbf{1}\{h(x) \neq y\}$. Then

$$\mathbb{P}\left(\exists \ h \in \mathcal{H} \ \textit{s.t.} \ |\widehat{L}_n(h) - L(h)| \ge c\sqrt{\frac{d\log\frac{d}{n}}{n}} + t\right) \le 2e^{-nt^2}$$

Things we have not addressed

- Multiclass problems (Natarajan dimension, due to Bala Natarajan; see also Multiclass Learnability and the ERM Principle by Daniely et al.)
- Extending "zero error" results to infinite classes
- Non-boolean classes

Reading and bibliography

- M. Anthony and P. Bartlet. Neural Network Learning: Theoretical Foundations.
 Cambridge University Press, 1999
- 2. P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results.

 Journal of Machine Learning Research, 3:463–482, 2002
- 3. S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of some recent advances. *ESAIM: Probability and Statistics*, 9:323–375, 2005
- 4. A. W. van der Vaart and J. A. Wellner. *Weak Convergence* and *Empirical Processes: With Applications to Statistics*. Springer, New York, 1996 (Ch. 2.6)
- 5. Scribe notes for Statistics 300b: http://web.stanford.edu/class/stats300b/