How we show uniform laws

- Show individual points converge
- Argue that set is not “too” large somehow

This lecture: understand how “large” sets are
Covering

Definition (Covering)
Let \((T, \rho)\) be a metric space. A collection \(\mathcal{N} = \{t_1, \ldots, t_N\}\) is an \(\varepsilon\)-cover if

\[
\min_i \rho(t, t_i) \leq \varepsilon \quad \text{for all } t \in T
\]
Definition (Packing)

Let \((T, \rho)\) be a metric space. A collection \(\mathcal{M} = \{t_1, \ldots, t_M\}\) is a \(\delta\)-packing if

\[
\rho(t_i, t_j) > \delta \quad \text{for all } i \neq j.
\]
Covering and packing numbers

Definition (Covering numbers)

The ε-covering number of a metric space (T, ρ) is

$$N(\varepsilon; T, \rho) := \inf \{ N \in \mathbb{N} \text{ s.t. } \exists \text{ an } \varepsilon\text{-cover } t_1, \ldots, t_N \}$$

Definition (Packing numbers)

The δ-packing number of a metric space (T, ρ) is

$$M(\delta; T, \rho) := \sup \{ M \in \mathbb{N} \text{ s.t. } \exists \text{ an } \delta\text{-packing } t_1, \ldots, t_M \}$$
Metric entropies

Definition (Entropies)

The metric entropy of a metric space \((T, \rho)\) is \(\log N(\epsilon; T, \rho)\). The packing entropy is \(\log M(\epsilon; T, \rho)\)

Proposition

For any metric space \((T, \rho)\) and \(\epsilon > 0\) we have

\[
M(2\epsilon; T, \rho) \leq N(\epsilon; T, \rho) \leq M(\epsilon; T, \rho)
\]
Example: Boolean hypercube

Let $T = \{0, 1\}^d$ with metric $\rho(u, v) = \sum_{j=1}^{d} |u_j - v_j|$. Then there is a numerical constant $c > 0$ such that

$$c \cdot d \leq \log N(d/4; T, \rho) \leq d.$$
Example: norm ball, covering, and volume

Let \(\| \cdot \| \) be any norm on \(\mathbb{R}^d \) and \(\mathcal{B} = \{ x \in \mathbb{R}^d : \| x \| \leq 1 \} \) its unit ball. Then

\[
\left(\frac{1}{\delta} \right)^d \leq N(\delta; \mathcal{B}, \| \cdot \|) \leq \left(1 + \frac{2}{\delta} \right)^d.
\]
Example: Lipschitz functions on $[0, 1]$

Let $\mathcal{F} \subset \{ f : [0, 1] \to \mathbb{R} \}$ be the 1-Lipschitz functions on $[0, 1]$ with $f(0) = 0$. Then

$$\log N(\delta; \mathcal{F}, \| \cdot \|_\infty) \asymp \frac{1}{\delta}$$
An application: concentration of i.i.d. sums of Lipschitz functions

Let \(\ell : \Theta \times \mathcal{X} \to \mathbb{R} \) be 1-Lipschitz in \(\theta \), i.e.
\[
|\ell(\theta, x) - \ell(\theta', x)| \leq \|\theta - \theta'\|
\]
and bounded with \(\ell(\theta, x) \in [0, B] \).

Proposition

Let \(\hat{L}_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; X_i) \). Then
\[
\mathbb{P} \left(\sup_{\theta \in \Theta} |\hat{L}_n(\theta) - L(\theta)| \geq t + \epsilon \right) \leq \mathcal{N}(\epsilon; \Theta, \| \cdot \|) \exp \left(-\frac{nt^2}{B^2} \right)
\]
Concentration of i.i.d. sums of Lipschitz functions: picture
Concentration of i.i.d. sums of Lipschitz functions: proof

Prof. John Duchi
An application: matrix concentration

The matrix **operator norm** is

\[\|A\|_{\text{op}} = \sup_{x: \|x\|_2 \leq 1} \|Ax\|_2 \]

Suppose the matrix \(A \in \mathbb{R}^{m \times n} \) has independent entries. What do we expect its operator norm to scale as?

Theorem

Let \(A_{ij} \) be independent \(\sigma^2 \)-sub-Gaussian. There exists a numerical constant \(C \) such that

\[
P \left(\|A\|_{\text{op}} \geq C\sqrt{n} + C\sqrt{m} + Ct \right) \leq 2e^{-t^2}.
\]

Idea: Show that \(u^T A v \approx 0 \) with high probability, then cover.
Proof of concentration: discretization

Lemma

Let $\mathcal{N}_n, \mathcal{N}_m$ be ϵ-covers of the unit spheres in \mathbb{R}^n and \mathbb{R}^m. Then

$$\max_{u \in \mathcal{N}_m, v \in \mathcal{N}_n} u^T A v \leq \|A\|_{op} \leq \frac{1}{1 - 2\epsilon} \max_{u \in \mathcal{N}_m, v \in \mathcal{N}_n} u^T A v$$
Proof of concentration: sub-Gaussianity

Let $\mathcal{N}_n, \mathcal{N}_m$ be minimal $\frac{1}{4}$-covers of the unit spheres in $\mathbb{R}^n, \mathbb{R}^m$.

$$
P(\|A\|_{op} \geq \epsilon) \leq P \left(\max_{u \in \mathcal{N}_m} \max_{v \in \mathcal{N}_n} u^T Av \geq \frac{\epsilon}{4} \right)
$$
Proof of concentration: union bound
Sub-Gaussian processes and chaining

So far, we have seen

(i) Sub-Gaussian variables
(ii) Rademacher complexities
(iii) Covering numbers

Is there something that unifies them?
Sub-Gaussian process

Definition (Sub-Gaussian Process)

A collection of zero-mean random variables \(\{X_\theta, \theta \in T\} \) is a *sub-Gaussian process* with respect to a metric \(\rho \) on \(T \) if

\[
\mathbb{E} \left[e^{\lambda (X_\theta - X_{\theta'})} \right] \leq \exp \left(\frac{\lambda^2 \rho(\theta, \theta')^2}{2} \right).
\]

Example

Take \(Z \sim \mathcal{N}(0, I_d) \) and \(T = \mathbb{R}^d, \rho(\theta, \theta') = \|\theta - \theta'\|_2, X_\theta = \langle Z, \theta \rangle \)
Example

Let \mathcal{F} be collection of $f : \mathcal{X} \rightarrow \mathbb{R}$, $\varepsilon_i \overset{iid}{\sim} \{\pm 1\}$, fix x_1, \ldots, x_n

$$Z_f := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i f(x_i)$$
Sub-Gaussian process: symmetrized functions

Example
Let $\ell : \Theta \times \mathcal{X} \rightarrow \mathbb{R}$ be B-Lipschitz, $\varepsilon_i \overset{iid}{\sim} \{\pm 1\}$, fix x_1, \ldots, x_n, set

$$Z_\theta := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i \ell(\theta, x_i)$$
Question: Can we control Rademacher (or other complexities) by metric entropies?

Definition (Entropy integral)

Dudley's *entropy integral* is

$$J(D) := \int_0^D \sqrt{\log N(\epsilon; T, \rho)} d\epsilon.$$

Example

Lipschitz functions on $[0, 1]$ with $f(0) = 0$: $J(\infty) \lesssim \int_0^1 \epsilon^{-\frac{1}{2}} d\epsilon$
Entropy integral

Theorem (Dudley)

Let \(\{X_\theta : \theta \in T\} \) be a \(\rho \)-sub-Gaussian process with
\(D \geq \sup_{\theta, \theta' \in T} \rho(\theta, \theta') \). Then

\[
\mathbb{E} \left[\sup_{\theta, \theta' \in T} (X_\theta - X_{\theta'}) \right] \lesssim \int_0^D \sqrt{\log N(\epsilon; T, \rho)} d\epsilon.
\]

Example (Rademacher complexity of Lipschitz loss class)
Proof of entropy integral

Assume that process is separable, i.e. that exists set $T' \subset T$ with T' countable, $\sup_{\theta \in T'} X_\theta = \sup_{\theta \in T} X_\theta$

- Step 1. Construct a series of finer and finer discretizations
Proof of entropy integral

- Step 2. Construct projections (the chain)
Proof of entropy integral

- Step 3. Sum expected worst-case errors
Proof of entropy integral

- Step 4. Transform into integral
Example: VC Dimension

Let \mathcal{F} be a class of Boolean functions with VC-dimension d. Then

$$\log N(\epsilon; \mathcal{F}, \| \cdot \|_{L^2(P_n)}) \lesssim d \log \frac{1}{\epsilon}$$

Proposition

We have $R_n(\mathcal{F}) \leq C \sqrt{d/n}$ and thus

$$\mathbb{P} \left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}[f(X)] \right| \geq C \sqrt{\frac{d}{n}} + t \right) \leq 2 \exp(-nt^2).$$
Example: bounded Lipschitz functions

Let $\ell(\theta; x)$ be B-bounded and K-Lipschitz in θ, suppose $\log N(\epsilon; \Theta, \|\cdot\|) \leq D \log \frac{1}{\epsilon}$. Let $\mathcal{F} = \{\ell(\theta; \cdot) \mid \theta \in \Theta\}$. Then

$$R_n(\mathcal{F}) \lesssim \frac{BKD}{\sqrt{n}}$$
Multiclass classification

Consider k-class classification problem,

$$\theta = \begin{bmatrix} \theta^1 & \theta^2 & \cdots & \theta^k \end{bmatrix} \in \mathbb{R}^{d \times k}$$

Let margin $s = \theta^T x \in \mathbb{R}^k$, loss $\phi : \mathbb{R}^k \to \mathbb{R}$ of form

$$\ell(\theta; x, y) = \phi(\Pi_y s) = \phi(\Pi_y \theta^T x)$$

for some “labeling” matrix Π_y
Rademacher complexity and generalization for multiclass
Rademacher complexity and generalization for multiclass