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[begin lecture 1] (1)

1 Overview

1.1 What is this course about? (Lecture 1)

• Machine learning has become an indispensible part of many application areas, in both
science (biology, neuroscience, psychology, astronomy, etc.) and engineering (natural
language processing, computer vision, robotics, etc.). But machine learning is not a
single approach; rather, it consists of a dazzling array of seemingly disparate frame-
works and paradigms spanning classification, regression, clustering, matrix factoriza-
tion, Bayesian networks, Markov random fields, etc. This course aims to uncover the
common statistical principles underlying this diverse array of techniques.

• This class is about the theoretical analysis of learning algorithms. Many of the analysis
techniques introduced in this class—which involve a beautiful blend of probability,
linear algebra, and optimization—are worth studying in their own right and are useful
outside machine learning. For example, we will provide generic tools to bound the
supremum of stochastic processes. We will show how to optimize an arbitrary sequence
of convex functions and do as well on average compared to an expert that sees all the
functions in advance.

• Meanwhile, the practitioner of machine learning is hunkered down trying to get things
to work. Suppose we want to build a classifier to predict the topic of a document (e.g.,
sports, politics, technology, etc.). We train a logistic regression with bag-of-words
features and obtain 8% training error on 1000 training documents, test error is 13%
on 1000 documents. There are many questions we could ask that could help us move
forward.

– How reliable are these numbers? If we reshuffled the data, would we get the same
answer?

– How much should we expect the test error to change if we double the number of
examples?

– What if we double the number of features? What if our features or parameters
are sparse?

– What if we double the regularization? Maybe use L1 regularization?

– Should we change the model and use an SVM with a polynomial kernel or a neural
network?

In this class, we develop tools to tackle some of these questions. Our goal isn’t to
give precise quantitative answers (just like analyses of algorithms doesn’t tell you how
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exactly many hours a particular algorithm will run). Rather, the analyses will reveal
the relevant quantities (e.g., dimension, regularization strength, number of training
examples), and reveal how they influence the final test error.

• While a deeper theoretical understanding can offer a new perspective and can aid in
troubleshooting existing algorithms, it can also suggest new algorithms which might
have been non-obvious without the conceptual scaffolding that theory provides.

– A famous example is boosting. The following question was posed by Kearns
and Valiant in the late 1980s: is it possible to combine weak classifiers (that get
51% accuracy) into a strong classifier (that get 99% accuracy)? This theoretical
challenge eventually led to the development of AdaBoost in the mid 1990s, a
simple and practical algorithm with strong theoretical guarantees.

– In a more recent example, Google’s latest 22-layer convolutional neural network
that won the 2014 ImageNet Visual Recognition Challenge was initially inspired
by a theoretically-motivated algorithm for learning deep neural networks with
sparsity structure.

There is obviously a large gap between theory and practice; theory relies on assump-
tions can be simultaneously too strong (e.g., data are i.i.d.) and too weak (e.g., any
distribution). The philosophy of this class is that the the purpose of theory here not to
churn out formulas that you simply plug numbers into. Rather, theory should change
the way you think.

• This class is structured into four sections: asymptotics, uniform convergence, kernel
methods, and online learning. We will move from very strong assumptions (assuming
the data are Gaussian, in asymptotics) to very weak assumptions (assuming the data
can be generated by an adversary, in online learning). Kernel methods is a bit of an
outlier in this regard; it is more about representational power rather than statistical
learning.

1.2 Asymptotics (Lecture 1)

• The setting is thus: Given data drawn based on some unknown parameter vector θ∗,
we compute a parameter estimate θ̂ from the data. How close is θ̂ to θ∗?

• For simple models such as Gaussian mean estimation and fixed design linear regression,
we can compute θ̂ − θ∗ in closed form.

• For most models, e.g., logistic regression, we can’t. But we can appeal to asymptotics,
a common tool used in statistics (van der Vaart, 1998). The basic idea is to take Taylor
expansions and show asymptotic normality: that is, the distribution of

√
n(θ̂ − θ∗)

tends to a Gaussian as the number of examples n grows. The appeal of asymptotics is
that we can get this simple result even if θ̂ is very complicated!
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θ∗

θ̂

Figure 1: In asymptotic analysis, we study how a parameter estimate θ̂ behaves when it
is close to the true parameters θ∗.

• Most of our analyses will be done with maximum likelihood estimators, which have nice
statistical properties (they have the smallest possible asymptotic variance out of all
estimators). But maximum likelihood is computationally intractable for most latent-
variable models and requires non-convex optimization. These optimization problems
are typically solved by EM, which is only guaranteed to converge to local optima. We
will show how the method of moments, an old approach to parameter estimation
dating back to Pearson (1894) can be brought to bear on this problem, yielding efficient
algorithms that produce globally optimal solutions (Anandkumar et al., 2012b).

1.3 Uniform convergence (Lecture 1)

• Asymptotics provides a nice first cut analysis, and is adequate for many scenarios, but
it has two drawbacks:

– It requires a smoothness assumption, which means you can’t analyze the hinge
loss or L1 regularization.

– It doesn’t tell you how large n has to be before the asymptotics kick in.

• Uniform convergence provides another perspective on the problem. To start, consider
standard supervised learning: given a training set of input-output (x, y) pairs, the
learning algorithm chooses a predictor h : X → Y from a hypothesis class H and we
evaluate it based on unseen test data. Here’s a simple question: how do the training
error L̂(h) and test error L(h) relate to each other?

• For a fixed h ∈ H, the training error L̂(h) is an average of i.i.d. random variables (loss
on each example), which converges to test error L(h) at a rate governed by Hoeffding’s
inequality or the central limit theorem.

• But the point in learning is that we’re supposed to choose a hypothesis based on the
training data, not simply used a fixed h. Specifically, consider the empirical risk
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h∗

expected risk L

ĥERM

empirical risk L̂

Figure 2: We want to minimize the expected risk L to get h∗, but we can only minimize
the empirical risk L̂ to get ĥ.

minimizer (ERM), which minimizes the training error:

ĥERM ∈ arg min
h∈H

L̂(h). (1)

Now what can we say about the relationship between L̂(ĥERM) and L(ĥERM)? The key
point is that ĥERM depends on L̂, so L̂(ĥERM) is no longer an average of i.i.d. random
variables; in fact, it’s quite a narly beast. Intuitively, the training error should be
smaller than the test error and hence less reliable, but how do we formalize this?
Using uniform convergence, we will show that:

L(ĥERM)︸ ︷︷ ︸
test error

≤ L̂(ĥERM)︸ ︷︷ ︸
training error

+Op

(√
Complexity(H)

n

)
. (2)

• The rate of convergence is governed by the complexity of H. We will devote a good
deal of time computing the complexity of various function classes H. VC dimension,
covering numbers, and Rademacher complexity are different ways of measuring how big
a set of functions is. For example, we will see that if H contains d-dimensional linear
classifiers that are s-sparse, then Complexity(H) = O(s log d), which means we can
tolerate exponentially more irrelevant features! All of these results are distribution-
free, makes no assumptions on the underlying data-generating distribution!

• These generalization bounds are in some sense the heart of statistical learning theory.
But along the way, we will develop generally useful concentration inequalities whose
applicability extends beyond machine learning (e.g., showing convergence of eigenvalues
in random matrix theory).
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1.4 Kernel methods (Lecture 1)

• Let us take a detour away from analyzing the error of learning algorithms and thinking
more about what models we should be learning. Real-world data is complex, so we
need expressive models. Kernels provide a rigorous mathematical framework to build
complex, non-linear models based on the machinery of linear models.

• For concreteness, suppose we’re trying to solve a regression task: predicting y ∈ R
from x ∈ X .

• The usual way of approaching machine learning is to define functions via a linear
combination of features: f(x) = w · φ(x). Richer features yield richer functions:

– φ(x) = [1, x] yields linear functions

– φ(x) = [1, x, x2] yields quadratic functions

• Kernels provide another way to define functions. We define a positive semidefinite
kernel k(x, x′), which captures the “similarity” between x and x′, and the define a
function by comparing with a set of exemplars: f(x) =

∑n
i=1 αik(xi, x).

– Kernels allow us to construct complex non-linear functions (e.g., Gaussian kernel

k(x, x′) = exp(−‖x−x
′‖2

2σ2 )) that are universal, in that it can approximate any
continuous function.

– For strings, trees, graphs, etc., can define kernels that exploit dynamic program-
ming for efficient computation.

• Finally, we operate on the functions themselves, which is at the end of the day all that
matters. We will define a space of functions called an reproducing kernel Hilbert
space (RKHS), which allows us to treat the functions like vectors and perform linear
algebra.

• It turns out that all three perspectives are getting at the same thing:

Feature map φ(x)

Kernel k(x, x′) RKHS H with ‖ · ‖H

unique

unique

Figure 3: The three key mathematical concepts in kernel methods.
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• There are in fact many feature maps that yield the same kernel (and thus RKHS), so
one can choose the one based on computational convenience. Kernel methods generally
require O(n2) time (n is the number of training points) to even compute the kernel
matrix. Approximations based on sampling offer efficient solutions. For example, by
generating lots of random features of the form cos(ω · x+ b), we can approximate any
shift-invariant kernel. Random features also provides some intuition into why neural
networks work.

1.5 Online learning (Lecture 1)

• The world is a dynamic place, something that’s not captured well by our earlier analyses
based on asymptotics and uniform convergence. Online learning tries to do address
this in two ways:

– So far, in order to analyze the error of a learning algorithm, we had to assume
that the training examples were i.i.d. However in practice, data points might
be dependent, and worse, they might be generated by an adversary (think spam
classification).

– In addition, we have so far considered the batch learning setting, where we get
a training set, learn a model, and then deploy that model. But in practice, data
might be arriving in a stream, and we might want to interleave learning and
prediction.

• The online learning setting is a game between a learner and nature:

Learner

x1

p1

y1

...

xT

pT

yT

Nature

Figure 4: Online learning game.

– Iterate t = 1, . . . , T :

∗ Learner receives input xt ∈ X (e.g., system gets email)

∗ Learner outputs prediction pt ∈ Y (e.g., system labels email)

∗ Learner receives true label yt ∈ Y (e.g., user relabels email if necessary)

∗ (Learner updates model parameters)
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• How do we evaluate?

– Loss function: `(yt, pt) ∈ R (e.g., 1 if wrong, 0 if correct)

– Let H be a set of fixed expert predictors (e.g., heuristic rules)

– Regret: cumulative difference between learner’s loss and best fixed expert’s loss:
in other words, how well did the learner do compared to if we had seen all the
data and chose the best single expert in advance?

• Our primary aim is to upper bound the regret. For example, for finite H, we will show:

Regret ≤ O(
√
T log |H|). (3)

Things to note:

– The average regret Regret
T

goes to zero (in the long run, we’re doing as well as the
best fixed expert).

– The bound only depends logarithmically on the number of experts, which means
that the number of experts |H| can be exponentially larger than the number of
data points T .

– There is no probability here; the data is generated adversarially. What we rely
on is the (possibly hidden) convexity in the problem.

• Online learning naturally leads to the multi-armed bandit setting, where the learner
only receives partial feedback. Suppose you’re trying to assign treatments pt to patients
xt. In this case, you only observe the outcome associated with treatment pt, not the
other treatments you could have chosen (in the standard online learning setting, you
receive the true label and hence feedback about every possible output). Online learning
techniques can be adapted to work in the multi-armed bandit setting.

• Overall, online learning has many things going for it: it leads to many simple algorithms
(online gradient descent) which are used heavily in practice. At the same time, the
theory is remarkably clean and results are quite tight.

2 Asymptotics

2.1 Overview (Lecture 1)

• Here’s the basic question: Suppose we have data points drawn from an unknown
distribution with parameters θ∗:

x(1), . . . , x(n) ∼ pθ∗ . (4)

Can we come up with an estimate θ̂ (some function of the data) that gets close to θ∗?

10



• We begin with perhaps the simplest statistical problem: estimating the mean of a Gaus-
sian distribution (Section 2.2). This allows us to introduce the concept of parameter
error, and provides intuition for how this error scales with dimensionality and num-
ber of examples. We then consider estimating multinomial distributions (Section 2.3),
where we get our first taste of asymptotics in order to cope with the non-Gaussianity,
appealing to the central limit theorem and the continuous mapping theorem. Finally,
we generalize to exponential families (Section 2.4), a hugely important class of models.
Here, our parameter estimate is no longer an empirical average, so we lean on the delta
method.

• We then introduce the method of moments, and show an equivalence with exponential
families via the maximum entropy principle (Section 2.5). But the real benefit of
method of moments is in latent-variable models (Section 2.6). Here, we show that
we can obtain an efficient estimator for three-view mixture models when maximum
likelihood would otherwise require non-convex optimization.

• Next, we turn from parameter estimation to prediction, starting with fixed design linear
regression (Section 2.7). The analysis is largely similar to mean estimation, and we get
exact closed form expressions. For the random design setting and general loss functions
(to handle logistic regression), we need to again appeal to asymptotics (Section 2.8).

• So far, we’ve only considered unregularized estimators, which make sense when the
number of data points is large relative to the model complexity. Otherwise, regular-
ization is necessary to prevent overfitting. As a first attempt to study regularization,
we analyze the regularized least squares estimator (ridge regression) for fixed design
linear regression, and show how to tune the regularization strength to balance the
bias-variance tradeoff (Section 2.9).

2.2 Gaussian mean estimation (Lecture 1)

• We warmup with a simple classic example from statistics. The goal is to estimate the
mean of a Gaussian distribution. Suppose we have n i.i.d. samples from a Gaussian
distribution with unknown mean θ∗ ∈ Rd and known variance σ2I (so that each of the
d components are independent):

x(1), . . . , x(n) ∼ N (θ∗, σ2I) (5)

• Define θ̂ to be parameter estimate equal to the sample mean:

θ̂ =
1

n

n∑
i=1

x(i). (6)

• Let us study how this estimate θ̂ deviates from the true parameter θ:

θ̂ − θ∗ ∈ Rd. (7)
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This deviation is a random vector which should depend on the number of points n and
the variance σ2. What do you think the dependence will be?

• Lemma 1 (parameter deviation for Gaussian mean)

– The sample mean estimate θ̂ deviates from the true parameter θ∗ according to a
Gaussian:

θ̂ − θ∗ ∼ N
(

0,
σ2I

n

)
. (8)

– FIGURE: [θ̂ in a ball around θ∗ for d = 2]

• Proof of Lemma 1

– We need the following basic properties of Gaussians:

∗ Fact 1 (sums of independent Gaussians): if v1 ∼ N (0,Σ1) and v2 ∼ N (0,Σ2)
are independent, then v1 + v2 ∼ N (0,Σ1 + Σ2).

∗ Fact 2 (constant times Gaussian): if v ∼ N (0,Σ), then Av ∼ N (0, AΣA>)
for any matrix A.

– The rest is just algebra:

∗ First, note that x(i) − θ∗ ∼ N (0, σ2I).

∗ Next, we have that Sn
def
=
∑n

i=1 x
(i) ∼ N (0, nσ2I) by Fact 1.

∗ Finally, we have θ̂ − θ∗ = Sn
n
∼ N

(
0, σ

2I
n

)
by Fact 2.

• Lemma 1 tells us how the entire estimated vector behaves, but sometimes it’s conve-
nient to just get one number that tells us how we’re doing. Let’s define the mean-
squared parameter error, which is the squared distance between the estimate θ̂ and
the true parameter θ∗:

‖θ̂ − θ∗‖2
2. (9)

How do you think the parameter error behaves?

• Lemma 2 (parameter error for Gaussian mean)

– The mean-squared parameter error is:

‖θ̂ − θ∗‖2
2 ∼

σ2

n
χ2
d, (10)

and has expected value:

E
[
‖θ̂ − θ‖2

2

]
=
dσ2

n
. (11)
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• Proof of Lemma 2

– Standard properties of chi-squared distributions:

∗ If v1, . . . , vd ∼ N (0, 1), then
∑d

j=1 v
2
j ∼ χ2

d.

∗ If z ∼ χ2
d, then E[z] = d and Var[z] = 2d.

– By Lemma 1, we know that v =
√

n
σ2 (θ̂ − θ∗) ∼ N (0, I).

– The squared 2-norm of this vector (‖v‖2
2 =

∑d
j=1 v

2
j ) is therefore distributed as

χ2
d.

– Multiplying both sides by σ2

n
yields (10).

– Taking expectations on both sides yields (11).

• A Gaussian random vector has fluctuations on the order of its standard deviation, we

can think of θ̂ having typical deviations on the order of
√

dσ2

n
.

• FIGURE: [relate to previous figure, density of a chi-squared for ‖θ̂ − θ∗‖2
2]

• Takeaways

– Life is easy when everything’s Gaussian, since we can compute things in closed
form.

– Think geometrically about shrinking balls around θ∗.

2.3 Multinomial estimation (Lecture 1)

• In the above, things worked out nicely because everything was Gaussian. What if are
data are not Gaussian?

• Suppose we have an unknown multinomial distribution over d choices: θ∗ ∈ ∆d (that is,
θ = [θ1, . . . , θd], θj ≥ 0 for each j and

∑d
j=1 θj = 1). Suppose we have n i.i.d. samples

from this unknown multinomial distribution

x(1), . . . , x(n) ∼ Multinomial(θ∗), (12)

where each x(i) ∈ {e1, . . . , ed} and ej ∈ {0, 1}d is an indicator vector that is 1 at
position j and 0 elsewhere.

• Consider the empirical distribution as the estimator (same form as the sample mean):

θ̂ =
1

n

n∑
i=1

x(i). (13)

• Example:
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– θ∗ = [0.2, 0.5, 0.3]

– x(1) = [0, 1, 0], x(2) = [1, 0, 0], x(3) = [0, 1, 0]

– θ̂ = [1
3
, 2

3
, 0]

• We can now ask the same question as we did for Gaussian estimation: what is the
parameter error ‖θ̂ − θ∗‖2

2? Before we had gotten a chi-squared distribution because
we had Gaussians and could work out everything in closed form. But now, we have
multinomial distributions, which makes things more difficult to analyze. How do you
think the parameter error will behave?

• Fortunately, not all hope is lost. Our strategy will be to study the asymptotic be-
havior of the estimators. By the central limit theorem, we have

√
n(θ̂ − θ∗) d−→ N (0, V ), (14)

where V
def
= diag(θ∗) − θ∗(θ∗)> is the the asymptotic variance of a single multinomial

draw. Written out, the elements of V are:

Vjk =

{
θ∗j (1− θ∗j ) if j = k

−θ∗jθ∗k if j 6= k.
(15)

It is easy to check this by noticing that E[xj] = E[x2
j ] = θ∗j , E[xjxk] = 0 for j 6= k.

Further sanity check:

– For a single component j, when θ∗j is close to 0 or 1, the variance is small.

– The covariance between components j and k is negative since the probabilities
sum to 1 (there is competition among components).

• Next, we can apply the continuous mapping theorem on the function ‖ · ‖2
2 (see

Appendix), which lets us transfer convergence results through continuous functions:

n‖θ̂ − θ∗‖2
2

d−→ tr(W(V, 1)), (16)

where W(V, k) is the Wishart distribution (multivariate generalization of the chi-
squared) with mean matrix V and k degrees of freedom. This follows because z ∼
N (0, V ), then zz> ∼ W(V, 1), and ‖z‖2

2 = tr(zz>).
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• Taking expectations1 and dividing by n on both sides yields:

E
[
‖θ̂ − θ∗‖2

2

]
=

(
d∑
j=1

θ∗j (1− θ∗j )

)
1

n
+ o

(
1

n

)
(17)

≤ 1

n
+ o

(
1

n

)
. (18)

• Note that the 1
n

term is independent of d, unlike in the Gaussian case, where the result

was dσ2

n
. The difference is that in the Gaussian case, each dimension had standard

deviation σ, whereas in the multinomial case here, it is about
√

1
d

for the uniform

distribution.

1 This step actually requires additional justification. In particular, if we have Yn
d−→ Y , in order to

conclude E[Yn]→ E[Y ], we need (Yn) to be uniformly integrable. A sufficient condition is that Yn has finite
second-order moments, which means that a data point needs to have finite fourth-order moments. This is
clearly the case for the multinomial distribution (which is bounded), and will be true for exponential families
(for which all moments exist), discussed in the next section. Showing this result formally is non-trivial and
is out of the scope of this class.
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[begin lecture 2] (2)

2.4 Exponential families (Lecture 2)

• So far, we’ve analyzed the Gaussian and the multinomial. Now let us delve into
exponential families, a much more general family of distributions which include the
Gaussian, multinomial, gamma, beta, etc., but not things like the uniform distribution
or mixture models.

• Exponential families are also the basis of undirected graphical models. You probably
first saw exponential families in a univariate continuous setting, but we will introduce
them here in the multivariable discrete setting in order to build some different intuitions
(and to simply the math).

• Definition 1 (exponential family)

– Let X be a discrete set.

∗ Example: X = {−1,+1}3

– Let φ : X → Rd be a feature function.

∗ Example (unary and binary factors):

φ(x) = [x1, x2, x3, x1x2, x2x3] ∈ R5. (19)

– Define a family of distributions P , where each pθ ∈ P assigns each x ∈ X a
probability that depends on x only through φ(x):

P def
= {pθ : θ ∈ Rd}, pθ(x)

def
= exp{θ · φ(x)− A(θ)}, (20)

where the log-partition function

A(θ)
def
= log

∑
x∈X

exp{θ · φ(x)} (21)

ensures the distribution is normalized.

– Example: if θ = [0, 0, 0, 0, 0], then pθ is the uniform distribution.

– Example: if θ = [0, 0, 0, log 2, 0] (which favors x1 and x2 having the same sign),
then pθ assigns probability:
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x1 x2 x3 exp{θ · φ(x)} pθ(x)
−1 −1 −1 2 0.2
−1 −1 +1 2 0.2
−1 +1 −1 0.5 0.05
−1 +1 +1 0.5 0.05
+1 −1 −1 0.5 0.05
+1 −1 +1 0.5 0.05
+1 +1 −1 2 0.2
+1 +1 +1 2 0.2

– Note that unlike multinomial distributions, P does not contain all possible distri-
butions. Varying one parameter θj has the effect of moving all points x with the
same feature φ(x)j the same way.

– FIGURE: [Venn diagram over outcome x, indicator features correspond to regions]

• A very useful property of exponential families is that derivatives of the log-partition
function correspond to moments of the distribution (a short algebra calculation that
you should do once, but we’re going to skip):

– The mean is the gradient of the log-partition function:

∇A(θ) = Eθ[φ(x)]
def
=
∑
x∈X

pθ(x)φ(x). (22)

– The covariance is the Hessian of the log-partition function:

∇2A(θ) = Covθ[φ(x)]
def
= Eθ[(φ(x)− Eθ[φ(x)])(φ(x)− Eθ[φ(x)])>]. (23)

– Note that since ∇2A(θ) is a covariance matrix, it is necessarily positive semidefi-
nite, which means that A is convex.

– If ∇2A(θ) � 0, then A is strongly convex, and ∇A is invertible (for intuition,
consider the 1D case where ∇A would be an increasing function). In this case,
the exponential family is said to be minimal. For simplicity, we will assume we
are working with minimal exponential families henceforth.

– One important consequence of minimality is that there is a one-to-one mapping
between the canonical parameters θ and the mean parameters µ:

θ = (∇A)−1(µ) µ = ∇A(θ). (24)

– FIGURE: [moment mapping diagram from θ to µ]

– An example of a non-minimal exponential family is the standard representation of
a multinomial distribution: X = {A,B,C} and φ(x) = [I[x = A], I[x = B], I[x =
C]]. There are three parameters but only two actual degrees of freedom in the
model family P . To make this exponential family minimal, just remove one of
the features.
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• Now let us turn to parameter estimation. Assume as usual that we get n i.i.d. points
drawn from some member of the exponential family with parameters θ∗:

x(1), . . . , x(n) ∼ pθ∗ . (25)

The classic way to estimate this distribution is maximum likelihood:

p̂ = pθ̂, θ̂ = arg max
θ∈Rd

n∑
i=1

log pθ(x
(i)). (26)

For exponential families, we can write this as succinctly as:

θ̂ = arg max
θ∈Rd
{µ̂ · θ − A(θ)}, (27)

where

µ̂
def
=

1

n

n∑
i=1

φ(x(i)) (28)

are the sufficient statistics of the data. At the end of the day, estimation in exponential
families is still about forming empirical averages. Let’s now try to get a closed form
expression for θ̂ as a function of µ̂. Since A is convex and differentiable, we can
differentiate the expression in (27) to get the necessary and sufficient conditions for
optimality:

µ̂−∇A(θ̂) = 0. (29)

Inverting, we get that θ̂ and µ̂ are canonical and mean parameters:

θ̂ = (∇A)−1(µ̂). (30)

In other words, the maximum likelihood estimator θ̂ for exponential families is just a
non-linear transformation of the sufficient statistics µ̂.

• Asymptotic analysis of maximum likelihood in exponential families

– By the definition of µ̂ (28) and the central limit theorem, we have:

√
n(µ̂− µ∗) d−→ N (0,Covθ(φ(x))), (31)

where µ∗ = Eθ∗ [φ(x)].

– By the connection between θ̂ and µ̂ (30) and redefining f = (∇A)−1, we can
rewrite the quantity of interest as:

√
n(θ̂ − θ∗) =

√
n(f(µ̂)− f(µ∗)). (32)
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What do we do with the RHS? The delta method allows us to transfer asymp-
totic normality results on one quantity (µ̂ in this case) to a non-linear transfor-
mation of another quantity (f(µ̂) in this case). The asymptotic variance is just
multiplied by a linearization of the non-linear transformation. Specifically:

√
n(f(µ̂)− f(µ∗))

d−→ N (0,∇f(µ∗)>Covθ(φ(x))∇f(µ∗)). (33)

Conveniently, ∇f(µ) = ∇2A(µ)−1 = Covθ(φ(x))−1 for θ = f(µ), so we get that:

√
n(θ̂ − θ∗) d−→ N (0,Covθ(φ(x))−1). (34)

– Notice that the asymptotic variance is the inverse of the covariance of the features
φ(x). Intuitively, if the features vary more, we can estimate the parameters better
(smaller asymptotic variance).

– The parameter error ‖θ̂ − θ‖2
2 can be computed exactly the same way as for

multinomial mean estimation, so we will skip this.

• Method of moments

– We have introduced θ̂ as a maximum likelihood estimator. But we can also
interpret it as a method of moments estimator. If we rewrite the optimality
conditions for θ̂ using the fact that ∇A(θ) = Eθ[φ(x)], we see that

Eθ̂[φ(x)] = µ̂. (35)

In other words, the empirical moments µ̂ are identical to those defined by the
model pθ̂.

– The method of moments principle is: Choose model parameters to make the
moments under the model match moments of the data.

– The maximum likelihood principle is: Choose model parameters to maximize the
likelihood of the entire data.

– The method of moments dates back to Karl Pearson from 1894, which predates
the full development of maximum likelihood by Fisher in the 1920s. Since then,
maximum likelihood has been the dominant paradigm for parameter estimation,
mainly due to its statistical efficiency and naturalness. There is more ad-hocness
in the method of moments, but it is exactly this ad-hocness that allows us to get
computationally efficient algorithms at the price of reduced statistical efficiency,
as we’ll see later for latent-variable models.

2.5 Maximum entropy principle (Lecture 2)

• Let us scrap exponential families for now and embrace the method of moments per-
spective for a moment. Can we develop an estimator from first principles?
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• Setup

– We are given n data points x(1), . . . , x(n).

– We have a feature function φ : X → Rd.

– Define the empirical moments to be a vector aggregating the feature function
over all the n examples:

µ̂
def
=

1

n

n∑
i=1

φ(x(i)). (36)

• Define Q to be the set of distributions with these empirical moments:

Q def
= {q ∈ ∆|X | : Eq[φ(x)] = µ̂}, (37)

where Eq[φ(x)]
def
=
∑

x∈X q(x)φ(x).

• Since |X | can be extremely large (2m if X = {−1,+1}m), there are many possible
distributions q but only d constraints, soQ contains tons of candidates, and the problem
is clearly underconstrained. How do we break ties? Edwin Jaynes introduced the
principle of maximum entropy which provides one answer:

• Definition 2 (maximum entropy principle (Jaynes, 1957))

– Choose the distribution with the empirical moments that has the highest entropy:

q̂
def
= arg max

q∈Q
H(q), (38)

where H(q)
def
= Eq[− log q(x)] is the entropy of the distribution q. In other words:

respect the data (by choosing q ∈ Q) but don’t commit to more than that (by
maximizing the entropy).

• We’ve now seen two approaches to estimate a distribution p̂ given n data points:

– Maximum likelihood in exponential families

– Maximum entropy subject to moment constraints

Which one should we choose? It turns out that we don’t need to because they are
equivalent, as the following theorem shows:

• Theorem 1 (maximum entropy duality)

– Assume Q is non-empty.
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– Then maximum entropy subject to moment constraints is equivalent to maximum
likelihood in exponential families:

arg max
q∈Q

H(q) = arg max
p∈P

n∑
i=1

log p(x(i)). (39)

• Proof of Theorem 1:

– This result is a straightforward application of Langrangian duality.

max
q∈Q

H(q) = max
q∈∆|X|

min
θ∈Rd

H(q)− θ · (µ̂− Eq[φ(x)]). (40)

Since Q is non-empty (Slater’s condition), we can switch the min and max. Ex-
panding:

min
θ∈Rd

max
q∈∆|X|

−
∑
x∈X

q(x) log q(x)− θ ·

(
µ̂−

∑
x∈X

q(x)φ(x)

)
. (41)

Next, differentiate with respect to q and set it to some constant c (because of the
sum-to-one constraint): for each x ∈ X ,

c = −(1 + log q(x)) + θ · φ(x). (42)

Solving for q (which depends on θ, so we write qθ), we see that qθ ∈ P is a member
of the exponential family:

qθ(x) ∝ exp(θ · φ(x)). (43)

Plugging this choice of qθ into the original problem, we get:

min
θ∈Rd
−(θ · Eθ[φ(x)]− A(θ))− θ · (µ̂− Eθ[φ(x)]), (44)

which is equivalent to the maximum likelihood objective:

max
θ∈Rd
{θ · µ̂− A(θ)} . (45)

This completes the proof. One sanity check we can optionally perform is to
differentiate the maximum likelihood objective. Using the fact that ∇A(θ) =
Eθ[φ(x)], we see that the moment constraints indeed hold at the optimal θ:

µ̂− Eθ[φ(x)] = 0, (46)

so that the solution is also in Q.

• Information geometry (digression)
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– We can understand understand maximum entropy duality more fully by looking
at it from an information geometry point of view, which studies the geometry of
probability distributions.

– Recall the definition of the KL divergence between two distributions q and p:

KL (q‖p) def
= Eq[log q(x)− log p(x)]. (47)

Although KL is not a distance metric (it’s not even symmetric), we can still talk
about the notion of projections with respect to KL.

– Remark: if KL (q‖p) is finite, then p(x) = 0 implies q(x) = 0 (p must place
positive probability mass in at least as many places as q does).

– Just for intuition: First, observe that Q, the set of distributions consistent with
a set of moments is closed under convex combinations of the distributions:

q1, q2 ∈ Q ⇒ αq1 + (1− α)q2 ∈ Q for all α ∈ [0, 1] (48)

Second, observe that P , the set of distributions in the exponential family is closed
under convex combinations of the parameters:

pθ1 , pθ2 ∈ P ⇒ pαθ1+(1−α)θ2 ∈ P for all α ∈ [0, 1] (49)

So both P and Q are in some sense convex when viewed appropriately.

– We can think of a “projection” of an arbitrary distribution onto either P or Q
based on the KL divergence:

∗ M-projection (moment projection) of some q onto P : arg minp∈P KL (q‖p)
· Example: maximum likelihood in an exponential family P is an M-

projection of the empirical distribution 1
n

∑n
i=1 δx(i) onto P .

∗ I-projection (information projection) of some p ontoQ: arg minq∈QKL (q‖p)
· Example: maximum entropy with respect to Q satisfying empirical mo-

ments is an I-projection of the uniform distribution onto Q.

– Theorem 2 (Pythagorean equality for exponential families)

∗ Let p̂ be the solution to (39) (maximum entropy / maximum likelihood solu-
tion).

∗ Then a Pythagorean identity holds:

KL (q‖p) = KL (q‖p̂) + KL (p̂‖p) for all q ∈ Q, p ∈ P . (50)

This theorem says that some of the intuitions of Euclidean geometry carry over
to information geometry when restricted to certain nice families of distributions.
See Figure 5 for a visualization.
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P = {pθ ∝ exp{θ · φ(x)} : θ ∈ Rd}

Q = {q : Eq[φ(x)] = µ̂}
p̂

p

q

Figure 5: The Pythagorean identity holds between Q (distributions satisfying moment
constraints) and P (distributions in the corresponding exponential family).

[begin lecture 3] (3)

2.6 Method of moments for latent-variable models (Lecture 3)

• Motivation

– For exponential families, we saw that maximum likelihood (choosing θ̂ to maxi-
mize the likelihood of the data) and method of moments (choosing θ̂ to match the
moments of the data) resulted in the same estimator. Furthermore, this estimator
can be solved efficiently by convex optimization. Case closed.

– In this section, we consider parameter estimation in latent-variable models,
which include examples such as Gaussian mixture models (GMMs), Hidden Markov
Models (HMMs), Latent Dirichlet Allocation (LDA), etc. These models are useful
in practice because our observed data is often incomplete. For example, in a mix-
ture model, we assume that each data point belongs to a latent cluster (mixture
component).

– While latent-variable models are powerful, parameter estimation in latent-variable
models turns out rather tricky. Intuitively, it is because we need to both estimate
the parameters and infer the latent variables. We can adapt maximum likelihood
to the latent-variable setting by maximizing the marginal likelihood (integrating
out the latent variable). However, this is in general a non-convex optimization
problem.

– In practice, people often use Expectation Maximization (EM) to (approximately)
optimize these objective functions, but EM is only guaranteed to converge to a
local optimum, which can be arbitrarily far away from the global optimum. The
same problem afflicts other optimization methods such as gradient descent. To get
around this problem, one typically optimizes from different random initializations,
but this is a heuristic without any theoretical guarantees.
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– In this section, we will explore an alternative technique for parameter estimation
based on method of moments. We will see that breaking free of the likelihood
allows us to get an efficient algorithm with strong formal guarantees.

• Setup

– We will develop a method of moments estimator for the following mixture model:

– Example 1 (Naive Bayes mixture model)

∗ Let k be the number of possible document clusters (e.g., sports, politics, etc.).

∗ Let b be the number of possible words in the vocabulary (e.g., “game”, “elec-
tion”).

∗ let L be the length of a document.

∗ Model parameters θ = (π,B):

· π ∈ ∆k: prior distribution over clusters.

· B = (β1, . . . , βk) ∈ (∆b)
k: for each cluster h, βh ∈ ∆b is a distribution

over words for cluster h. These are the columns of B, which is a b × k
matrix.

Let Θ denote the set of all valid parameters.

∗ The probability model pθ(h, x) is defined as follows:

· Sample the cluster: h ∼ Multinomial(π)

· Sample the words in the document independently: x = (x1, . . . , xL) | h ∼
Multinomial(βh)

– The parameter estimation problem is as follows: Given n documents x(1), . . . , x(n)

drawn i.i.d. from pθ∗ , return an estimate θ̂ = (π̂, B̂) of θ∗ = (π∗, B∗).

– One minor comment is that we can only hope to recover B∗ up to permutation
of its columns, since the number of the clusters is arbitrary and any permutation
yields the same distribution over the observed variables.

– Maximum (marginal) likelihood is the standard approach to parameter estima-
tion. For completeness, we will review the procedure, although we will not need
it in the sequel, so this part can be skipped. The maximum likelihood estimator
is:

θ̂ = arg min
θ∈Θ

n∑
i=1

− log
k∑

h=1

pθ(h, x
(i)). (51)

A popular optimization algorithm is to use the EM algorithm, which can be shown
to be either a bound optimization algorithm (which repeatedly constructs a lower
bound and optimizes) or a coordinate-wise ascent on a related objective:

∗ E-step: for each example i, compute the posterior

qi(h) = pθ(h
(i) = h | x(i)). (52)
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∗ M-step: optimize the expected log-likelihood:

max
θ

n∑
i=1

k∑
h=1

qi(h) log pθ(h, x
(i)). (53)

The EM algorithm is widely used and can get excellent empirical results, although
there are no theoretical guarantees in general that EM will converge to a global
optimum, and in practice, it can get stuck in bad local optima.

• Method of moments

– Step 1: define a moment mapping M relating the model parameters θ to mo-
ments m of the data distribution specified by those parameters.

– Step 2: plug in the empirical moments m̂ and invert the mapping to get param-
eter estimates θ̂.

Θ

θ∗

θ̂ Rp

m∗

m̂

M

M−1

Figure 6: Schema for method of moments: We define a moment mapping M from pa-
rameters to moments. We estimate the moments (always easy) and invert the mapping to
recover parameter estimates (sometimes easy).

• Moment mapping

– Let φ(x) ∈ Rp be an observation function which only depends on the observed
variables x.

∗ Example: φ(x) = (x, x2).

– Define the moment mapping

M(θ)
def
= Ex∼pθ [φ(x)], (54)

which maps each parameter vector θ ∈ Rd to the expected value of φ(x) with
respect to pθ(x). This mapping is the key that links moments (which are simple
functions of the observed data) with the parameters (which are quantities that
we want to estimate).

– Example (Gaussian distribution):
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∗ Suppose our model is a univariate Gaussian with parameters θ = (µ, σ2).

∗ Then for M defined above, the moment equations are as follows:

M((µ, σ2)) = Ex∼N (µ,σ2)[(x, x
2)] = (µ, σ2 + µ2). (55)

– Let’s see how moment mappings are useful. Suppose that someone told us some
moments m∗ (where m∗ = M(θ∗)). Then assuming M were invertible, we could
solve for θ∗ = M−1(m∗). Existence of the inverse is known as identifiability: we
say that the parameters of a model family Θ are identifiable from the moments
given by observation function φ if M−1 exists. Note that for mixture models,
strict identifiability never holds, because we can always permute the k cluster
labels. So we say that a mixture model is identifiable if |M−1(m)| = k! for all
m ∈M(Θ).

– Example (Gaussian distribution): We can recover the parameters θ∗ = (µ∗, σ2∗)
from m∗ = (m∗1,m

∗
2) as follows:

∗ µ∗ = m∗1
∗ σ2∗ = m∗2 −m2∗

1

Thus, the parameters are identifiable given the first two moments.

• Plug-in

– In practice, of course, we don’t have access to the true moments m∗. However,
the key behind the method of moments is that we can estimate it extremely easily
using a sample average over the data points. These are the empirical moments:

m̂
def
=

1

n

n∑
i=1

φ(x(i)). (56)

– Given these empirical moments, we can simply plug in m̂ for m∗ to yield the
method of moments estimator:

θ̂
def
= M−1(m̂). (57)

• Asymptotic analysis

– How well does this procedure work? It is relatively easy to study how fast m̂
converges to m∗, at least in an asymptotic sense. We can show that (i) m̂ is close
to m∗, and then use that tho show that (ii) θ̂ is close to θ∗. The analysis reflects
the conceptual simplicity of the method of moments.

– First, since m̂ is just an average of i.i.d. variables, we can apply the central limit
theorem:

√
n(m̂−m∗) d−→ N (0,Covx∼p∗ [φ(x)]). (58)
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– Second, assuming that M−1 is continuous around m∗, we can use the delta method
to argue that θ̂ converges θ∗:

√
n(θ̂ − θ∗) d−→ N (0,∇M−1(m∗)Covx∼p∗ [φ(x)]∇M−1(m∗)>), (59)

where ∇M−1(m∗) ∈ Rd×p is the Jacobian matrix for the inverse moment mapping
M−1. Therefore, the parameter error depends on how sensitive M−1 is around
m∗. It is also useful to note that ∇M−1(m∗) = ∇M(θ∗)† (where † denotes pseu-
doinverse).

– These asymptotics are rough calculations that shed some light onto when we
would expect the method of moments to work well: ∇M(θ) ∈ Rp×d must have
full column rank and moreover, the first d singular values should be far away from
zero. Intuitively, if we perturb θ by a little bit, we want m to move a lot, which
coincides with our intuitions about the asymptotic error of parameter estimation.

• In general, computing the inverse moment mapping M−1 is not easier than the maxi-
mum likelihood estimate. Method of moments is only useful if we can find an appro-
priate observation function φ such that:

– The moment mapping M is invertible, and hopefully has singular values that are
bounded below (M provides enough information about the parameters θ).

– The inverse moment mapping M−1 is computationally tractable.

• Computing θ̂ for Example 1

– Now that we have established the principles behind method of moments, let us
tackle the Naive Bayes clustering model (Example 1). The strategy is to just start
writing some moments and see what kind of equations we get (they turn out to
be product of matrices) (Anandkumar et al., 2012b).

– Preliminaries

∗ Assume each document has L ≥ 3 words.

∗ Assume b ≥ k (at least as many words as clusters).

∗ We represent each word xj ∈ Rb as an indicator vector which is equal to one
in the entry of that word and zero elsewhere.

– Let’s start with the first-order moments:

M1
def
= E[x1] =

k∑
h=1

πhβh = Bπ. (60)

∗ Note that the moments require marginalizing out the latent variables, and
marginalization corresponds to matrix products.

∗ Interpretation: M1 ∈ Rb is a vector of marginal word probabilities.
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∗ Clearly this is not enough information to identify the parameters.

– We can write the second-order moments:

M2
def
= E[x1x

>
2 ] =

k∑
h=1

πhβhβ
>
h = Bdiag(π)B>. (61)

∗ Interpretation: M2 ∈ Rd×d is a matrix of co-occurrence word probabilities.
Specifically, M2(u, v) is the probability of seeing word u with word v, again
marginalizing out the latent variables.

∗ Are the parameters identifiable given M1 and M2? It might be tempting to
conclude yes, since there are O(kb) parameters and M2 already specifies O(b2)
equations. But it turns out that the parameters are still non-identifiable from
second-order moments (so one has to be careful with parameter counting!)
The intuition is that we are trying to decompose M2 into AA>, where A =
B diag(π)1/2. However, M2 also equals (AQ)(AQ)> for any orthogonal matrix
Q ∈ Rk×k, so we can only identify A up to rotation. In our setting, A has
non-negativity constraints, but there’s only O(k) of them as opposed to the
O(k2) degrees of freedom in Q. So we cannot identify the parameters θ from
just M1 and M2.

– Let us proceed to third-order moments to get more information.

M3(η)
def
= E[x1x

>
2 (x>3 η)] =

k∑
h=1

πhβhβ
>
h (β>h η) = Bdiag(π) diag(B>η)B>. (62)

Here, M3(η) is a projection of a rank-3 tensor onto η ∈ Rp. Think of M3(η) as
M2 (they have the same row and column space), but someone has come in and
tweaked the diagonal entries. It turns out that this is enough to pin down the
parameters. But first, a useful lemma which captures the core computation:

– Lemma

∗ Suppose we observe matrices X = BDB> and Y = BEB> where

· D,E are diagonal matrices such that the ratios {Dii/Eii}ki=1 are all non-
zero and distinct.

· B ∈ Rb×k has full column rank (this is a reasonable condition which
intuitively says that all the clusters are different in a linear algebriac
sense). Note this automatically implies b ≥ k.

∗ Then we can recover B (up to permutation/scaling of its columns).

– Proof:

∗ Simple case

· Assume B is invertible (b = k).

· Then X and Y are also invertible.
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· Compute

Y X−1 = BEB>B−>D−1B−1 = B ED−1︸ ︷︷ ︸
diagonal

B−1. (63)

· The RHS has the form of an eigendecomposition, so the eigenvectors of
Y X−1 are be exactly the columns of B up to permutation and scaling.
We actually know the scaling since the columns of B are probability
distributions and must sum to 1.

· Since the diagonal elements of ED−1 are distinct and non-zero by as-
sumption, the eigenvectors are distinct.

∗ Now suppose X and Y are not invertible. Note that X and Y have the same
column space, so we can basically project them down into that column space
where they will be invertible.

∗ Let U ∈ Rb×k be any orthonormal basis of the column space of B (taking
the SVD of M2 suffices: M2 = USU>). Note that U has full column rank by
assumption.

∗ Important: although B ∈ Rb×k is not invertible, B̃
def
= U>B ∈ Rk×k is invert-

ible.

∗ So let us project X and Y onto U by both left multiplying by U> and right
multiplying by U .

∗ Then we have the following decomposition:

· U>XU = B̃DB̃>

· U>Y U = B̃EB̃>

∗ Now we are back in the simple case, which allows us to recover B̃. We can
obtain B = UB̃.

– We apply the lemma with X = M2 and Y = M3(η). Since η is chosen at random,
D = diag(π) and E = diag(π) diag(B>η) will have distinct ratios with probability
1.

– Once we have recovered B, then we can recover π easily by setting π = B†M1.

– We have therefore shown that with infinite data, the method of moments approach
recovers the true parameters. For finite data, we have to use a matrix perturbation
argument, detailed in Anandkumar et al. (2012b).

• We have so far that we can solve the moment equations for the Naive Bayes clustering
model and recover the parameters given the moments. These techniques can be fur-
ther extended to obtain consistent parameter estimates for spherical Gaussian mixture
models (Hsu and Kakade, 2013), hidden Markov models (Anandkumar et al., 2012b),
Latent Dirichlet allocation (Anandkumar et al., 2012a), stochastic block models for
community detection (Anandkumar et al., 2013), noisy-or Bayesian networks (Halpern
and Sontag, 2013), mixture of linear regressions (Chaganty and Liang, 2014), general
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graphical models (Chaganty and Liang, 2014), neural networks (Janzamin et al., 2015),
and others. An active area of research is to extend these techniques to yet other model
families.

2.7 Fixed design linear regression (Lecture 3)

• So far, we have considered parameter estimation of θ∗ given data x(1), . . . , x(n) drawn
i.i.d. from pθ∗ . We will now move towards the prediction setting, where we are trying
to learn a function from an input x to an output y. Of course, we could still study
parameter estimation in this context, but we will use the opportunity to segue into
prediction.

• Setup

– Our goal is to predict a real-valued output (response) y ∈ R given an input
(covariates/features) x ∈ Rd.

– The fixed design setting means that we have a fixed set of n inputs x1, . . . , xn,
which are treated as constants. As an example, imagine that x1, . . . , xn as the
50 states in America, and y1, . . . , yn represent their demographics, weather, etc.
Fixed design makes sense here because the states isn’t random or growing–they’re
just fixed. In general, one can think of the fixed design setting as performing
signal reconstruction, where the xi’s correspond to fixed locations, and yi is a
noisy sensor reading.

– We assume that there is a true underlying parameter vector θ∗ ∈ Rd, which
governs the outputs. For each i = 1, . . . , n:

yi = xi · θ∗ + εi, (64)

where we assume that the noise terms εi are i.i.d. with mean E[εi] = 0 and
variance Var[εi] = σ2. Note that ε1, . . . , εn are the only source of randomness in
the problem.

– FIGURE: [linear regression line over x1, . . . , xn]

– At training time, we observe one realization of y1, . . . , yn. For convenience, let’s
put the data into matrices:

∗ X = [x1, . . . , xn]> ∈ Rn×d

∗ ε = [ε1, . . . , εn]> ∈ Rd

∗ Y = [y1, . . . , yn]> ∈ Rd

∗ Σ = 1
n
X>X ∈ Rd×d (second moment matrix)

– FIGURE: [matrices X, θ, Y ]
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– Our goal is to minimize the expected risk2 as defined by the squared loss:

L(θ)
def
=

1

n

n∑
i=1

E[(xi · θ − yi)2] =
1

n
E[‖Xθ − Y ‖2

2]. (65)

Note that the expectation is over the randomness in Y (recall that X is fixed).

– The least squares estimator is as follows:

θ̂
def
= arg min

θ∈Rd

1

n
‖Xθ − Y ‖2

2. (66)

By taking derivatives and setting the result to zero, we obtained the following
closed form solution:

θ̂ = X>X−1X>Y =
1

n
Σ−1X>Y, (67)

where we assume that the covariance matrix Σ
def
= 1

n
X>X ∈ Rd×d is invertible.

– Our goal is to study the expected risk of the least squares estimator:

L(θ̂). (68)

For simplicity, we will study the expectation E[L(θ̂)], where the expectation is
taken over the training data.

• Let us first understand the expected risk L(θ) of some fixed θ.

– The goal will be to understand this quantity geometrically. The basic idea is to
expand Y = Xθ∗ + ε; the rest is just algebra. We have:

L(θ) =
1

n
E[‖Xθ − Y ‖2

2] (69)

=
1

n
E[‖Xθ −Xθ∗ + ε‖2

2] [by definition of Y (64)] (70)

=
1

n
E[‖Xθ −Xθ∗‖2

2 + ‖ε‖2
2] [cross terms vanish] (71)

=
1

n
(θ − θ∗)>(X>X)(θ − θ∗) + σ2 [algebra, definition of ε] (72)

= ‖θ − θ∗‖2
Σ + σ2. (73)

– Intuitively, the first term of the expected risk is the squared distance between the
estimate θ and the true parameters θ∗ as measured by the shape of the data. If
the data does not vary much in one direction, then the discrepancy between θ and
θ∗ will be downweighted in that direction, because that direction doesn’t matter
for prediction, which depends on x · θ.

2 We are using expected risk in the machine learning sense, which is a quality metric on parameters, not
expected risk in statistics, which is a quality metric on decision procedures.
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– The second term is the unavoidable variance term coming from the noise, which
is present even with the optimal parameters θ∗. Note that L(θ∗) = σ2.

– In conclusion, the excess risk—how far we are from optimal—is:

L(θ)− L(θ∗) = ‖θ − θ∗‖2
Σ. (74)

• Let us now analyze the excess risk L(θ̂)− L(θ∗) of the least squares estimate θ̂.

– Assume that X>X � 0 (which means necessarily that n ≥ d). The key is to
expand θ̂ and Y based on their definitions and perform algebra. The expectation
is over the test data now. Rewriting the excess risk:

L(θ̂)− L(θ∗) = ‖θ̂ − θ∗‖2
Σ [by (74)] (75)

=
1

n
‖Xθ̂ −Xθ∗‖2

2 (76)

=
1

n
‖X(X>X)−1X>(Xθ∗ + ε)−Xθ∗‖2

2 (77)

=
1

n
‖ΠXθ∗ + Πε−Xθ∗‖2

2 [projection Π
def
= X(X>X)−1X>] (78)

=
1

n
‖Πε‖2

2 [projection doesn’t change Xθ∗, cancel] (79)

=
1

n
tr(Πεε>) [projection is idempotent and symmetric]. (80)

– Taking expectations (over the training data), and using the fact that E[εε>] = σ2I,
we get:

E[L(θ̂)− L(θ∗)] =
dσ2

n
. (81)

Note that the complexity of the problem is completely determined by the dimen-
sionality d and the variance of the noise σ2.

– Intuitively, the noise ε is an n-dimensional vector gets projected onto d dimensions
by virtue of having to fit the data using a linear function with d degrees of freedom.
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[begin lecture 4] (4)

2.8 General loss functions and random design (Lecture 4)

• Motivation

– In the previous section, the simplicity of the least squares problem in the fixed
design setting allowed us to compute everything exactly. What happens if we are
in the random design setting or if we wanted to handle other loss functions (e.g.,
logistic loss)? We can’t hope to compute the excess risk L(θ̂)− L(θ∗) exactly.

– In this unit, we will return to using asymptotics to get a handle on this quantity.
In particular, we will show that the excess risk approaches a simple quantity as
the number of data points n goes to infinity by performing Taylor expansions
around θ∗. In brief, we will see that θ̂ − θ∗ is approximately Gaussian with some
variance that is O

(
1
n

)
, and assuming that L is continuous, we can convert this

result into one about the expected risk.

∗ FIGURE: [θ̂ in a ellipsoid Gaussian ball around θ∗]

– We will carry out the asymptotic analysis in a fairly general setting:

∗ We assume a general (twice-differentiable) loss function.

∗ We do not make any assumptions about the data generating distribution.

• Setup

– z = (x, y) is an example

– `(z, θ) is a loss function on example z with parameters θ ∈ Rd

∗ Example: `((x, y), θ) = 1
2
(θ · x− y)2

– Let p∗ be the true probability distribution over examples z ∈ Z, not assumed to
be related to our loss function in any way.

– Let θ∗ ∈ Rd be the minimizer of the expected risk:

θ∗
def
= arg min

θ∈Rd
L(θ), L(θ)

def
= Ez∼p∗ [`(z, θ)] (82)

– Let θ̂ ∈ Rd be the minimizer of the empirical risk:

θ̂
def
= arg min

θ∈Rd
L̂(θ), L̂(θ)

def
=

1

n

n∑
i=1

`(z(i), θ), (83)

where z(1), . . . , z(n) are drawn i.i.d. from p∗.

– Recall that we are interested in studying the excess risk L(θ̂)− L(θ∗).
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• Assumptions on the loss

– Loss function `(z, θ) is twice differentiable in θ (works for squared and logistic
loss, but not hinge)

– Let ∇`(z, θ) ∈ Rd be the gradient of the loss at θ.

∗ Example: ∇`(z, θ) = (θ · x− y)x

– Let ∇2`(z, θ) ∈ Rd×d be the Hessian of the loss at θ.

∗ Example: ∇2`(z, θ) = xx>

– Assume that the expected loss Hessian Ez∼p∗ [∇2`(z, θ)] � 0 is positive definite
for all θ ∈ Rd. This assumption is actually not needed, but it will make the math
simpler.3

• Outline of analysis

– Step 0 (consistency): show that θ̂
P−→ θ∗. This is obtained by a uniform con-

vergence argument to show that L̂ approximates L well. Then, since the Hessian
E[∇2`(z, θ)] is positive definite, minimizing L̂ will eventually minimize L. Uniform
convergence will be discussed later, so we will not dwell on this point.

– Step 1: obtain an asymptotic expression for the parameter error by Taylor
expanding the gradient of the empirical risk.

θ̂ − θ∗. (84)

– Step 2: obtain an asymptotic expression for the excess risk by Taylor expanding
the expected risk.

L(θ̂)− L(θ∗). (85)

While we haven’t made any assumptions about the relationship between p∗ and `,
results become a lot nicer if there is. This relationship is captured by the following
definition:

• Definition 3 (well-specified model)

– Assume that the loss function corresponds to the log-likelihood under a proba-
bilistic model pθ:

`((x, y); θ) = − log pθ(y | x), (86)

so that θ̂ is the (conditional) maximum likelihood estimate under this model.

3 In fact, if the expected loss is rank deficient, things are actually even better, since the complexity will
depend on the rank of the Hessian rather than the dimensionality.
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– We say that this model family {pθ}θ∈Rd is conditionally well-specified if p∗(x, y) =
p∗(x)pθ∗(y | x) for some parameter θ∗ ∈ Rd.

– Suppose each model θ actually specifies a joint distribution over both x and y:
pθ(x, y). We say that this model family {pθ}θ∈Rd is jointly well-specified if
p∗(x, y) = pθ∗(x, y) for some parameter θ∗ ∈ Rd. This places a much stronger
assumption on the data generating distribution. If x is an image and y is a single
binary label, this is much harder to satisfy.

– Of course, jointly well-specified implies conditionally well-specified.

• In the conditionally well-specified case, the Bartlett identity allows us to equate the
variance of the risk gradient with the risk Hessian. This quantity is the Fisher infor-
mation matrix (or rather, a generalization of it).

• Theorem 3 (Bartlett identity)

– In the well-specified case (conditionally, and thus also jointly), the following iden-
tity holds:

∇2L(θ∗) = Cov[∇`(z, θ∗)]. (87)

• Proof of Theorem 3:

– Recall that z = (x, y).

– Using the fact that probability densities integrate to one:∫
p∗(x) e−`(z,θ

∗)︸ ︷︷ ︸
pθ∗ (y|x)

dz = 1. (88)

– Assuming regularity conditions, differentiate with respect to θ∗:∫
p∗(x)e−`(z,θ

∗)(−∇`(z, θ∗))dz = 0. (89)

Note that this implies E[∇`(z, θ∗)] = 0, which shouldn’t be surprising since θ∗

minimizes L(θ) = E[`(z, θ∗)].

– Differentiating again, using the product rule:∫
p∗(x)[−e−`(z,θ∗)∇2`(z, θ∗) + e−`(z,θ

∗)∇`(z, θ∗)∇`(z, θ∗)>]dz = 0. (90)

– Re-arranging:

E[∇2`(z, θ∗)] = E[∇`(z, θ∗)∇`(z, θ∗)>]. (91)
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– Using the fact that E[∇`(z, θ∗)] = 0 and the definition of L(θ) yields the result.

• Remark: our general analysis does not assume the model is well-specified. We will
only make this assumption for examples to get simple expressions for intuition.

• Example 2 (well-specified random design linear regression)

– Assume that the conditional model is as follows:

∗ x ∼ p∗(x) for some arbitrary p∗(x)

∗ y = θ∗ · x+ ε, where ε ∼ N (0, 1)

– Loss function: `((x, y), θ) = 1
2
(θ · x− y)2 (the log-likelihood up to constants)

– Check that the following two are equal:

∗ Hessian: ∇2L(θ) = E[xx>] (covariance matrix of data)

∗ Variance of gradient: Cov[∇`(z, θ)] = E[εxx>ε]−E[εx]E[εx]> = E[xx>], where
the last equality follows from independence of x and ε, and the fact that
E[εx] = 0.

Now let us analyze the parameter error (step 1) and expected risk (step 2) in the
general (not necessarily well-specified) case. In the following, pay attention how fast
each of the terms is going to zero.

• Step 1: analysis of parameter error

– Since ` is twice differentiable, we can perform a Taylor expansion of the gradient
of the empirical risk (∇L̂) around θ∗:

∇L̂(θ̂) = ∇L̂(θ∗) +∇2L̂(θ∗)(θ̂ − θ∗) +Op(‖θ̂ − θ∗‖2
2). (92)

– Using the fact that the LHS ∇L̂(θ̂) = 0 (by optimality conditions of the empirical
risk minimizer) and rearranging:

θ̂ − θ∗ = −∇2L̂(θ∗)−1
(
∇L̂(θ∗) +Op(‖θ̂ − θ∗‖2

2)
)
. (93)

– As n→∞:

∗ By the weak law of large numbers, we have

∇2L̂(θ∗)
P−→ ∇2L(θ∗). (94)

Since the inverse is a smooth function around θ∗ (we assumed ∇2L(θ∗) � 0),
we can apply the continuous mapping theorem:

∇2L̂(θ∗)−1 P−→ ∇2L(θ∗)−1. (95)
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∗ L̂(θ∗) is a sum of mean zero i.i.d. variables, so by the central limit theorem,√
n · ∇L̂(θ∗) converges in distribution:

√
n · ∇L̂(θ∗)

d−→ N (0,Cov[∇`(z, θ∗)]). (96)

An intuitive implication of this result is that ∇L̂(θ∗) = Op

(
1√
n

)
.

∗ Suppose θ̂− θ∗ = Op(f(n)). By (93), f(n) goes to zero at a rate which is the
maximum of 1√

n
and f(n)2. This implies that f(n) = 1√

n
, so we have:

√
n ·Op(‖θ̂ − θ∗‖2

2)
P−→ 0. (97)

– By Slutsky’s theorem (see Appendix), we can substitute the limits into (93) to
obtain:

√
n · (θ̂ − θ∗)︸ ︷︷ ︸

parameter error

d−→ N
(
0,∇2L(θ∗)−1Cov[∇`(z, θ∗)]∇2L(θ∗)−1

)
, (98)

where we used the fact that if xn
d−→ N (0,Σ), then Axn

d−→ N (0, AΣA>). This

also establishes that the parameter error behaves θ̂ − θ∗ = Op

(
1√
n

)
as expected.

∗ ∇2L(θ∗): measures the amount of curvature in the loss function at θ∗. The
more there is, the more stable the parameter estimates are. This quantity is
analogous to the Jacobian of the moment mapping for method of moments.

∗ Cov[∇`(z, θ∗)]: measures the variance in the loss gradient. The less there is,
the better. This quantity is analogous to variance of the observation function
in the method of moments.

∗ When
√
n(θ̂ − θ∗) d−→ N (0,Σ), Σ is known as the asymptotic variance of

the estimator θ̂.

– Example 3 (well-specified linear regression)

∗ In this case, due to (87), we have Cov[∇`(z, θ∗)] = E[∇2`(z, θ∗)] = E[xx>],
so the variance factor is canceled out by one of the curvature factors.

√
n · (θ̂ − θ∗) d−→ N

(
0,E[xx>]−1

)
. (99)

Intuition: the larger x is, the more stable the parameter estimates; think about
wiggling a pencil by either holding it with two hands out at the ends (large x) or
near the center (small x).

• Step 2: analysis of excess risk
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– Perform a Taylor expansion of the expected risk around θ∗:

L(θ̂) = L(θ∗) +∇L(θ∗)>(θ̂ − θ∗) +
1

2
(θ̂ − θ∗)>∇2L(θ∗)(θ̂ − θ∗) +Op(‖θ̂ − θ∗‖3

2).

(100)

– By optimality conditions of the expected risk minimizer θ∗, we have ∇L(θ∗) = 0.
This the key to getting O

(
1
n

)
rates of convergence.

– Multiplying by n and rearranging:

n(L(θ̂)− L(θ∗)) =
1

2

√
n(θ̂ − θ∗)>∇2L(θ∗)

√
n(θ̂ − θ∗) +Op(n‖θ̂ − θ∗‖3

2). (101)

– Substituting in the parameter error:

∗ Facts

· If xn
d−→ N (0,Σ), then xnx

>
n

d−→ W(Σ, 1), where W(Σ, 1) is a Wishart
distribution with mean Σ and 1 degree of freedom.

· Taking the trace of both sides, we have that x>nxn = tr(xnx
>
n )

d−→ tr(W(Σ, 1)).4

· The distribution on the RHS is a weighted sum of d chi-squared dis-
tributed variables, whose distribution is the same as

∑d
j=1 Σjjv

2
j , where

vj ∼ N (0, 1) is a standard Gaussian and v2
j ∼ χ2

1 is a chi-squared.

∗ In our context, let us define

xn =
√
n(∇2L(θ∗))

1
2 (θ̂ − θ∗). (102)

Then

Σ = ∇2L(θ∗)−
1
2 Cov[∇`(z, θ∗)]∇2L(θ∗)−

1
2 . (103)

Therefore:

n(L(θ̂)− L(θ∗))
d−→ 1

2
trW

(
∇2L(θ∗)−

1
2 Cov[∇`(z, θ∗)]∇2L(θ∗)−

1
2 , 1
)
,

(104)

whereW(V, n) is the Wishart distribution with scale matrix V and n degrees
of freedom.

– Example 4 (well-specified models)

∗ Since the model is well-specified, everything cancels nicely, resulting in:

n(L(θ̂)− L(θ∗))
d−→ 1

2
trW(Id×d, 1). (105)

4We are abusing notation slightly by writing the trace of a distribution D to mean the distribution of the
trace of x ∼ D.
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∗ The limiting distribution is half times a χ2
d distributed random variable, which

has mean d
2

and variance d.

∗ To get an idea of their behavior, we can compute the mean and variance:

· Mean: E[n(L(θ̂)− L(θ∗))]→ d
2
.

· Variance: Var[n(L(θ̂)− L(θ∗))]→ d.

In short,

L(θ̂)− L(θ∗) ∼ d

2n
. (106)

Note that this recovers the result from fixed-design linear regression (81) (the
factor of 1

2σ2 is due to the different definition of the loss function).

∗ Interestingly, in the well-specified case, the expected risk does not depend
asymptotically on any properties of x.

· For parameter estimation, the more x varies, the more accurate the pa-
rameter estimates.

· For prediction, the more x varies, the harder the prediction problem.

· The two forces cancel each other out exactly (asymptotically).

• Remarks

– For this brief section, suppose the model is well-specified.

– We have shown that excess risk L(θ̂) − L(θ∗) is exactly d
2n

asymptotically; we
emphasize that there are no hidden constants and this is equality, not just a
bound.

– Lower-order terms

∗ Of course there could be more error lurking in the lower order ( 1
n2 ) terms.

∗ For linear regression, the low-order terms Op(‖θ̂− θ∗‖2
2) in the Taylor expan-

sion are actually zero, and the only approximation comes from estimating the
second moment matrix E[xx>].

∗ For the fixed design linear regression setting, ∇2L̂(θ∗) = ∇2L(θ∗), so all
lower-order terms are identically zero, and so our asymptotic expressions are
exact.

– Norm/regularization

∗ We only obtained results in the unregularized case. Asymptotically as n→∞
and the dimension d is held constant, the optimal thing to do (up to first
order) is not use regularization.

∗ So these results are only meaningful when n is large compared to the com-
plexity (dimensionality) of the problem. This is consistent with the fact that
the type of analyses we do are fundamental local around the optimum.
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2.9 Regularized fixed design linear regression (Lecture 4)

• So far, we have considered asymptotic analyses of estimators, which holds when the
number of examples n → ∞ holding the dimension d of the problem fixed. In this
regime, maximum likelihood estimators are the best option (if we can compute them
efficiently). However, when d is comparable to n, it turns out that regularization can
improve the accuracy of our estimates.

• James-Stein estimator (digression)

– Before diving in to linear regression, let us visit the simpler problem of Gaussian
mean estimation, which we started with: given x(1), . . . , x(n) drawn i.i.d. from
N (θ∗, σ2I), what estimator θ̂ should we use?

– We defined the sample mean estimator θ̂ = 1
n

∑n
i=1 x

(i) (6) and computed its

expected MSE to be dσ2

n
. Can we do better?

– The answer is yes, surprisingly, as demonstrated by Charles Stein in 1955 in what
is famously known as Stein’s paradox. The James-Stein estimator (1961) is one
popular estimator that improves over the sample mean estimator:

θ̂JS
def
=

(
1− (d− 2)σ2

n‖θ̂‖2
2

)
θ̂. (107)

In words, this estimator shrinks the sample mean θ̂ by some data-dependent factor
towards 0 (0 is not special—any fixed point would work). The amount of shrinkage
is governed by the size of the initial estimate ‖θ̂‖2

2; the smaller it is, the more we
shrink.

– For intuition, suppose θ∗ = 0. Then ‖θ̂‖2
2 is approximately dσ2

n
, which provides a

massive shrinkage factor of 2
d
. When θ∗ 6= 0, then the shrinkage factor goes to 0

as we get more data, which is desired.

– There is much more to say about the Stein’s paradox, but the point of this di-
gression is to show that the standard estimators are often not optimal even when
the intuitively feel like they should be.

• Recall the fixed design linear regression setup:

– We have n examples, inputs are d-dimensional.

– Design matrix: X ∈ Rn×d

– Responses: Y ∈ R
– Noise: ε ∈ R, where components are independent and E[εi] = 0 and Var[εi] = σ2

– Assume data satisfies:

Y = Xθ∗ + ε. (108)
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• Now consider the regularized least squares estimator (ridge regression):

θ̂ = arg min
θ∈Rd

1

n
‖Xθ − Y ‖2

2 + λ‖θ‖2
2 (109)

=
1

n
Σ−1
λ X>Y. (110)

where

Σλ
def
=

1

n
X>X + λI. (111)

Here, λ ≥ 0 is the regularization strength that controls how much we want to shrink
the estimate towards 0 to guard against overfitting. Intuitively, the more data points
we have (larger n), the less we should regularize (smaller λ), and vice-versa. But what
precisely should λ be and what is the resulting expected risk? The subsequent analysis
will provide answers to these questions.

• The first main insight is the bias-variance tradeoff, whose balance is determined by
λ. Let us decompose the excess risk:

E[‖θ̂ − θ∗‖2
Σ] = E[‖θ̂ − E[θ̂] + E[θ̂]− θ∗‖2

Σ] (112)

= E[‖θ̂ − E[θ̂]‖2
Σ]︸ ︷︷ ︸

def
= Var

+ ‖E[θ̂]− θ∗‖2
Σ︸ ︷︷ ︸

def
= Bias2

, (113)

where the cross terms are designed to cancel out. Note that in the unregularized case
(λ = 0), the bias is zero (provided Σ � 0) since E[θ̂] = (X>X)−1X>(Xθ∗+E[ε]) = θ∗,
but when λ > 0, the bias will be non-zero.

• The second main insight is that the risk of the regularized least squares estimate on
the original problem is the same as the risk of an equivalent problem which has been
rotated into a basis that is easier to analyze.

– Suppose we rotate each data point xi by an orthogonal matrix R ∈ Rd×d (xi 7→
R>xi), so that X 7→ XR for some orthogonal matrix R. Correspondingly, we
must rotate the parameters θ∗ 7→ R>θ∗. Then the claim is that the excess risk
does not change.

– The excess risk of the modified problem is:

E[‖XR(R>X>XR + nλI)−1R>X>(XRR>θ∗ + ε)−XRR>θ∗‖2
2]. (114)

Simplification reveals that we get back exactly the original excess risk:

E[‖X(X>X + nλI)−1X>(Xθ∗ + ε)−Xθ∗‖2
2]. (115)

This equivalence holds for any orthogonal matrix R.
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– If we take the SVD X = USV > and rotate by R = V , then we can see that
X>X 7→ (V >V SU>)(USV >V ) = S2, which is diagonal. Therefore, for the pur-
poses of analysis, we can assume that Σ is diagonal without loss of generality:

Σ = diag(τ1, . . . , τd). (116)

Diagonal covariances have the advantage that we can analyze each component
separately, turning matrix computations into independent scalar computations.

• Let us compute the mean of the estimator:

θ̄j
def
= E[θ̂j] (117)

= E[Σ−1
λ n−1X>(Xθ∗ + ε)]j [expand Y ] (118)

= E[Σ−1
λ Σθ∗ + Σ−1

λ n−1X>ε]j [algebra] (119)

=
τj

τj + λ
θ∗j [since E[ε] = 0]. (120)

Thus, the expected value of the estimator is the true parameter value θ∗ shrunk towards
zero by a strength that depends on λ.

• Compute the squared bias term of the expected risk:

Bias2 = ‖θ̄ − θ∗‖2
Σ (121)

=
d∑
j=1

τj

(
τj

τj + λ
θ∗j − θ∗j

)2

(122)

=
d∑
j=1

τjλ
2(θ∗j )

2

(τj + λ)2
. (123)

If λ = 0, then the squared bias is zero as expected. As λ→∞, the squared bias tends
to ‖θ∗‖2

2, reflecting the fact that the estimator θ̂ → 0.

• Compute the variance term of the expected risk:

Var = E[‖θ̂ − θ̄‖2
Σ] (124)

= E[‖Σ−1
λ n−1X>ε‖2

Σ] [definition of θ̂] (125)

=
1

n2
E[ε>XΣ−1

λ ΣΣ−1
λ X>ε] [expand] (126)

=
1

n2
tr(Σ−1

λ ΣΣ−1
λ X>E[εε>]X) [cyclic trace] (127)

=
σ2

n
tr(Σ−1

λ ΣΣ−1
λ Σ) [since E[εε>] = σ2I] (128)

=
σ2

n

d∑
j=1

τ 2
j

(τj + λ)2
[matrices are diagonal]. (129)
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If we didn’t regularize, the variance would be dσ2

n
. Regularization reduces the variance

since
τ2j

(τj+λ)2
≤ 1.

• Balancing squared bias and variance

– Having computed the squared bias and variance terms, we can now try to choose
λ to minimize their sum, the expected risk.

– Rather than minimize their sum as a function as λ, which would be annoying, let
us upper bound both terms to get simpler expressions.

– Fact: (a+ b)2 ≥ 2ab.

– Upper bound the squared bias and variance by replacing the denominators with
a smaller quantity:

Bias2 ≤
d∑
j=1

λ(θ∗j )
2

2
=
λ‖θ∗‖2

2

2
(130)

Var ≤
d∑
j=1

τj
σ2

n

2λ
=

tr(Σ)σ2

2nλ
. (131)

– Now we can minimize the sum over the upper bounds with respect to λ.

– This pattern shows up commonly:

∗ Suppose we want to minimize aλ+ b
λ
.

∗ Then the optimal λ =
√

b
a

yields 2
√
ab.

– Optimizing yields an bound on the excess risk:

E[L(θ̂)− L(θ∗)] ≤
√
‖θ∗‖2

2 tr(Σ)σ2

n
, (132)

with the regularization strength set to:

λ =

√
tr(Σ)σ2

‖θ∗‖2
2n
. (133)

• Remarks

– FIGURE: [spectra]

– Let us compare the risk bound for regularized least squares (133) with that of
ordinary least squares (81), which is dσ2

n
.
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– The main observation is that the bound no longer depends on the dimensionality
d. Instead, we have a more nuanced dependency in terms of tr(Σ), which can
be thought of as the “true dimensionality” of the problem. Note that tr(Σ) is
the sum of the eigenvalues. If the data can be described (say, via PCA) by a
few dimensions, then the excess risk is governed by this effective dimension. The
upshot is that we can be in very high dimensions, but so long as we regularize
properly, then our risk will be well-behaved.

– On the other hand, what we pay is that the excess risk is now O(
√

1
n
), which is

slower than the previous rate of O( 1
n
).

– In the random design where X is a random variable, things are more compli-
cated. In that setting, X>X would be random and different from the expected
covariance E[X>X]. We would need to argue that the two converge. See the
Hsu/Kakade/Zhang paper for more details.

2.10 Summary (Lecture 4)

• This concludes our unit on asymptotic analysis. The central problem is this: given
data, x(1), . . . , x(n), we get an estimator θ̂. How well does this estimator do, either
in terms of parameter error for estimation (‖θ̂ − θ∗‖2

2) or expected risk for prediction
(L(θ))? We were able to get quantities that depend on the key quantities of interest:
number of examples n, dimensionality d, noise level σ2.

• At a high-level, what makes everything work is the central limit theorem.

– This is most obvious for estimating the means of Gaussians and multinomial
distributions.

– For exponential families, where the canonical parameters are a non-linear function
of the moments, we can apply the delta method to get asymptotic normality of
the canonical parameters.

– For general loss functions, we need to apply Slutsky’s theorem because the non-
linear mapping (governed by ∇2L(θ∗)) is also being estimated.

• We considered estimators based on the method of moments as an alternative to max-
imum likelihood. For exponential families, these two estimators are the same, but
for more complex models such as mixture models, it is possible to get method of
moments estimators that are computationally efficient to compute, whereas the max-
imum likelihood estimator would involve solving a non-convex optimization problem.
The high-level point is that the design space of estimators is quite large, and for many
problem settings, it’s an open question as to what the right estimator to use is. We can
evaluate these estimators based on computational efficiency, and asymptotics provides
a way to evaluate them based on statistical efficiency.

44



• Finally, one weakness of the classical asymptotics that we’ve studied here is that it
assumes that the number of examples n is substantially larger than the dimensionality
d of the problem. If this is not true, then we need to employ regularization to guard
against overfitting. We gave one simple example (fixed design linear regression) where
we could obtain a meaningful expected risk even when d � n, as long as norms were
bounded. In the next unit, we will develop the theory of uniform convergence, which
will allow us to analyzed regularized estimators much more generally.
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3 Uniform convergence
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[begin lecture 5] (5)

3.1 Overview (Lecture 5)

• The central question is:

Why does minimizing training error reduce test error?

The answer is not obvious for the training error and test error are two separate quan-
tities which can in general be arbitrarily far apart. This deep question is at the core
of statistical learning theory, and answering it reveals what it means to learn.

• In the previous unit on asymptotics, we analyzed the performance of learning algo-
rithms (estimators) in the regime where the number of parameters d is fixed and the
number of examples n grows. There are two deficiencies of this analysis:

– It doesn’t tell you how large n has to be before the “asymptotics kick in.” This
is problematic in the high-dimensional settings of modern statistics and machine
learning, where d is actually fairly large compared to n.

– It applies only to unregularized estimators operating on smooth loss functions.
However, we want to analyze things like the zero-one loss for classification. We
also want to consider different forms of regularization like L1 regularization for
performing feature selection.

We did analyze regularized least squares at the end of last unit, but that analysis
was very specific to linear regression. How can we generalize to other problems and
estimators?

• In this unit, we develop a new suite of tools to answer this question. We will shift
our focus from asymptotic variance of an estimator to thinking about estimators that
choose a predictor from a hypothesis class. We then study how the empirical risk
(a.k.a. training error, which our estimator is based on) relates to the expected risk
(a.k.a. test error, which we’re evaluated on) on this hypothesis class using uniform
convergence. In the process, we will develop some fairly general machinery from
probability theory; these tools are more broadly applicable outside machine learning.
These techniques are mathematically quite involved, so make sure you have a good
understanding of probability!

3.2 Formal setup (Lecture 5)

• In this section, we formalize the (batch) supervised learning setting. Much of what we
will do also works for unsupervised learning, but we will describe it in the context of
supervised learning to provide intuition.
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• Consider the problem of predicting an output y ∈ Y given an input x ∈ X . Example:
X = Rd, Y = {−1,+1}.

• Let H be a set of hypotheses. Usually, each h ∈ H maps X to Y . Example: H =
{x 7→ sign(w · x) : w ∈ Rd} is all thresholded linear functions.

• Let ` : (X × Y) ×H → R be a loss function. Example: `((x, y), h) = I[y 6= h(x)] is
the zero-one loss.

• Let p∗ denote the true underlying data-generating distribution over input-output pairs
X × Y .

• Definition 4 (expected risk)

– Let L(h) be the expected risk (test error) of a hypothesis h ∈ H, which is the
loss that h incurs on a new test example (x, y) in expectation:

L(h)
def
= E(x,y)∼p∗ [`((x, y), h)]. (134)

Getting low expected risk is in some sense the definition of successful learning.

– Define an expected risk minimizer h∗ to be any hypothesis that minimizes the
expected risk:

h∗ ∈ arg min
h∈H

L(h). (135)

This is the thing that we can only aspire to. L(h∗) is the lowest possible expected
risk (which might be large if the learning problem is noisy or your hypothesis class
is too small).

• To do learning, we are given n training examples, which are a set of input-output
pairs:

(x(1), y(1)), . . . , (x(n), y(n)), (136)

where each (x(i), y(i)) is drawn i.i.d. from p∗.

– Note: the training and test distributions are the same. While this assumption
often doesn’t hold exactly in practice, the training and test distributions morally
have to be related somehow, or else there’s no hope that what we learned from
training would be useful at test time.5

– Note: the independence assumption, which also doesn’t hold exactly in practice,
ensures that more training data gives us more information (or else we would get
the same training example over and over again, which would be useless).6

5 If the two distributions are different but still related somehow, not all hope is lost; dealing with this
discrepancy is called domain adaptation.

6 Pure i.i.d. is not necessary, but certainly some amount of independence is necessary.
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• Definition 5 (empirical risk)

– Let L̂(h) be the empirical risk (training error) of a hypothesis h ∈ H as the
average loss over the training examples:

L̂(h)
def
=

1

n

n∑
i=1

`((x(i), y(i)), h). (137)

Note that for a fixed h, L̂(h) is just an empirical average with mean L(h). This
is key.

– Define an empirical risk minimizer (ERM) be any hypothesis that minimizes
the empirical risk:

ĥ ∈ arg min
h∈H

L̂(h). (138)

• Let us pause a moment to remember what are the random variables and what the
independence assumptions are: ĥ is a random variable that depends the training ex-
amples (in a rather complicated way), but h∗ is non-random. The empirical risk L̂(h)
is a random variable for each h, but the expected risk L(h) is non-random.

• Recall that we are interested in the expected risk of the ERM:

L(ĥ). (139)

We will not study this quantity directly, but rather look at its difference with a baseline.
There are two questions we can ask:

– How does the expected and empirical risks compare for the ERM?

L(ĥ)︸︷︷︸
expected risk of ERM

− L̂(ĥ)︸︷︷︸
empirical risk of ERM

. (140)

– How well is ERM doing with respect to the best in the hypothesis class?

L(ĥ)︸︷︷︸
expected risk of ERM

− L(h∗)︸ ︷︷ ︸
lowest expected risk

. (141)

This is know as as the excess risk.

• How do we analyze the excess risk? The excess risk is a random quantity that depends
on the training examples (through ĥ). It is possible that the excess risk is high even
for large n (for instance, if we just happened to see the same example over and over
again). So we can’t deterministically bound the excess risk. Note that in asymptotics,
we dealt with this via the central limit theorem, but now n is an arbitrarily small finite
number.
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• Fortunately, we can show that bad outcomes are not too likely. We will prove bounds
of the following flavor: With probability at least 1−δ, the excess risk is upper bounded
by some ε (L(ĥ)− L(h∗) ≤ ε), where ε is generally a function that depends on δ (and
other aspects of the learning problem). More formally, the types of statements we’d
like to show can be written compactly as:

P[L(ĥ)− L(h∗) > ε] ≤ δ. (142)

– FIGURE: [distribution over L(ĥ), δ is area of tail, ε is difference on x-axis from
L(h∗)]

Note that the randomness in the probability is over draws of the n training examples:
(x(1), y(1)), . . . , (x(n), y(n)) ∼ p∗.

• It is important to note that there are two sources of randomness at play here:

– Expected risk (upper bounded by ε) is defined with respect to randomness over
the test example.

– Confidence (lower bounded by 1− δ) is defined with respect to randomness over
the training examples.

• Probably Approximately Correct (PAC) framework [Leslie Valiant, 1984]

– A learning algorithm A PAC learns H if for any distribution p∗ over X ×Y , ε > 0,
δ > 0, A (which takes as input n training examples along with ε and δ), returns
ĥ ∈ H such that with probability at least 1− δ, L(ĥ)− L(h∗) ≤ ε, and A runs in
poly(n, size(x), 1/ε, 1/δ) time.

– Remark: time complexity upper bounds sample complexity, because you have
to go through all the data points. In this class, we will not focus so much on
the computational aspect in our presentation, but just work with the ERM, and
assume that it can be optimized efficiently (even though that’s not true for general
non-convex losses).

– The ideas in PAC learning actually predate Valiant and were studied in the field
of empirical process theory, but Valiant and others focused more on more combi-
natorial problems with computation in mind.

3.3 Realizable finite hypothesis classes (Lecture 5)

• So far, we have presented a framework that is very general, and in fact, so general, that
we can’t say anything. So we need to make some assumptions. Ideally, the assumptions
would be both realistic (not too strong) but still allow us to prove something interesting
(not too weak).
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• In this section, we will start with an easy case, where we have a finite number of
hypotheses, at least one of which has zero expected risk. These assumptions are as
formalized as follows:

• Assumption 1 (finite hypothesis space)

– Assume H is finite.

• Assumption 2 (realizable)

– Assume there exists a hypothesis h∗ ∈ H that obtains zero expected risk, that is:

L(h∗) = E(x,y)∼p∗ [`((x, y), h∗)] = 0. (143)

• Theorem 4 (realizable finite hypothesis class)

– Let H be a hypothesis class, where each hypothesis h ∈ H maps some X to Y .

– Let ` be the zero-one loss: `((x, y), h) = I[y 6= h(x)].

– Let p∗ be any distribution over X × Y .

– Assume Assumptions 1 and 2 hold.

– Let ĥ be the empirical risk minimizer.

– Then the following two equivalent statements hold (each has a different interpre-
tation depending on what we’re interested in):

∗ Interpretation 1: what is the error after training on n examples (expected
risk)? Answer: with probability at least 1− δ,

L(ĥ) ≤ log |H|+ log(1/δ)

n
. (144)

Usually, think of log(1/δ) as a constant (e.g., δ = 0.01, then log(1/δ) u 4.6),
so the

L(ĥ)︸︷︷︸
expected risk

= O


complexity︷ ︸︸ ︷
log |H|
n︸︷︷︸

number of training examples

 (145)

∗ Interpretation 2: how many examples n (sample complexity) do I need to
obtain expected risk at most ε with confidence at least 1− δ? Answer: With
probability at least 1− δ:

n ≥ log |H|+ log(1/δ)

ε
⇒ L(ĥ) ≤ ε. (146)
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• Remarks

– Statisticians generally talk about error, and computer scienists like to talk about
sample complexity. But they’re just two sides of the same coin.

– In this case, the excess risk behaves as O(1/n), which is known as a “fast” rate.
This is because we’ve assumed realizability: as soon as h makes even a single
mistake on a training example, we can throw it away.

– The excess risk only grows logarithmically with |H|, so we can use pretty big
hypothesis classes.

– Note that our result is independent of p∗(x, y). This is known as a distribution-
free result, which is great, because typically we don’t know what p∗ is.

• Proof of Theorem 4

– FIGURE: [a row of hypotheses, sorted by increasing L(h)]

– We’d like to upper bound the probability of the bad event that L(ĥ) > ε.

– Let B ⊆ H be the set of bad hypotheses h: B = {h ∈ H : L(h) > ε}. We can
rewrite our goal as upper bounding the probability of selecting a bad hypothesis:

P[L(ĥ) > ε] = P[ĥ ∈ B]. (147)

– Recall that the empirical risk of the ERM is always zero (L̂(ĥ) = 0) because at
least L̂(h∗) = L(h∗) = 0. So if we selected a bad hypothesis (ĥ ∈ B), then some
bad hypothesis must have zero empirical risk:

P[ĥ ∈ B] ≤ P[∃h ∈ B : L̂(h) = 0]. (148)

– We now get to the heart of the argument, which consists of two steps.

– Step 1: bound P[L̂(h) = 0] for a fixed h ∈ B.

∗ On each example, hypothesis h does not err with probability 1− L(h).

∗ Since the training examples are i.i.d. and the fact that L(h) > ε for h ∈ B:

P[L̂(h) = 0] = (1− L(h))n ≤ (1− ε)n ≤ e−εn, (149)

where the last step follows since 1− a ≤ e−a.

∗ Remark: this probability decreases exponentially with n, which is impor-
tant.

– Step 2: show that step 1 holds simultaneously for all h ∈ B:

∗ We apply the union bound to bound the probability of the event for any
h ∈ B:

P
[
∃h ∈ B : L̂(h) = 0

]
≤
∑
h∈B

P[L̂(h) = 0]. (150)
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∗ The rest is straightforward:∑
h∈B

P[L̂(h) = 0] ≤ |B|e−εn (151)

≤ |H|e−εn (152)

def
= δ. (153)

– Taking logs of the last equality and rearranging:

ε =
log |H|+ log(1/δ)

n
. (154)

The theorem follows by substuting this expression for δ.

3.4 Generalization bounds via uniform convergence (Lecture 5)

• The proof of Theorem 4 is elementary but illustrates an important pattern that will
recur again in more complex scenarios. At a high level, we are interested in expected
risk L, but only have access to empirical risk L̂ to choose the ERM ĥ. In the proof,
we saw two steps:

– Step 1 (convergence): For a fixed h, show that L̂(h) is close to L(h) with high
probability. In the above proof, this meant showing that if L(h) > ε, then L̂(h) =
0 is unlikely.

– Step 2 (uniform convergence): Show that the above holds simultaneously for all
hypotheses h ∈ H. In the above proof, this meant using a union bound.

The difference between convergence and uniform convergence is absolutely crucial. It is
important to note that ĥ is a random variable that depends on the training examples,
so L̂(ĥ) is not just a sum of i.i.d. variables, so step 1 does not apply directly.

• Theorem 4 also made two restrictive assumptions.

– First, there exists a perfect hypothesis (realizability). What happens when the
problem is not realizable (all hypotheses make some error)? To answer this, we
consider the general problem of convergence of random variables using concen-
tration inequalities.

– Second, the hypothesis class is finite. What happens when the number of hy-
potheses is infinite? We can’t just apply a union bound any more. To answer
this, we need to have more suitable ways of measuring the “size” of a set other
than cardinality. This leads to Rademacher complexity, VC dimension, and
covering numbers as ways for measuring the “size” of an infinite set from the
point of view of the loss function.
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• Breaking free of these restrictive assumptions, we will show how bounding expected
risk can be reduced to one of uniform convergence. Recall that our goal is to bound
the excess risk, the amount by which ERM’s expected risk exceeds the lowest possible
expected risk:

P[L(ĥ)− L(h∗) ≥ ε] ≤ δ. (155)

Note that the difference between ≥ and > isn’t important here, and it will be more
convenient to use ≥.

h∗

expected risk L

ĥERM

empirical risk L̂

Figure 7: Uniform convergence.

• Let us first relate expected risk to empirical risk, since that’s what the ERM is defined
in terms of:

L(ĥ)− L(h∗) = [L(ĥ)− L̂(ĥ)]︸ ︷︷ ︸
concentration

+ [L̂(ĥ)− L̂(h∗)]︸ ︷︷ ︸
≤0

+ [L̂(h∗)− L(h∗)]︸ ︷︷ ︸
concentration

. (156)

• The second term is non-positive by definition of the empirical risk minimizer.

• The third term involves a comparison of L̂(h∗) and L(h∗). If we expand things, we
realize that this is just a question of the difference between an average of n i.i.d. random
variables and its mean:

L̂(h∗) =
1

n

n∑
i=1

`((x(i), y(i)), h∗), L(h∗) = E(x,y)∼p∗ [`((x, y), h∗)]. (157)

We’ll see how concentration inequalities can be used to control this difference.

• What about the first term? The same reasoning doesn’t apply because ĥ depends on
the training examples, and so L̂(ĥ) is not a sum of i.i.d. random variables! We’ll need
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something something more sophisticated: uniform convergence. Suppose we could
ensure that L̂(h) and L(h) were close (say within ε

2
) for all h ∈ H. Then, we could be

ensure that L̂(ĥ) and L(ĥ) were within ε
2
, as well as L̂(h∗) and L(h∗).

• The contrapositive can be written formally as:

P[L(ĥ)− L(h∗) ≥ ε] ≤ P
[
sup
h∈H
|L(h)− L̂(h)| ≥ ε

2

]
. (158)

On the LHS is a statement about excess risk, and on the RHS is a statement about
uniform convergence. The RHS is the probability of the event that the largest difference
between the empirical and expected risk is at least ε

2
, or equivalently, the event that

this difference exceeds ε
2

for at least one h ∈ H.

• Note: the classic example of uniform convergence is the Glivenko-Cantelli theorem (also
called the uniform law of large numbers), for estimating distribution functions. Given
x1, . . . , xn drawn i.i.d. from some distribution with cumulative distribution function
(CDF) F (x), we can form the empirical CDF Fn(x) = 1

n

∑n
i=1 I[x ≤ xi]. One can ask

for the convergence of the CDF function in the uniform norm:

‖Fn − F‖∞
def
= sup

x∈R
|Fn(x)− F (x)| P−→ 0. (159)

What we will be studying is a generalization of (159), where we have arbitrary hy-
potheses h ∈ H rather than x ∈ R.

• Note: if we look at the difference between L̂ and L, we can construct something called
an empirical process:

{Gn(h)}h∈H, Gn
def
=
√
n(L̂(h)− L(h)), (160)

which is a stochastic process (collection of random variables indexed by h ∈ H). Em-
pirical process theory focuses on studying empirical processes. We know that for a
given h ∈ H, Gn(h) converges to a normal distribution by the central limit theorem.
We can think about Gn converging to a Gaussian process G with covariance function

Cov[G(h), G(h′)] = Cov[`(z, h), `(z, h′)]. (161)

This stochastic process viewpoint allows one to talk not just about the supremum
suph∈HGn(h), but also get distributional results, which is useful for computing con-
fidence intervals. This is outside the scope of the class; for additional information,
Pollard has an excellent book on this.
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3.5 Concentration inequalities (Lecture 5)

• Concentration inequalities are a very powerful set of techniques from probability theory
that shows that an appropriate combination of independent random variables will
concentrate around its expectation. From the point of view of learning theory, the
random variables of interest are the losses of hypotheses on training examples.

• Mean estimation

– Let X1, . . . , Xn be i.i.d. real-valued random variables with mean µ
def
= E[X1]

– Define the empirical mean as follows:

µ̂n
def
=

1

n

n∑
i=1

Xi (162)

– Question: how does µ̂n relate to µ?

– Examples

∗ Xi is the height of the i-th person sampled from some population.

∗ Xi is the loss of a fixed hypothesis h ∈ H on the i-th example.

• FIGURE: [µ with distribution over µ̂n]

• Types of statements

– Consistency: by the law of large numbers,

µ̂n − µ
P−→ 0, (163)

where
P−→ denotes convergence in probability.7 Consistency assures us that as we

get more data (n →∞), we will approach the correct answer, but it doesn’t tell
us how quickly.

– Asymptotic normality: Letting Var[X1] = σ2, by the central limit theorem,

√
n(µ̂n − µ)

d−→ N (0, σ2), (164)

where
d−→ denotes convergence in distribution.8 Asymptotic normality says that if

n is large enough, then µ̂n − µ behaves as σ√
n
), where the variance is decreasing

at a rate of 1/n. But this result is only asymptotic, it doesn’t tell us anything
precise for a particular value of n (say, n = 10).

7Convergence in probability: For each ε > 0, P[|µ̂n − µ| ≥ ε]→ 0 as n→∞.
8Convergence in distribution: For each t, P[

√
n(µ̂n−µ)
σ ≤ t]→ Φ(t) as n→∞, where Φ is the cumulative

distribution of the standard Gaussian distribution.
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– Tail bounds: Ideally, we want a statement of the following form:

P[|µ̂n − µ| ≥ ε] ≤ SomeFunction(n, ε) = δ. (165)

Based on the Gaussian approximation, we expect that the bounding function on
the RHS would decay double exponentially in ε and exponentially in n. We shall
see shortly that this intuition is indeed true. In the context of learning theory, ε
would be the bound on the difference between empirical and expected risks, and
1− δ would be the confidence.

– Note: of course, as we sweep ε from 0 to∞ and look at how much probability mass
is past ε, we get a complete picture of the full distribution. However, typically
tail bounds are simple upper bounds which are often loose and only become more
reliable for small ε.

• Our starting point is Markov’s inequality, a very simple tool that allows us to control
the deviation of a non-negative random variable from its mean using the expectation
of that random variable. In short, it turns expectations (which are easier to work with)
into tail probabilities (what we want).

• Theorem 5 (Markov’s inequality)

– Let Z ≥ 0 be a random variable.

– Then

P[Z ≥ t] ≤ E[Z]

t
. (166)

• Proof:

– Since Z is non-negative, we have tI[Z ≥ t] ≤ Z.

– Taking expectations on both sides and rearranging completes the proof.

• Remarks

– We can apply Z = (X−µ)2 (second moment) and t = ε2 to obtain Chebyshev’s
inequality:

P[|X − µ| ≥ ε] ≤ Var[X]

ε2
. (167)

Applying the inequality to the average over i.i.d. variables (µ̂n = 1
n

∑n
i=1 Xi),

then Var[µ̂n] = Var[X1]
n

. This is a very weak result, because the tail probability is
decaying only at at polynomial rate (1/n).

– To get stronger bounds, we need to apply Markov’s inequality on higher order
moments. In particular, we will look at all moments by considering Z = etX ,
where t is a free parameter we will use later to optimize the bound. “All the
moments” is captured by the moment generating function:
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• Definition 6 (moment generating function)

– For a random variable X, the moment generating function (MGF) of X is:

MX(t)
def
= E[etX ]. (168)

• One useful way to think about the MGF is in terms of its Taylor expansion:

MX(t) = 1 + tE[X] +
t2

2
E[X2] +

t3

6
E[X3] + · · · . (169)

• The moment generating function receives its name because the k-th derivative evalu-
ated at t = 0 yield the k-th moment (assuming we can swap integration and differen-
tiation):

dkMX(t)

dtk
|t=0 = E[Xk]. (170)

• One important property is that the MGF of a sum of independent random variables
is simply the product of the MGFs. If X1 and X2 are independent random variables,
then we have:

MX1+X2(t) = MX1(t)MX2(t). (171)

The distribution over X1 +X2 can be computed using a convolution, which is typically
cumbersome, but MGFs (like Fourier transforms) turn convolutions into products.

• Applying Markov’s inequality to Z = etX , we get that

P[X ≥ ε] ≤ MX(t)

etε
for all t > 0. (172)

We can apply this to the case of sample means (X = µ̂n) by computing P[µ̂n ≥ ε] =
P[X1 + · · ·+Xn ≥ nε]. We get that all t > 0:

P[µ̂n ≥ ε] ≤
(
MX1(t)

etε

)n
. (173)

– Provided that
MX1

(t)

etε
< 1 for some t, getting n independent samples means that

our tail probability will decrease exponentially. This is key.

– Why should we expect this to happen? Assume If E[X1] = 0. The dominant
term in the Taylor expansion of MX1(t), the numerator of (173), is 1 + O(t2).
The dominant term in the Taylor expansion of etε, the denominator of (173), is
1 + O(t). We can always choose t such that the ratio is strictly less than 1 since
t2 � t for small enough t.
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– Note that MX1(t) could be infinite for some t, in which case the bounds are
vacuous. In this class, we will work with distributions X such that MX1(t) < ∞
for all t > 0.

• Now let’s actually compute the MGF of some probability distributions of interest. The
Gaussian distribution is a natural place to start, as we will see.

• Example 5 (MGF of Gaussian variables)

– Let X ∼ N (0, σ2).

– Then MX(t) = eσ
2t2/2 .

– Derivation (by completing the square):

MX(t) = E[etX ] =

∫
(2πσ2)−

1
2 exp

(
x2 − 2σ2tx

−2σ2

)
dx (174)

=

∫
(2πσ2)−

1
2 exp

(
(x− σ2t)2 − σ4t2

−2σ2

)
dx (175)

= exp

(
σ2t2

2

)
. (176)

• Lemma 3 (Tail bound for Gaussian variables)

– Having control on the Gaussian MGF, we can now derive a tail bound by plugging
the form of the MGF into (172). This yields:

P[X ≥ ε] ≤ inf
t

exp

(
σ2t2

2
− tε

)
. (177)

The infimum on the RHS is attained by setting t = ε/σ2, yielding:

P[X ≥ ε] ≤ exp

(
−ε2

2σ2

)
. (178)

• What about non-Gaussian variables? Note that the bounds would still hold if we
replaced MX(t) with an upper bound. This motivates the following definition:

• Definition 7 (sub-Gaussian)

– A mean-zero random variable X is sub-Gaussian with parameter σ2 if its mo-
ment generating function is bounded as follows:

MX(t)≤ exp

(
σ2t2

2

)
. (179)
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– It follows immediately by analogy with (178) that:

P[X ≥ ε] ≤ exp

(
−ε2

2σ2

)
. (180)

• Examples

– Gaussian random variables: If X ∼ N (0, σ2), then X is sub-Gaussian with pa-
rameter σ2 (trivial). Note that the sub-Gaussian parameter and the variance
coincide in this case, but this is not true in general.

– Bounded random variables (Hoeffding’s lemma): If a ≤ X ≤ b with probability
1 and E[X] = 0, then X is sub-Gaussian with parameter (b− a)2/4.

∗ Intuition (not a proof): in the Gaussian case, the sub-Gaussian parameter
was the variance. Suppose a = −b. Then the variance of X is b2 = (b−a)2/4,
the sub-Gaussian parameter given by the lemma. In general, the variance is
at most the sub-Gaussian parameter.

– Non-examples: exponential and Gamma variables, since these distributions have
tails which are too fat, decaying exponentially rather than double exponentially.9

• Properties

– Sum: If X1 and X2 are independent sub-Gaussian variables with parameters σ2
1

and σ2
2, respectively, then X1 +X2 is sub-Gaussian with parameter σ2

1 + σ2
2.

– Multiplication by a constant: if X is sub-Gaussian with parameter σ2, then for
any c > 0, cX is sub-Gaussian with parameter c2σ2.

– Not surprisingly, these properties coincide with those of Gaussians.

– Note that the product of two sub-Gaussian variables is in general not sub-Gaussian.

• Given the machinery thus far, we can easily obtain the following classic tail bound for
bounded random variables:

• Theorem 6 (Hoeffding’s inequality)

– Let X1, . . . , Xn be independent random variables.

– Assume each Xi is bounded: ai ≤ Xi ≤ bi.

– Let µ̂n = 1
n

∑n
i=1Xi be the sample mean.

– Then

P[µ̂n ≥ E[µ̂n] + ε] ≤ exp

(
−2n2ε2∑n

i=1(bi − ai)2

)
. (181)

9These variables have moment generating functions which are defined not for all t but only small t. These
are known as sub-exponential variables. This is consistent with the central limit theorem, which states that
eventually (large enough n, small enough t) things behave Gaussian.
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– Special case (ai = −B, bi = +B):

P[µ̂n ≥ E[µ̂n] + ε] ≤ exp

(
−nε2

2B2

)
. (182)

• Proof of Theorem 6:

– Using compositional properties of sub-Gaussian, µ̂n−E[µ̂n] is sub-Gaussian with

parameter 1
n2

∑n
i=1

(bi−ai)2
4

.

– Apply (180).

• Summary so far

– We’ve shown that Gaussian and bounded random variables are sub-Gaussian and
enjoy sharp tail bounds.

– Furthermore, if we have an average of n independent sub-Gaussian variables, then
the bound simply gets powered up by n.
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[begin lecture 6] (6)

3.6 Finite hypothesis classes (Lecture 6)

• Having a good understanding of basic concentration inequalities, let’s put them to use
by analyzing the excess risk of the ERM for a finite hypothesis class, where now we
do not assume realizability; that is, it is possible that every hypothesis h ∈ H has
non-zero loss. The analysis will proceed via the two-step concentration + union bound
format.

• Theorem 7 (finite hypothesis class)

– Let H be a hypothesis class, where each hypothesis h ∈ H maps X to Y .

– Let ` be the zero-one loss: `((x, y), h) = I[y 6= h(x)].

– Assume H is finite (Assumption 1 holds).

– Let ĥ be the empirical risk minimizer.

– Then with probability at least 1− δ, the excess risk is bounded as follows:

L(ĥ)− L(h∗) ≤
√

2(log |H|+ log(2/δ))

n
= O

(√
log |H|
n

)
. (183)

• Proof of Theorem 7:

– Recall by (158), the excess risk L(ĥ) − L(h∗) is upper bounded using uniform
convergence where we control suph∈H |L(h)− L̂(h)|.

– We adopt the same high-level strategy as for the realizable case:

∗ Show convergence of a fixed hypothesis h ∈ H (using Hoeffding’s inequality),

∗ Show uniform convergence using a union bound.

– Step 1 (convergence)

∗ For a fixed h ∈ H, note that L̂(h) is an empirical average over n i.i.d. loss
terms (bounded in [0, 1]) with expectation L(h). Therefore, by Hoeffding’s
inequality,

P[L̂(h)− L(h) ≥ ε] ≤ exp
(
−2nε2

)
. (184)

∗ To bound the absolute value, we apply the bound again on the negative loss
and combine using the union bound:

P[|L̂(h)− L(h)| ≥ ε] ≤ 2 exp
(
−2nε2

)
. (185)

– Step 2 (uniform convergence)
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∗ Since H is finite, we can apply the union bound over |H| hypotheses, obtain-
ing:

P
[
sup
h∈H
|L̂(h)− L(h)| ≥ ε

2

]
≤ |H| · 2 exp

(
−2n

( ε
2

)2
)

def
= δ. (186)

Note that we substituted ε
2

for ε, which is needed by the generalization bound
(158).

∗ Rearranging completes the proof.

• Comparison with the realizable case (144):

– We still have logarthmic dependence on |H| and 1/δ.

– The main difference is that the realizable bound had a 1
n

rate, whereas when there
is noise, we now get a 1√

n
rate, which is due to the use of Hoeffding’s inequality.

This gap is real and is due to the fact that learning is much easier / faster when
there is no noise.

– Note that when we performed asymptotic analysis, we also got a 1
n

rate and did
not assume realizability. However, there were two differences there: we assumed
the loss was twice differentiable (in contrast to the zero-one loss here), and we
were analyzing the risk near θ∗ as opposed to globally across H.

3.7 Concentration inequalities (continued) (Lecture 6)

• Now that we have relaxed the realizability assumption, let us now try to relax the
finiteness one too. To do this, we will develop the theory of Rademacher complexity,
but first, we will take a detour to McDiarmid’s inequality, which will help us convert
the tail bound (RHS of (158)) into an expectation.

• McDiarmid’s inequality is a generalization of Hoeffding’s inequality, where we want to
bound not the average of random variables X1, . . . , Xn, but any function on X1, . . . , Xn

satisfying an appropriate bounded differences condition.

• Theorem 8 (McDiarmid’s inequality (bounded differences inequality))

– Let f be a function satisfying the following bounded differences condition:

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci (187)

for all i = 1, . . . , n and all x1, . . . , xn, x
′
i. Intuition: modifying one coordinate

doesn’t change the function value too much.

– Let X1, . . . , Xn be independent random variables.
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– Then

P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
. (188)

• Remarks

– McDiarmid’s inequality generalizes Hoeffding’s inequality as follows. Define the
function f(x1, . . . , xn) = 1

n

∑n
i=1 xi, where each xi satisfies ai ≤ xi ≤ bi. Then f

satisfies the bounded differences condition with ci = 1
n
(bi − ai). Substituting this

value of ci recovers Hoeffding’s inequality exactly.

– This result is quite powerful, as it holds for any independent random variables,
and f could be quite complex (e.g., fitting a neural network). As long as the
function isn’t too sensitive to perturbations in one of its arguments, we get good
concentration.

– The proof is not difficult, but it requires introducing martingales, which generalize
partial sums of independent random variables.

• Definition 8 (martingale)

– A sequence of random variables Z0, Z1, . . . , Zn is a martingale sequence with
respect to another sequence of random variables X1, . . . , Xn iff Zi is a function of
X1:i, E[|Zi|] <∞, and

E[Zi | X1:i−1] = Zi−1. (189)

– Define Di
def
= Zi − Zi−1. We call D1:n a martingale difference sequence with

respect to X1:n. Another way to write (189) is

E[Di | X1:i−1] = 0. (190)

• Examples

– Random walk: Z0 = 0, Zi = Zi−1 + 1 with probability 1
2

and Zi = Zi−1 − 1 with
probability 1

2
. This is just a sum of i.i.d. random variables.

– Random walk with absorbing state: same as above but Zi = Zi−1 if Zi−1 = 42.

• Intuitions

– Given X1:i−1 (the past), the expected value of Zi is the same as Zi−1 (i.e., can’t
predict the future).

– Think of D1:n as a generalization of an i.i.d. sequence.
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• Recall that we showed that sums of independent sub-Gaussian variables are sub-
Gaussian. The exact same result holds for martingales, as shown in the following
lemma:

• Lemma 4 (sub-Gaussian martingales)

– Let Z0, Z1, . . . , Zn be a martingale with respect to X1, . . . , Xn.

– Suppose that each difference Di = Zi − Zi−1 is conditionally sub-Gaussian with
parameter σ2

i , that is:

E[etDi | X1:i−1] ≤ exp(σ2
i t

2/2). (191)

– Then Zn − Z0 =
∑n

i=1 Di is sub-Gaussian with parameter σ2 def
=
∑n

i=1 σ
2
i .

• Proof of Lemma 4

– This proof is straightforward by induction on n:

E[exp(t(Zn − Z0))] = E[exp(tDn) exp(t(Zn−1 − Z0))] (192)

= E[E[exp(tDn) exp(t(Zn−1 − Z0)) | X1:n−1]] (193)

≤ exp(σ2
nt

2/2)E[exp(t(Zn−1 − Z0))] (194)

≤ exp

(
n∑
i=1

σ2
i t

2/2

)
. (195)

– The key is that conditioned on X1:i−1, Di is just a sub-Gaussian variable and
Zi−1−Z0 is just a constant. The last inequality follows by repeating the argument
recursively.

• Proof of Theorem 8 (McDiarmid’s inequality)

– We construct a particular type of martingle called Doob martingale:

Zi = E[f(X1, . . . , Xn) | X1:i]. (196)

Note the extremes: Z0 = E[f(X1, . . . , Xn)] and Zn = f(X1, . . . , Xn). We can
think of this martingale as exposing more information about f(X1, . . . , Xn) over
time. Using this notation, we are interested in bounding P[Zn − Z0 ≥ ε].

– To show that we have a sub-Gaussian martingale, let’s study Di = Zi − Zi−1:
Both Zi and Zi−1 condition on X1:i−1 and take expectations over Xi+1:n. The
only difference is in the treatment of Xi:

Zi−1 = E[f(

condition︷ ︸︸ ︷
X1, . . . , Xi−1,

marginalize︷ ︸︸ ︷
Xi, Xi+1, . . . , Xn) | X1:i−1] (197)

Zi = E[f(X1, . . . , Xi−1, Xi︸ ︷︷ ︸
condition

, Xi+1, . . . , Xn︸ ︷︷ ︸
marginalize

) | X1:i] (198)
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Therefore we would expect that Di is contained in some interval of length ci. Of
course, we need to handle the marginalization over Xi+1:n properly.

– To make this precise, define the lower and upper bounds which measure how large
Zi could get:

Li = inf
x
E[f(X1:n) | X1:i−1, Xi = x]− E[f(X1:n) | X1:i−1], (199)

Ui = sup
x

E[f(X1:n) | X1:i−1, Xi = x]− E[f(X1:n) | X1:i−1]. (200)

Note that Li ≤ Di ≤ Ui.

– Let xL and xU correspond to the x’s achieving Li and Ui, respectively. By the
bounded differences assumption,

f(X1:i−1, xU , Xi+1)− f(X1:i−1, xL, Xi+1) ≤ ci. (201)

– Now here’s the key step: By independence of the Xi’s, the distribution over Xi+1:n

is the same no matter on whether we condition on Xi = xL or Xi = xU . Therefore,
we can take an expectation over Xi+1:n to get that

Ui − Li = E[f(X1:i−1, xU , Xi+1) | X1:i−1, Xi = xU ] (202)

− E[f(X1:i−1, xL, Xi+1) | X1:i−1, Xi = xL] ≤ ci. (203)

This means that Di ∈ [Li, Ui] is sub-Gaussian with parameter c2
i /4 conditioned

on X1:i−1.

– Applying Lemma 4, we have that Zn−Z0 is sub-Gaussian with parameter
∑n

i=1 c
2
i /4.

Finally, apply the sub-Gaussian tail inequality (180).

3.8 Rademacher complexity (Lecture 6)

• So far, we’ve relied on concentration inequalities (Hoeffding’s inequality) along with
the union bound to derive generalization bounds via uniform convergence. However, we
can’t directly apply the union bound to infinite hypothesis classes (set of all linear clas-
sifiers). We need a more sophisticated way to measure the complexity of a hypothesis
class. In this section, we will develop such a framework known as Rademacher com-
plexity, which has many nice properties and connects to other measures of complexity
such as VC dimension and covering numbers.

• We will arrive at Rademacher complexity by deriving generalization bounds. Specifi-
cally, we carry out the following steps:

– Step 1: Define a random variable Gn (maximum difference between expected and
empirical risk).

– Step 2: Show that it concentrates to E[Gn] using McDiarmid’s inequality.
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– Step 3: Use a technique called symmetrization to bound the expectation using
a quantity known as the Rademacher complexity.

• Step 1 (setup)

– Consider the largest difference between the expected and the empirical risk over
all possible hypotheses:

Gn
def
= sup

h∈H
L(h)− L̂(h). (204)

Here, Gn is a random variable that depends on the data points Z1, . . . , Zn. An
upper bound on Gn would ensure that if you observed empirical risk L̂(ĥ), the
expected risk L(ĥ) will not be much higher.

– In order to bound the excess risk (158), we actually need to also bound G′n defined
analogously for the negative loss `′(z, h) = −`(z, h), so that

P[L(ĥ)− L(h∗) ≥ ε] ≤ P
[
sup
h∈H
|L(h)− L̂(h)| ≥ ε

2

]
(205)

≤ P
[
Gn ≥

ε

2

]
+ P

[
G′n ≥

ε

2

]
. (206)

Usually, the tail bound for Gn is the same as for G′n, as we’ll see later.

• Step 2 (concentration): convert tail bound into an expectation

– Let g be the deterministic function such that Gn = g(Z1, . . . , Zn).

– Then g satisfies the following bounded differences condition:

|g(Z1, . . . , Zi, . . . , Zn)− g(Z1, . . . , Z
′
i, . . . , Zn)| ≤ 1

n
. (207)

– Proof:

∗ Recall L̂(h) = 1
n

∑n
i=1 `(Zi, h).

∗ We have:∣∣∣ sup
h∈H

[L(h)− L̂(h)]︸ ︷︷ ︸
g(Z1,...,Zi,...,Zn)

− sup
h∈H

[L(h)− L̂(h) +
1

n
(`(Zi, h)− `(Z ′i, h))]︸ ︷︷ ︸

g(Z1,...,Z′i,...,Zn)

∣∣∣ ≤ 1

n
. (208)

∗ For each h ∈ H, the difference between the Gn and the perturbed Gn is at
most 1

n
since the loss is bounded: `(z, h) ∈ [0, 1]. Taking the supremum

(which is a contraction) cannot increase the difference.

– Now we can apply McDiarmid’s inequality (Theorem 8) to get that:

P [Gn ≥ E[Gn] + ε] ≤ exp(−2nε2). (209)
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– Remark: Note that g is quite a non-trivial function (involving a sup over a huge
hypothesis class), but because it satisfies the bounded differences condition, we
can simply apply McDiarmid’s inequality.

• Step 3 (symmetrization)

– Now we need to bound E[Gn]. This quantity is quite difficult since it depends on
L(h), an expectation over the unknown distribution p∗. The goal of symmetriza-
tion is to remove this strong dependence on p∗ and replace it with a quantity that
only depends on p∗ through data points Z1, . . . , Zn.

– The key idea of symmetrization is to introduce a ghost dataset Z ′1, . . . , Z
′
n, drawn

i.i.d. from p∗. Let L̂′(h) = 1
n

∑n
i=1 `(Z

′
i, h) be the empirical risk with respect to

this ghost dataset.

– Rewriting L(h) in terms of the ghost dataset:

E[Gn] = E[sup
h∈H

E[L̂′(h)]− L̂(h)]. (210)

– Bring L̂(h) into the inner expectation by conditioning on the original dataset Z1:n

(the two datasets are independent):

E[Gn] = E[sup
h∈H

E[L̂′(h)− L̂(h) | Z1:n]]. (211)

– Pushing the sup inside the expectation can only increase:

E[Gn] ≤ E[E[sup
h∈H

L̂′(h)− L̂(h) | Z1:n]]. (212)

– Apply law of iterated conditional expectation:

E[Gn] ≤ E[sup
h∈H

L̂′(h)− L̂(h)]. (213)

– Expanding, we see that we have successfully gotten an expression that depends
on p∗ through Z1:n, but also the ghost dataset Z ′1:n.

E[Gn] ≤ E

[
sup
h∈H

1

n

n∑
i=1

[`(Z ′i, h)− `(Zi, h)]

]
. (214)

– Let’s try to remove the dependence on the ghost dataset Z ′1:n now. To that
end, introduce i.i.d. Rademacher variables σ1, . . . , σn independent of Z1:n, Z

′
1:n,

where σi is uniform over {−1,+1}. Since `(Z ′i, h)− `(Zi, h) is symmetric around
0, multiplying by σi doesn’t change its distribution. Now expanding the definition
of the empirical risk:

E[Gn] ≤ E

[
sup
h∈H

1

n

n∑
i=1

σi[`(Z
′
i, h)− `(Zi, h)]

]
. (215)

In fact, this holds for every σ1:n and doesn’t depend on its distribution.
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– Pushing the sup inside suph[ah − bh] ≤ suph[ah] + suph[−bh]:

E[Gn] ≤ E

[
sup
h∈H

1

n

n∑
i=1

σi`(Z
′
i, h) + sup

h∈H

1

n

n∑
i=1

(−σi)`(Zi, h)]

]
. (216)

– By linearity of expectation, the fact that Z ′i has the same distribution as Zi, and
the fact that σi and −σi have the same distribution, we get:

E[Gn] ≤ 2E

[
sup
h∈H

1

n

n∑
i=1

σi`(Zi, h)

]
. (217)

The RHS motivates the following general definition of the Rademacher complex-
ity:

• Definition 9 (Rademacher complexity)

– Let F be a class of real-valued functions f : Z → R. Example: Z = X × Y
consists of input-output pairs.

– Define the Rademacher complexity (or Rademacher average) of F to be

Rn(F)
def
= E

[
sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
, (218)

where

∗ Z1, . . . , Zn are drawn i.i.d. from p∗ (data points); and

∗ σ1, . . . , σn are drawn i.i.d. from the uniform distribution over {−1,+1} (Rademacher
variables).

– Interpretation of Rademacher complexity:

∗ Consider a binary classification problem with inputs Z1, . . . , Zn and random
labels σ1, . . . , σn. Clearly, this is a meaningless learning problem.

∗ The Rademacher complexity captures (in expectation) how well the best func-
tion from the function class F can align with these random labels. In other
words, how well F can fit noise? A large F will be able to fit noise better
and thus have a larger Rademacher complexity.

∗ As we’ll see later, we’d like Rn(F) to go to zero as n increases.

– Define the empirical Rademacher complexity of F to be:

R̂n(F)
def
= E

[
sup
f∈F

1

n

n∑
i=1

σif(Zi) | Z1:n

]
, (219)

which is a random variable depending on the data. Note that Rn(F) = E[R̂n(F)],
where the expectation is taken over the n training examples.
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• Theorem 9 (generalization bound based on Rademacher complexity)

– Define A = {z 7→ `(z, h) : h ∈ H} to be the loss class, the composition of the
loss function with each of the hypotheses. With probability at least 1− δ,

L(ĥ)− L(h∗) ≤ 4Rn(A) +

√
2 log(2/δ)

n
. (220)

• Proof of Theorem 9:

– Note that E[Gn] ≤ 2Rn(A) by definition of Rademacher complexity.

– Since negation doesn’t change the Rademacher complexity, Rn(A) = Rn(−A), so
E[G′n] ≤ 2Rn(−A).

– Let’s apply the tail bound (209) on both Gn and G′n:

P
[
Gn ≥

ε

2

]
≤ exp

(
−2n

( ε
2
− E[Gn]

)2
)

(221)

≤ exp

(
−2n

( ε
2
− 2Rn(A)

)2
)

[for ε ≥ 4Rn(A)] (222)

def
=
δ

2
. (223)

We have an analogous inequality for G′n:

P
[
G′n ≥

ε

2

]
≤ δ

2
. (224)

Adding them and solving for ε yields the result.

– Remark: We see that the essence of generalization is captured in the Rademacher
complexity of the loss class Rn(A).

• Summary

– We have reduced the problem of bounding Gn, which involved a complex compar-
ison between L(h) and L̂(h), to something that only depends on samples. In fact,
the empirical Rademacher complexity can even be computed from data. We’ll
see that in the analysis to follow, we will often condition on Z1:n; the points take
a backseat as it is the randomness of σi and the supremum over F that really
determine the Rademacher complexity.

– We will study the Rademacher complexity Rn(F) of various function classes F .
First, let us discuss some basic compositional properties that Rademacher com-
plexity enjoys, mostly due to linearity of expectation:

• Basic properties of Rademacher complexity
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– Boundedness

∗ Rn(F) ≤ maxf∈F maxz f(z).

∗ This is a trivial bound. It’s not very impressive to show that the Rademacher
complexity is a constant; rather, we’d ideally like it to go to zero as n→∞.

– Singleton

∗ Rn({f}) = 0

∗ Proof: σi has zero mean and is independent of everything else, so E[σif(Zi)] =
0

– Monotonicity

∗ Rn(F1) ≤ Rn(F2) if F1 ⊆ F2

∗ Proof: supf∈F2
ranges over at least as many functions as supf∈F1

, which
makes it at least as large.

– Linear combination

∗ Rn(F1 + F2) = Rn(F1) +Rn(F2) for F1 + F2 = {f1 + f2 : f1 ∈ F1, f2 ∈ F2}
∗ Proof: linearity of expectation

– Scaling

∗ Rn(cF) = |c|Rn(F)

∗ Proof: for c > 0, this is trivial; if c < 0, then we can absorbe the negation
into σi’s, which are symmetric around zero.

– Lipschitz composition (a generalization of scaling):

∗ Rn(φ ◦ F) ≤ cφRn(F), where φ ◦ F = {z 7→ φ(f(z)) : f ∈ F} and cφ is the
Lipschitz constant of φ: |φ(z)− φ(z′)| ≤ cφ‖z − z′‖2.

∗ Proof: see Corollary 3.17 of Ledoux and Talagrand 1991

∗ If φ is differentiable, then cφ is just a bound on the L2 norm of the gradient.

∗ This property is useful because, as we will see later, we can analyze the
complexity of our hypothesis class (e.g., linear functions), and compose with
φ to get the loss class (e.g., 0-1 loss of linear functions).

– Convex hull

∗ Rn(convex-hull(F)) = Rn(F) for finite F
∗ Proof: supremum over the convex hull is attained at one of its vertices

∗ This property is useful because if we want to compute the Rademacher of a
polytope (an infinite set), it suffices to compute the Rademacher complexity
of its vertices (a finite set). We will use this property when we look at L1

regularization.
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[begin lecture 7] (7)

3.9 Finite hypothesis classes (Lecture 7)

• So far, we’ve set up Rademacher complexity as a means of bounding the complexity of
a function class (specifically, the loss class associated with a hypothesis class). Now,
let’s instantiate Rademacher complexity for the case where the function class is finite.
This may initially seem like overkill (since we already analyzed the finite hypothesis
case), but doing this analysis in the Rademacher complexity is a good sanity check, and
it will reveal an unexpected but important aspect of finiteness, which we will exploit
when we talk about shattering coefficients in the next section.

• As a motivating example of a finite hypothesis class, consider the set of functions that
take conjunctions (products) of k of d boolean features:

F =

{
z 7→

∏
j∈J

zj : J ⊆ {1, . . . , d}, |J | = s

}
. (225)

Question: what should the Rademacher complexity of F be? Well, |F| =
(
d
s

)
, and the

complexity should depend on log |F| = O(s log d), and also go down as 1/
√
n.

• Lemma 5 (Massart’s finite lemma)

– Throughout this lemma, condition on Z1, . . . , Zn (treat them as constants).

– Let F be a finite set of functions.

– Let M2 be a bound on the second moment:

sup
f∈F

1

n

n∑
i=1

f(Zi)
2 ≤M2. (226)

– Then the empirical Rademacher complexity is upper bounded:

R̂n(F) ≤
√

2M2 log |F|
n

. (227)

• Proof of Lemma 5:

– The key idea of the proof is to leverage the moment generating function of an
average of i.i.d. variables.

– Let Wf = 1
n

∑n
i=1 σif(Zi).

– We are interested in bounding R̂n(F) = E[supf∈FWf | Z1:n].
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– Exponentiate and use convexity of x 7→ exp(tx) for t ≥ 0 to push the exp inside
the expectation, which turns it into the moment generating function of supf∈FWf :

exp(tE[sup
f∈F

Wf | Z1:n]) ≤ E[exp(t sup
f∈F

Wf ) | Z1:n]. (228)

– By monotonicity, we can pull the sup out of the exponent:

= E[sup
f∈F

exp(tWf ) | Z1:n]. (229)

– The sup over non-negative terms can be upper bounded by the sum:

≤
∑
f∈F

E[exp(tWf ) | Z1:n]. (230)

– Now we have to bound E[exp(tWf )], the moment generating function of a single
Wf .

∗ By Hoeffding’s lemma (after Lemma 3.5), σi is a bounded random variable
with sub-Gaussian parameter 22/4 = 1.

∗ By scaling and independence of σi, we get that Wf is sub-Gaussian with

parameter 1
n2

∑n
i=1 f(Zi)

2 ≤ M2

n
(remember that we’re conditioning on Z1:n,

which are just treated like constants).

∗ By the definition of sub-Gaussian, we have

E[exp(tWf )] ≤ exp

(
t2M2

2n

)
. (231)

The important thing is that Wf is an average of i.i.d. variables, so its moment
generating function decays exponentially fast.

– Plugging this in to the overall bound and the rest is algebra:

exp(tR̂n(F)) ≤
∑
f∈F

E[exp(tWf ) | Z1:n] ≤ |F| exp

(
t2M2

2n

)
. (232)

– Taking logs and dividing by t:

R̂n(F) ≤ log |F|
t

+
tM2

2n
. (233)

– Optimizing over t yields the result as desired (by just taking the twice the geo-
metric average of log |F| and M2/(2n)):

R̂n(F) ≤
√

2M2 log |F|
n

. (234)
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• We can immediately apply Massart’s finite lemma to any finite loss class A. For
example, for the zero-one loss, we have each f(Zi) = `(Zi, h) ∈ [0, 1] (for h ∈ H
corresponding to f ∈ F) so we can take M = 1. Combined with (220), this gives us

L(ĥ)− L(h∗) ≤
√

32 log |H|
n

+

√
2 log(2/δ)

n
= O

(√
log |H|
n

)
, (235)

which gives the same result as Theorem 7 (just with worse constants).

3.10 Shattering coefficient (Lecture 7)

• What happens if we want to bound a class of half-spaces passing through the origin:

F = {z 7→ I[w · z ≥ 0] : w ∈ Rd}. (236)

What should the complexity of F be? Since F is infinite, we can’t just apply Mas-
sart’s finite lemma directly. Here’s some really sloppy intuition though: consider a
32-bit precision representation of the weight vector w; then there are (232)d possible
representations, so we might expect the Rademacher complexity to depend on d.

• Before we give up on Massart’s finite lemma, let’s take a closer look. The lemma places
a bound on the empirical Rademacher complexity R̂n, which only depends on the n
data points. If we had an infinite function class F that acts the same on the n points as
a finite function class F ′ (which is allowed to depend on Z1:n, which are as constants),
then the two function classes have the same empirical Rademacher complexity.

• For example, consider two points in 2D: Z1 = [3, 0], Z2 = [−3, 0]. Then

F ′ = {z 7→ I[z ≥ 0], z 7→ I[−z ≥ 0]} (237)

has the same behaviors as F , namely [1, 0] and [0, 1].

– FIGURE: [draw points with lines]

• More formally, if

{[f(Z1), . . . , f(Zn)] : f ∈ F} = {[f ′(Z1), . . . , f ′(Zn)] : f ′ ∈ F ′}, (238)

then R̂n(F) = R̂n(F ′). Therefore, all that matters as far as empirical Rademacher
complexity is concerned is the behavior of a function class on n data points.
This is the key observation!

• This observation is useful when we are trying to analyze boolean functions, those
that return either 0 or 1 (or any function class with a small finite range). An important
example is the loss class A = {z 7→ `(z, h) : h ∈ H} where ` is the zero-one loss. In
this case, the number of behaviors on n points is certainly finite (and perhaps even
small).
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• The behavior of F on n data points is captured by the shattering coefficient:

• Definition 10 (shattering coefficient (growth function))

– Let F be a family of functions that map Z to a finite set (usually {0, 1}).
– The shattering coefficient of F is the maximum number of behaviors over n

points:

s(F , n)
def
= max

z1,...,zn∈Z
|{[f(z1), . . . , f(zn)] : f ∈ F}|. (239)

• We can use Massart’s finite lemma to upper bound the empirical Rademacher complex-
ity by the shattering coefficient. If F contains boolean functions, we have the bound
M = 1, so that:

R̂n(F) ≤
√

2 log s(F , n)

n
. (240)

The significance is that we can apply Massart’s finite lemma to infinite function
classes with finite shattering coefficient. In order to have applied this bound,
it is important to condition on the data (note that the distribution over the data
has disappeared completely!) After applying Massart’s finite lemma, we can take
expectations over the data without changing the bound. We have turned an annoying
expectation over p∗ into a purely combinatorial notion of complexity.

• Intuition:

– For boolean functions, if s(F , n) = 2n (we obtain all possible labelings), then we
say F shatters any n points z1, . . . , zn that achieve the maximum of (239).

– To get meaningful bounds, we want s(F , n) to grow sub-exponentially with n;
otherwise the Rademacher complexity will not go to zero, and we will not obtain
uniform convergence. This is expected since if F can really hit all labelings for
all n, then we would be able to fit any labeling of the data, leading to massive
overfitting.

– Example: consider n points in 1D. The class F = {z 7→ I[z ≥ t] : t ∈ R} has
shattering coefficient s(F , n) = n+ 1.

• Shattering coefficient of hypotheses class and loss class

– The bounds we derive depend on the shattering coefficient s(A, n) of the loss
class A (via (240) and (220)). However, it will be more intuitive to talk about
the shattering coefficient hypothesis class H. We now show that the two are the
same for zero-one loss and binary classifiers.

– Let H be a set of binary classifiers h : X → {0, 1} and zero-one loss `((x, y), h) =
I[y 6= h(x)].
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– Note that the hypothesis class H contains functions on X , and the loss class A
contains functions on X × {0, 1}: A = {(x, y) 7→ I[y 6= h(x)] : h ∈ H}.

– The key point is that

s(H, n) = s(A, n). (241)

– The reason is as follows: for any (x1, y1), . . . , (xn, yn), there is a bijection between
the behavior of the losses and the hypotheses:

[`((x1, y1), h), . . . , `((xn, yn), h)] ⇔ [h(x1), . . . , h(xn)], (242)

where the translation between the two sets of vectors is obtained by taking the
XOR with [y1, . . . , yn]. Therefore, as we range over h ∈ H, we obtain the same
number of behaviors from ` as we do from h.

3.11 VC dimension (Lecture 7)

• In the previous section, we saw that the shattering coefficient can be used to upper
bound the Rademacher complexity of a family of boolean functions (240), which in
turn can be used to upper bound the excess risk (Theorem 9). Although the shattering
coefficient nicely captures the behavior of an infinite H, it is not necessarily the most
convenient quantity to get a handle on. In this section, we will use a concept called
VC dimension to gain more intuition about the shattering coefficient.

• Definition 11 (VC dimension)

– The VC dimension of a family of functions H with boolean outputs is the
maximum number of points that can be shattered by H:

VC(H) = sup{n : s(H, n) = 2n}. (243)

– Intuition: the VC dimension of H is the maximum number of points whose labels
can be memorized perfectly by choosing some h ∈ H.

• Example (intervals)

– Let H = {z 7→ I[z ∈ [a, b]] : a, b ∈ R}.
– s(H, 1) = 2 = 21 (can shatter)

– s(H, 2) = 4 = 22 (can shatter)

– s(H, 3) = 7 < 23 (can’t shatter, because can’t isolate the middle point)

– s(H, n) =
(
n+1

2

)
+ 1

– Therefore, VC(H) = 2.
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• Important note: to show that a class H has VC dimension d, one needs to

– Derive an upper bound: show that no d + 1 points can be shattered. This is
done by showing that for any d+ 1 points, there is some labeling that cannot be
achieved by H.

– Derive a lower bound: show that there exists d points can be shattered. This
is done by showing that there exists d points such that all 2d labelings can be
achieved by H.

• One can verify that that the VC dimension of rectangles in two dimensions is 4. Based
on this, one might be tempted to conclude that the VC dimension of a hypothesis class
with d parameters is d, but the following example shows that this is in general not the
case (there are pathological examples).

• Example (infinite VC dimension with one parameter)

– Let H = {x 7→ I[sin(θx) ≥ 0] : θ ∈ R}.
– We have that VC(H) =∞.

• It turns out that it’s not the number of parameters that matter, but the dimension of
the function space:

• Theorem 10 (finite-dimensional function class)

– Let F be a function class containing functions f : X → R.

– Recall that the dimension of F is the number of elements in a basis of F . For
example, if F = {x 7→ w · x : w ∈ Rd}, then dim(F) = d.

– Let H = {x 7→ I[f(x) ≥ 0] : f ∈ F} (for example, F could be linear functions,
but not necessarily).

– Then we have

VC(H) ≤ dim(F). (244)

– Remark: this allows us to connect the linear algebraic properties of F (dimension)
with the combinatorial properties of H (VC dimension).

• Proof of Theorem 10:

– Take any n points x1, . . . , xn with n > dim(F). We will show that these n points
cannot be shattered. The key is to find some direction that F can’t cover.

– Consider the linear map M(f)
def
= [f(x1), . . . , f(xn)] ∈ Rn which maps each func-

tion f ∈ F to the function values on the n points (function evaluation is linear).
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– The vector space {M(f) : f ∈ F} ∈ Rn has dimension at most dim(F) (applying
linear maps can’t increase dimension).

– Since n > dim(F), there is some non-zero vector c ∈ Rn such that M(f) · c = 0
for all f ∈ F .

– Without loss of generality, some component of c is negative (otherwise, just take
−c, which satisfies M(f) · c = 0 too).

– So we have for all f ∈ F :∑
i:ci≥0

cif(xi) +
∑
i:ci<0

cif(xi) = 0. (245)

– For the purposes of contradiction, suppose H shatters {x1, . . . , xn}.
∗ Then we could find an h = (x 7→ I[f(x) ≥ 0]) ∈ H (equivalently some f ∈ F)

such that

· h(xi) = 1 (f(xi) ≥ 0) whenever ci ≥ 0 (so the first term of (245) is
non-negative)

· h(xi) = 0 (f(xi) < 0) whenever ci < 0 (so the second term of (245) is
strictly positive).

∗ The sum of the two terms couldn’t equal zero, which contradicts (245).

– Therefore, H can’t shatter {x1, . . . , xn} for any choice of x1, . . . , xn, so VC(H) ≤
dim(F).

Here is the classic application of Theorem 10:

• Example 6 (Half-spaces passing through the origin)

– Let H = {x 7→ I[w · x ≥ 0] : w ∈ Rd} be the set of half-spaces in d dimensions.

– By Theorem 10, the VC dimension of H is at most d (H is backed by a linear
function class of dimension d).

– Upper bounds suffice for obtaining generalization bounds, but just for fun, let’s
get a lower bound on the VC dimension.

– Showing that the VC dimension of some H is at least d is easier because we just
have to construct some set of d points that can be shattered rather than showing
no d+ 1 points can be shattered.

– Create d points which are the basis vectors:

x1 = [1, 0, . . . , 0, 0] (246)

· · · (247)

xd = [0, 0, . . . , 0, 1] (248)
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– Given any subset I ⊆ {1, . . . , d} (which defines a labeling of x1, . . . , xd), we can
construct a w as follows to obtain that labeling:

∗ Set wi = 1 for i ∈ I
∗ Set wi = −1 for i 6∈ I

– This establishes that VC(H) ≥ d.

– Putting the upper and lower bounds, we get that VC(H) = d .

• We have defined VC dimension in terms of shattering coefficient (244), and have given
some examples of VC dimension. Let us now upper bound the shattering coefficient in
terms of the VC dimension.

• Lemma 6 (Sauer’s lemma)

– For a class H be a class with VC dimension d.

– Then

s(H, n) ≤
d∑
i=0

(
n

i

)
≤

{
2n if n ≤ d(
en
d

)d
if n > d.

(249)

• Intuition

– For n ≤ d, the shattering coefficient grows exponentially in n.

– For n > d, the shattering coefficient grows only polynomially in n.

– In some sense, H can only represent any subset of up to d of the n points.

• The ramification of Sauer’s lemma is that now we have a new upper bound on the
Rademacher complexity (and thus on uniform convergence):

R̂n(A) ≤
√

2 log s(A, n)

n
=

√
2 log s(H, n)

n
≤
√

2VC(H)(log n+ 1)

n
, (250)

where the first inequality follows from (240), the second equality follows from (241),
and the final inequality follows from (249) and holds for n ≥ d.

• Proof of Lemma 6 (somewhat technical and specific, skipped in class)

– The idea is to take H and transform it into H′ with the same shattering coefficient
(s(H, n) = s(H′, n)) but where s(H′, n) will be easier to bound.

– Key: all that matters is the action of H and H′ on a finite set of n points, which
we will represent as a table.
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– Draw a table whose columns are the n points and rows are the s(H, n) possible
labelings, and each entry is either a 0 or 1. The question is how many rows there
are.

– Here’s an example table T :

x1 x2 x3 x4

0 1 0 1
0 0 0 1
1 1 1 0
1 0 1 0

– We will transform the table to a canonical form as follows:

∗ Pick a column j.

∗ For each row r with rj = 1, set rj = 0 if the resulting r doesn’t exist in the
table.

∗ Repeat until no more changes are possible.

– Here is the resulting table T ′ (corresponding to some H′):

x1 x2 x3 x4

0 1 0 1
0 0 0 1
0 1 0 0
0 0 0 0

– Step 1: Note that the number of rows is still the same and all the rows are all
distinct, so s(H, n) = s(H′, n). So we just have to compute s(H′, n), which should
be easier.

– Step 2: We show that the VC dimension doesn’t increase by transformation
(VC(H′) ≤ VC(H))

∗ The transformations proceed one column at a time:

T → T1 → · · ·Tk
transform column j→ Tk+1 → · → T ′. (251)

∗ Claim: After transforming any column j, if some subset S ⊆ {1, . . . , n} of
points is shattered (all 2|S| labelings exist on those columns) after transfor-
mation (in Tk+1), then S was also shattered before transformation (in Tk).

∗ Case 1: trivially true for all subsets S that don’t contain j.

∗ Case 2: take any subset S that contains j.

· For any row i with 1 in column j, there is a row i′ with 0 in column j
and agrees with r on all columns except j: Tk+1(i, j′) = Tk+1(i′, j′) for all
j′ ∈ {1, . . . , n}\{j}, but Tk+1(i, j) = 1 and Tk+1(i′, j) = 0.

· Note that Tk(i, j) = 1 (because we never turn zeros into ones).

· Note that Tk(i
′, j) = 0 because if it had been a 1, then rows i and i′

would have been identical, and we maintain the invariant that there are
no duplicate rows.

∗ So all 2|S| labelings on S existed before transformation in Tk.
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– Step 3: Each row of T ′ must contain at most d ones.

∗ Suppose if T ′ has a row with k ones in columns S ⊆ {1, . . . , n}.
∗ Then for each j ∈ S, there must be another row with a labeling that assigns

ones to exactly S ⊆ {j} (otherwise we would have been able to transform
column j by changing the 1 to a 0).

∗ Reasoning recursively, all 2k subsets must exist.

∗ Since T ′ has VC dimension at most d, k ≤ d.

∗ Based on simple counting, we find that number of rows (remember, they’re
all distinct!) is upper bounded by

∑d
i=0

(
n
i

)
, completing the first inequality

of (249).

– Finishing the second part of the inequality of (249) is just algebra. Observe that
for n ≥ d,

d∑
i=0

(
n

i

)
≤
(n
d

)d d∑
i=0

(
n

i

)(
d

n

)i
(252)

≤
(n
d

)d n∑
i=0

(
n

i

)(
d

n

)i
(253)

=
(n
d

)d(
1 +

d

n

)n
(254)

≤
(n
d

)d
ed. (255)

3.12 Norm-constrained hypothesis classes (Lecture 7)

• We started by establishing Rademacher complexity Rn(F) as a measure of complexity
of a function class that yielded generalization bounds when applied to the loss class
A. Then we specialized to boolean functions and zero-one losses, which led to notions
of shattering coefficients and VC dimension as combinatorial means of bounding the
Rademacher complexity.

• However, combinatorial notions are not the most appropriate way to think about com-
plexity. For example, it is common in machine learning to have a huge number of
features (large d) in a linear classifier, but where we regularize or constrain the norm
of the weights, as in an SVM:

ŵ = arg min
w∈Rd:‖w‖2≤B2

1

n

n∑
i=1

max{0, 1− y(i)w · x(i)}. (256)

In this case, d is the VC dimension doesn’t really capture the true complexity of the
hypothesis class. Somehow B2 should play a role, no?
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• Deriving Rademacher complexity will actually be easier for the norm-constrained set-
ting. We will study the Rademacher complexity of three such examples:

– Linear functions with L2 norm constraints (suitable for kernel methods)

– Linear functions with L1 norm constraints (suitable for sparsity)

• Rademacher complexity of linear functions with weights bounded in an L2 ball

– Theorem 11 (Rademacher complexity of L2 ball)

∗ Let F = {z 7→ w · z : ‖w‖2 ≤ B2} (bound on weight vectors).

∗ Assume EZ∼p∗ [‖Z‖2
2] ≤ C2

2 (bound on spread of data points).

∗ Then

Rn(F) ≤ B2C2√
n
. (257)

– Proof of Theorem 11:

∗ The key idea is to exploit the linear algebraic structure of Rademacher com-
plexity.

∗ Expand the definition:

Rn(F) =
1

n
E

[
sup

‖w‖2≤B2

n∑
i=1

σi(w · Zi)

]
. (258)

∗ By Cauchy-Schwartz applied to w and
∑n

i=1 σiZi:

≤ B2

n
E

[
‖

n∑
i=1

σiZi‖2

]
. (259)

∗ By concavity of
√
·, we can push it outside the expectation:

≤ B2

n

√√√√E

[
‖

n∑
i=1

σiZi‖2
2

]
. (260)

∗ Distribute the sum; expectation of cross terms is zero by independence
of σi (this is the key point, which turns n2 terms into n terms):

=
B2

n

√√√√E

[
n∑
i=1

‖σiZi‖2
2

]
. (261)
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∗ We can drop σi because it changes sign, not magnitude:

=
B2

n

√√√√E

[
n∑
i=1

‖Zi‖2
2

]
. (262)

∗ Use the bound on Zi:

≤ B2

n

√
nC2

2 . (263)

Simple algebra completes the proof.

• Rademacher complexity of linear functions with weights bounded in an L1 ball

– Motivation

∗ Working with L2 regularization has the advantage that we can use ker-
nel methods, and the dimensionality could be infinite as long the norm is
bounded.

∗ In some applications, we have a finite but large set of features, and we believe
that there are a relatively small subset that are relevant to our task (i.e., we
believe in parameter sparsity). It is common to use L1 regularization, or
similarily, assume that the weights satisfy ‖w‖1 ≤ B1.

Let us compute the Rademacher complexity of F = {z 7→ w · z : ‖w‖1 ≤ B1}.
– Theorem 12 (Rademacher complexity of L1 ball)

∗ Assume that the coordinates are bounded: ‖Zi‖∞ ≤ C∞ with probability 1
for all data points i = 1, . . . , n.

∗ Then

Rn(F) ≤
B1C∞

√
2 log(2d)√
n

. (264)

– Proof of Theorem 12

∗ The key step is to realize that the L1 ball ({w : ‖w‖1 ≤ B1}) is the convex
hull of the following 2d weight vectors:

W = ∪dj=1{B1ej,−B1ej}. (265)

Since the Rademacher complexity of a class is the same as the Rademacher
complexity of its convex hull, we just need to look at the finite class:

Rn(F) = E

[
sup
w∈W

1

n

n∑
i=1

σi(w · Zi)

]
. (266)
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∗ Apply Hölder’s inequality, we have w · Zi ≤ ‖w‖1‖Zi‖∞ ≤ B1C∞.

∗ Applying Massart’s finite lemma (Lemma 5) to the function class specified
by W (of size 2d) with M2 = B2

1C
2
∞, we get that

Rn(F) ≤
√

2B2
1C

2
∞ log(2d)

n
. (267)

– Remarks

∗ It is useful to recall that as p increases,

· p-norms decrease: ‖w‖p ≥ ‖w‖q
· Size of balls increase: {w : ‖w‖p ≤ B} ⊆ {w : ‖w‖q ≤ B}

∗ Note that a L1 bound on the parameters is placing a much stronger constraint
than the L2 norm, which allows us to measure the L∞ norm of the data (which
is much better) rather than the L2 norm at the expense of a logarithmic
dependence on d.

– Ramifications under sparsity

∗ FIGURE: [w and z as arrays]

∗ L1 regularization is often used when we believe that most features are irrele-
vant; formally, that the desired weight vector has s� d non-zero entries.

∗ You might have seen the intuition that L1 regularization has sharp corners
which encourage weights to be identically zero, but that doesn’t directly tell
us anything about generalization. We would like a stronger justification.

∗ For convenience, assume that all entries of w and x have magnitude at most
1 (‖w‖∞ ≤ 1, ‖x‖∞ ≤ 1).

∗ It suffices to consider the hypothesis class ‖w‖1 ≤ B1 = s.

∗ Then the Rademacher complexity (and thus the expected risk) is O
(
s
√

log d√
n

)
.

∗ Interpretation: essentially the number of relevant features (s) controls the
complexity, and we can have a ton of irrelevant features (an exponentially
large number).

∗ In contrast, if we use L2 regularization, we would have B2 =
√
s and C2 =

√
d.

The Rademacher complexity of {w : ‖w‖2 ≤ B2} is O

(
s
√
d/s
√
n

)
.

∗ When s � d, then L1 regularization is desirable, but if s = d, then L1

regularization is worse by a factor of
√

log d.

∗ Note that these are heuristic arguments since we are comparing upper bounds.
In this case, the heuristics are accurate, but in general, one should exercise
caution.

– In general, these norm-constrained bounds either do not depend (L2 constrained)
or only depend weakly (L1 constrained) on the dimensionality d. This supports
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the prevailing wisdom that it doesn’t matter how many features you have (how
big d is). As long as you regularize properly (constrain the norm of the weights),
then you will still have good generalization.

• From hypothesis class to loss class (for binary classification)

– Composition

∗ So far, we have bounded the Rademacher complexity of various hypothesis
classes F . We still need to turn that into a bound on the loss class A. For
boolean functions with finite shattering coefficients, we showed that F and
A had the same complexity (242). But now F contains real-valued functions,
so the previous argument for shattering coefficients doesn’t hold.

∗ Consider a loss function φ for binary linear classification that only depends
on the margin m = yx · w. For example,

· Zero-one loss: φ(m) = I[m ≤ 0].

· Hinge loss: φ(m) = max{0, 1−m}.
· FIGURE: [plot these loss functions]

Let w ∈ W be a set of weight vectors (for example, {w : ‖w‖2 ≤ B2}). The
loss class corresponding to these weight vectors is then:

A = {(x, y) 7→ φ(yx · w) : w ∈ W}. (268)

∗ Since the loss function only depends on (x, y) through their product, we can
equivalently think about our data points as simply being z = xy. Recall the
function class that we’ve bounded the Rademacher complexity for:

F = {z 7→ w · z : w ∈ W}. (269)

So therefore, we can rewrite the loss class as a composition:

A = φ ◦ F . (270)

∗ Note that we can only apply the composition rule for Rademacher complexity
to φ which are Lipschitz. The hinge loss is 1-Lipschitz, which means the
Rademacher bounds for the function class F directly carry over to the loss
class: Rn(A) = Rn(F).

– The zero-one loss is not Lipschitz, so we cannot cannot directly control the zero-
one loss. Indeed, the zero-one loss is not sensitive to the the norm of w, so one
should not expect a norm-based bound to work. Working with norms allows us
to go to infinite dimensions, but this is the price we pay.

– There is still a weaker statement that we can make, however. Let us define
a margin-sensitive version of the zero-one loss which penalizes us whenever we
don’t predict correctly by at least a margin of γ:

φγ(m) = I[m ≤ γ] (271)
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and

Lγ(w) = Ez∼p∗ [φγ(w · z)] (272)

be the associated expected risk.

– Theorem 13 (margin-sensitive zero-one loss for linear classifiers)

∗ Let F be a set of linear functions.

∗ Let Lγ be the expected risk under the margin-sensitive zero-one loss.

∗ Let ŵ and w∗ be the weight vectors associated with the empirical and expected
risk minimizers with respect to the loss φ̃γ (to be defined later).

∗ With probability at least 1− δ,

L0(ŵ) ≤ Lγ(w
∗) +

4Rn(F)

γ
+

√
2 log(2/δ)

n
. (273)

Important: The LHS is one the usual zero-one loss.

∗ Remarks

· The moral of this theorem is that if it is possible to get low risk under
the more stringent Lγ, then we should also be able to do well on zero-one
loss.

· This also in a way supports the use of SVMs, which try to maximize the
margin; a larger margin means we have better generalization.

· Also note that as margin γ decreases, the bound on the RHS gets worse,
blowing up as 1/γ.

– Proof

∗ The problem is that φγ is not Lipschitz for any value of γ. So the key trick
is to introduce a Lipschitz version φ̃γ that interpolates smoothly between the
two:

φ̃γ(m) = min

{
1,max

{
0, 1− m

γ

}}
. (274)

· FIGURE: [plot φ̃γ]

∗ Then the Rademacher complexity of this intermediate loss class can be bounded:

Rn(φ̃γ ◦ F) =
Rn(F)

γ
, (275)

because φ̃γ is 1
γ
-Lipschitz. Applying Theorem 9, we get that:

L̃γ(ŵ) ≤ L̃γ(w
∗) +

4Rn(F)

γ
+

√
2 log(2/δ)

n
. (276)
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∗ Note that φ0 ≤ φ̃γ ≤ φγ, so the same relation holds on the expected risks for
all w ∈ W :

L0(w) ≤ L̃γ(w), L̃γ(w) ≤ Lγ(w). (277)

The final result follows from applying these two inequalities to (276).
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[begin lecture 8] (8)

3.13 Covering numbers (metric entropy) (Lecture 8)

• Motivation

– We can measure the complexity of a finite hypothesis class simply by computing its
cardinality. For infinite hypothesis classes, we observed that shattering coefficient
was an appropriate measure since (thanks to symmetrization) all that mattered
was the behavior of a function class on a finite set of points. However, shattering
coefficient only works for functions that return a finite number of values. Can we
retain the combinatorial nature of shattering coefficients, but allow for real-valued
functions (for example, to handle regression problems)?

– The key measure we will explore in this section is covering numbers, which counts
the number of balls of size ε one needs to cover the hypothesis class.

– We can use the Massart’s finite lemma to control the representatives; the behavior
of the other functions is controlled by virtue of being close to some representative.
In essence, covering numbers allows us to discretize the problem.

To talk about closeness of functions, we introduce the general notion of a metric space:

• Definition 12 (metric space)

– A metric space (X , ρ) is defined over a set F with equipped with a metric ρ.

– A metric ρ : X × X → R must be non-negative, symmetric, satisfy the triangle
inequality, and evaluate to 0 iff its arguments are equal.

– If ρ(f, f ′) = 0 is possible for f 6= f ′, then we say ρ is a pseudometric. In this
section, technically we will be working with the pseudometric.

• Examples of metrics ρ

– Euclidean distance

∗ For real vectors X = Rd.

∗ The metric is ρ(f, f ′) = ‖f − f ′‖2.

– L2(Pn)

∗ This is the L2 distance with respect to the empirical distribution over n data
points: Pn = 1

n

∑n
i=1 δzi .

∗ Let X be a family of functions mapping Z to R.

∗ The metric is ρ(f, f ′) =
(

1
n

∑n
i=1(f(zi)− f ′(zi))2

) 1
2 .
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∗ Remark: this metric can be thought of as computing an empirical standard
deviation over differences between f and f ′.

∗ Remark: since we are restricting the functions to evaluations at n points, we
can really think of these functions as n-dimensional vectors, with a metric
which is Euclidean distance scaled down by

√
n.

∗ FIGURE: [two functions and n points]

• Definition 13 (ball)

– Let (X , ρ) be a metric space.

– Then the ball with radius ε > 0 centered at f ∈ X is defined as:

Bε(f)
def
= {f ′ ∈ X : ρ(f, f ′) ≤ ε}. (278)

• Definition 14 (covering number)

– FIGURE: [covering a set with balls]

– An ε-cover of a set F ⊆ X with respect to a metric ρ is a finite subset C =
{f1, . . . , fm} ⊆ X 10 such that if we put a ball of radius ε at each fj, the resulting
union is a superset of F ; that is F ⊆ ∪mj=1Bε(fj).

– Equivalently, every point in F is at most distance ε away (under the metric ρ)
from some point fj in the cover C.

– Define the ε-covering number of F with respect to ρ to be the size of the
smallest cover:

N(ε,F , ρ)
def
= min{m : ∃{f1, . . . , fm} ⊆ X ,F ⊆ ∪mj=1Bε(fj)}. (279)

– The metric entropy of F is logN(ε,F , ρ).

• As ε decreases, the points fj in the cover are a better approximation of the points in
Bε(fj), but N(ε,F , ρ) also increases. What is this tradeoff?

• Example 7 (all functions)

– FIGURE: [plot a function, discretize range, put down z1, . . . , zn]

– Let F = X be all functions from R to [0, 1].

– Recall that under the metric ρ = L2(Pn), only function evaluations on the points
z1, . . . , zn matter.

10 Note: there are two variants of covers, internal (where C needs to be in the set F) and external (where
the cover C need not be). We will work with external covers since it gives us some flexibility, and all we will
care about is the cardinality of C.
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– In order to cover F , fix any f ∈ F . Our strategy is to construct some g ∈ F such
that ρ(f, g) ≤ ε and count the number of g’s we obtain as we sweep f across F .

– For each point zi, we cover the range [0, 1] with the set of discrete points Y =
{2ε, 4ε, . . . , 1}. For any value of f(zi) ∈ [0, 1], we can pick g(zi) ∈ Y so that
|f(zi) − g(zi)| ≤ ε. The value of g(z) for z not equal to any of the n points can
be chosen arbitrarily. Averaging over all zi, we get that ρ(f, g) ≤ ε.

– Furthermore, |Y | = 1
2ε

, so

N(ε,F , L2(Pn)) ≤
(

1

2ε

)n
. (280)

The metric entropy is thus O(n log(1/ε)), which intuitively is too large. To see
this, even if we ignored the discretization error ε for the moment, we would see
that the empirical Rademacher complexity of the cover, by Massart’s finite lemma

is O(
√

n log(1/ε)
n

) = O(1), which does not go to zero. Clearly this class of functions

is too large.

– Let’s consider a smaller function class which is still infinite-dimensional and pretty
rich:

• Example 8 (non-decreasing functions)

– FIGURE: [plot an increasing function, discretize range, put down z1, . . . , zn]

– Let F be all non-decreasing functions from R to [0, 1].

– Recall that z1, . . . , zn are the n fixed points. WLOG, assume they are sorted in
increasing order.

– Similar to Example 7, we break up the range [0, 1] into 1
ε

levels Y = {ε, 2ε, . . . 1}.
– Fix any function f ∈ F . We will construct a piecewise constant approximation g

for which ρ(f, g) ≤ ε.

– For each level y ∈ Y , consider the points zi for which f(zi) ∈ [y−ε, y]. Set g(zi) =
y for these points. Note that g is a non-decreasing function across z1, . . . , zn. By
construction, ρ(f, g) ≤ ε.

– Now let’s count the number of possible g’s there are. The key observation is that
because each g is non-decreasing we can associate each level y ∈ Y with a leftmost
the leftmost point zi for which g(zi) = y; the choice of leftmost points (n possible
values) for each level (|Y | = 1/ε values) uniquely defines g. Therefore

N(ε,F , L2(Pn)) = O(n1/ε), (281)

and the metric entropy is O((log n)/ε). This is much better than that of all
functions. The main difference is that we’re choosing a point for each level rather
than a level for each point.

90



Having set up covering numbers with some examples, we are ready to state our main
theorems. Specifically, we will show that the metric entropy leads to an upper bound
on the Rademacher complexity. This can be accomplished two ways:

– First, we will show a simple discretization argument that applies covering numbers
at a single resolution ε.

– Next, we provide a more sophisticated argument called chaining that adaptively
chooses the resolution, yielding tighter bounds.

• Theorem 14 (simple discretization)

– Let F be a family of functions mapping Z to [−1, 1].

– The empirical Rademacher complexity of a function class F can be upper bounded
using its covering number:

R̂n(F) ≤ inf
ε>0

(√
2 logN(ε,F , L2(Pn))

n
+ ε

)
. (282)

– Remark: the RHS involves two terms:

∗ The first is the covering number, which increases as ε decreases. This comes
from Massart’s finite lemma.

∗ The second is ε (which decreases as ε decreases). This is the penalty we pay
for having a discretization.

• Preparation

– We will also assume Z1:n are constant and suppress the explicit conditioning,
writing E[A] instead of E[A | Z1:n].

– To simplify notation, we write ‖f‖ for ‖f‖L2(Pn) and 〈f, g〉 for 〈f, g〉L2(Pn).

– Overloading notation, let σ : Z → {−1,+1} be defined as a function which when
evaluated on zi returns the random sign σi. This allows us to write the empirical
Rademacher complexity succinctly as:

R̂n(F) = E
[
sup
f∈F
〈σ, f〉

]
. (283)

– Note that ‖σ‖ = 1 since it’s just a vector of +1s and −1s.

– In summary, think about each function f ∈ F as an n-dimensional vector

1√
n

[f(z1), . . . , f(zn)] (284)
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and the Rademacher variables σ1, . . . , σn also as an n-dimensional vector:

1√
n

[σ1, . . . , σn]. (285)

We then are just using the usual Euclidean distance on them.

• Proof of Theorem 14:

– Fix ε > 0 and let C be an ε-cover of F .

– The proof follows from manipulating the empirical Rademacher complexity:

R̂n(F) = E
[
sup
f∈F
〈σ, f〉

]
(286)

= E

[
sup
g∈C

sup
f∈F∩Bε(g)

〈σ, g〉+ 〈σ, f − g〉

]
(287)

= E
[
sup
g∈C

1

n
〈σ, g〉+ ε

]
[Cauchy-Schwartz] (288)

=

√
2 logN(ε,F , L2(Pn))

n
+ ε [Massart’s finite lemma]. (289)

• Example 9 (non-decreasing functions (with simple discretization))

– Let F be all non-decreasing functions from Z = R to [0, 1].

– Plugging the covering number of F into Theorem 14:

R̂n(F) ≤ inf
ε>0

√2 ·O( logn
ε

)

n
+ ε

 . (290)

The RHS is minimized when the two terms are equal. Solving for ε and substi-
tuting it back yields:

R̂n(F) = O

((
log n

n

) 1
3

)
. (291)

– Note that this bound provides a rate which is worse than the usual 1√
n

rates.
Is it because non-decreasing functions are just more complex than parametric
function classes? Not in this case. We’ll see shortly that this is just an artifact
of the analysis being too weak, because it is only able to work at one level of
resolution ε.
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• Where is the looseness? The problem with simple discretization is that we are covering
at resolution ε, which inevitably requires many functions (N(ε,F , L2(Pn)) of them, in
fact), but our application of Massart’s finite lemma just assumes we have an arbitrary
set of functions with magitude up to 1. But these functions aren’t arbitrary—they
live in a metric space, and the nearby ones are actually quite close (within ε). Rather
than paying a 1 (the maximum deviation of a function f ∈ F), wouldn’t it be nice
if we could pay something like ε (the maximum difference in nearby functions in the
ε-cover)? Of course, certain pairs of functions in F are quite far.

• We will now introduce a clever technique called chaining gets at the intuition by con-
structing covers at multiple levels of resolution, and using functions in the coarser
covers as waypoints. The idea is that the fewer functions in the coarse cover can have
larger deviation, and the many functions in the finer covers has smaller deviation.

• Theorem 15 (chaining (Dudley’s theorem))

– Let F be a family of functions mapping Z to R.

– The empirical Rademacher complexity of a function class F can be upper bounded
using an integral over its covering number:

R̂n(F) ≤ 12

∫ ∞
0

√
logN(ε,F , L2(Pn))

n
dε. (292)

– Remark: note that compared with Theorem 14, this bound involves an integral
that sweeps across different resolutions ε, and importantly removes the additive
ε penalty.

• Proof of Theorem 15

– FIGURE: [lines corresponding to levels, where each level is discretized more finely
than the previous]

– Let ε0 = supf∈F ‖f‖ be the maximum norm of a function f ∈ F , which will
serve the coarsest resolution. Let εj = 2−jε0 for j = 1, . . . ,m be successively finer
resolutions.

– For each j = 0, . . . ,m, let Cj be an εj-cover of F .

– Fix any f ∈ F .

– Let gj ∈ Cj be such that ‖f − gj‖ ≤ εj; take g0 = 0. Note that gj’s depend on f .

– Let us decompose f as follows:

f = f − gm + g0︸︷︷︸
=0

+
m∑
j=1

(gj − gj−1). (293)
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– Restating Massart’s finite lemma, for a class of functions B, the empirical Rademacher
complexity is:

R̂n(B) ≤
(

sup
b∈B
‖b‖
)√

2 log |B|
n

. (294)

– Let us bound some norms:

∗ ‖f − gm‖ ≤ εm

∗ ‖gj − gj−1‖ ≤ ‖gj − f‖+ ‖f − gj−1‖ ≤ εj + εj−1 = 3εj (since 2εj = εj−1)

– Now compute the empirical Rademacher complexity:

R̂n(F) = E
[
sup
f∈F
〈σ, f〉

]
[definition] (295)

= E

[
sup
f∈F
〈σ, f − gm〉+

m∑
j=1

〈σ, gj − gj−1〉

]
[decompose f ] (296)

≤ εm + E

[
sup
f∈F

m∑
j=1

〈σ, gj − gj−1〉

]
[Cauchy-Schwartz] (297)

≤ εm +
m∑
j=1

E
[
sup
f∈F
〈σ, gj − gj−1〉

]
[push sup inside] (298)

≤ εm +
m∑
j=1

E

[
sup

gj∈Cj ,gj−1∈Cj−1

〈σ, gj − gj−1〉

]
[refine dependence] (299)

≤ εm +
m∑
j=1

(3εj)

√
2 log(|Cj||Cj−1|)

n
[Massart’s finite lemma] (300)

≤ εm +
m∑
j=1

(6εj)

√
log |Cj|
n

[since |Cj| ≥ |Cj−1|] (301)

= εm +
m∑
j=1

12(εj − εj+1)

√
log |Cj|
n

[since εj = 2(εj − εj+1)] (302)

≤ 12

∫ ∞
0

√
logN(ε,F , L2(Pn))

n
dε [bound sum with integral] (303)

In the last step, we took m→∞, which makes the additive penalty εm → 0.

– FIGURE: [plot showing N(ε,F , ρ) as a function of ε, with locations of ε0, ε1, . . . ]

– Remark: The reason why chaining provides better results is the following. In sim-
ple discretization, we apply Massart’s finite lemma on functions whose magitude
is supf∈F ‖f‖, whereas in chaining, we apply Massart’s finite lemma on differences
between functions in Cj and Cj−1 whose range is 3εj.

94



• Example 10 (non-decreasing functions (with chaining))

– Let F be all non-decreasing functions from Z to [0, 1].

– Note that ‖f‖ ≤ 1 for all f ∈ F , so the coarsest resolution is ε0 = 1, so we only
have to integrate ε up to 1, not ∞, since logN(ε,F , L2(Pn)) = 0 for ε ≥ ε0.

– Plugging the covering number of F into Theorem 15:

R̂n(F) ≤ 12

∫ 1

0

√O( logn
ε

)

n

 dε (304)

= O

(√
log n

n

)∫ 1

0

√
1

ε
dε (305)

= O

(√
log n

n

)
. (306)

– Remark: compared with the bound using the simple discretization, we get a better
bound (n−

1
2 versus n−

1
3 ).

• Summary

– Covering numbers is a powerful technique that allows us to handle rich function
classes such as all non-decreasing functions.

– The essence is discretization of a function class, so that we can use Massart’s
finite lemma.

– Chaining allows us to leverage multiple discretization resolutions ε to obtain tight
bounds.

– Covering numbers give you a lot of freedom for customization: choice of metric
and choice of discretization.

– Covering numbers can sometimes be more convenient; for example, the covering
number of F1 ∪ F2 is at most that of F1 plus that of F2, a property not shared
by Rademacher complexity.
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[begin lecture 9] (9)

3.14 Algorithmic stability (Lecture 9)

• Motivation

– Let us shelve excess risk L(ĥ) − L(h∗) for the moment, and instead consider the
gap between the expected and empirical risk. It is easy to see that this quantity
can be upper bounded using uniform convergence:

P[L(ĥ)− L̂(ĥ) ≥ ε] ≤ P[sup
h∈H

L(h)− L̂(h) ≥ ε]. (307)

Colloquially, this answers the following question: if I get 10% error on my training
set, what should I expect my test error to be? (The answer is no more than
10% + ε.) Analyzing the excess risk has relied on ĥ being the ERM, but (307)
actually holds for any estimator ĥ. It is useful to think about ĥ as a function of
the training examples: ĥ = A(z1, . . . , zn), where A is an algorithm.

– Uniform convergence hones in on studying the “size” of H (using Rademacher
complexity, VC dimension, etc.). However, what if a learning algorithm A does
not “use” all of H? For example, what if you use naive Bayes, regularization
via a penalty term, early stopping, or dropout training? All of these could in
principle can return any hypothesis from H, but are somehow constrained by
their objective function or algorithm, so we might expect better generalization
than simply looking at the complexity of H in an algorithm-independent way.

– To be more concrete, let us analyze H = {x 7→ w · x : w ∈ Rd}, the class of linear
functions (with no bounds on the norm). Define the norm ‖h‖H to be ‖w‖2

2 of the
associated weight vector. Define the regularized empirical risk minimizer as
follows:

ĥ = arg min
h∈H

L̂(h) +
λ

2
‖h‖2

H. (308)

– Of course, for a given realization of the data z1:n, the solution to (308) can be
gotten by finding the ERM on the constrained set {h ∈ H : ‖h‖H ≤ B} for some
bound B. But this connection is weak in that B would need to depend on the
data to obtain an exact equivalence. How can we analyze (308) directly?

– In this section, we will introduce bounds based on a notion of algorithmic sta-
bility, where we view a learning algorithm as a function A that take as input
the data z1:n and outputs some hypothesis ĥ. We will study the generalization
properties of ĥ as a function of how stable the algorithm is. Notice the focus on
algorithms rather than on the hypothesis class.
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• Stability will be measured with respect to the difference in behavior of an algorithm
on a training set S and a perturbed version Si:

– S = (z1, . . . , zn): training data, drawn i.i.d. from p∗

– Si = (z1, . . . , z
′
i, . . . , zn): training data with an i.i.d. copy of the i-th example

– z0 is a new test example

We start with a definition of stability:

– Definition 15 (uniform stability)

∗ We say that an algorithm A : Zn → H has uniform stability β (or in the
context of these notes, simply β-stable) with respect to a loss function ` if for
all training sets S ∈ Zn, perturbations Si ∈ Zn, and test example z0 ∈ Z,

|`(z0, A(S))− `(z0, A(Si))| ≤ β. (309)

∗ Note that this is a very strong condition in that the bound must hold uni-
formly for all z0, S, S

i and is not reliant on the probability distribution. There
are weaker notions detailed in Bosquet/Elisseeff (2002).

– Example 11 (stability of mean estimation)

∗ Assume all points z ∈ Rd are bounded ‖z‖2 ≤ B.

∗ Define the squared loss: `(z, h) = 1
2
‖z − h‖2

2.

∗ Define an algorithm that computes the regularized empirical risk minimizer:

A(S)
def
= arg min

h∈Rd
L̂(h) +

λ

2
‖h‖2

2 (310)

=
1

(1 + λ)n

n∑
i=1

zi. (311)

∗ Then A has uniform stability β =
6B2

(1 + λ)n
.

∗ Intuitively, averaging in a new point should contribute O(1/n) and the 1/(1+
λ) is just due to the shrinkage towards zero induced by the regularizer.

∗ To derive this formally, define v1 = A(S)− z0 and v2 = 1
(1+λ)n

[z′i − zi].

|`(z0, A(S))− `(z0, A(Si))| ≤
∣∣∣∣12‖v1‖2

2 −
1

2
‖v1 + v2‖2

2

∣∣∣∣ (312)

≤ ‖v2‖2(‖v1‖2 +
1

2
‖v2‖2) (313)

≤ 2B

(1 + λ)n

(
2B +

B

(1 + λ)n

)
(314)

≤ 2B

(1 + λ)n
(2B +B) . (315)
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∗ We can see that as we increase regularization (larger λ) or amount of data
(larger n), we have more stability (smaller β).

– Example 12 (stability of linear predictors)

∗ Let H = {x 7→ w · x : w ∈ Rd}.
∗ Assume that ‖x‖2 ≤ C2 with probability 1 (according to the data-generating

distribution p∗).

∗ Assume the loss ` is 1−Lipschitz: for all z0 ∈ Z and h, h′ ∈ H:

|`(z0, h)− `(z0, h
′)| ≤ ‖h− h′‖∞

def
= sup

x∈Rd
|h(x)− h′(x)|. (316)

For example, for classification (y ∈ {−1,+1}), this holds for the hinge loss
`((x, y), h) = max{1− yh(x), 0}.
∗ Define the regularized empirical risk minimizer:

A(S)
def
= arg min

h∈H
L̂(h) +

λ

2
‖h‖2

H (317)

∗ Then A has uniform stability β =
C2

2

λn
with respect to `. Again, the stability

is similar to the case of mean estimation; the difference is that λ = 0 is very
bad in regularized ERM while it’s fine for mean estimation; this is because
mean estimation is naturally stabilizing, whereas the ERM (with no control
on the norm) is not stable. See the Bousquet/Elisseeff paper on stability for
the proof.

Now that we have computed the stability for two examples and have a better intuition
for what stability is measuring, let us state the main theorem, which relates stability
to generalization:

– Theorem 16 (generalization under uniform stability)

∗ Let A be an algorithm with uniform stability β.

∗ Assume the loss is bounded: supz,h |`(z, h)| ≤M .

∗ Then with probability at least 1− δ,

L(A(S)) ≤ L̂(A(S)) + β + (βn+M)

√
2 log(1/δ)

n
. (318)

∗ Remark: Due to the presence of βn, for this bound to be not vacuous, we

must have β = o
(

1√
n

)
. Generally, we will have β = O( 1

n
), which guarantees

that L(A(S))− L̂(A(S)) = O( 1√
n
).

– Proof of Theorem 16:
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∗ Our goal is to bound the difference between the expected and empirical risks:

D(S)
def
= L(A(S))− L̂(A(S)). (319)

Stability tells us about `(z0, A(S)), which suggests using McDiarmid’s in-
equality. That is the heart of the proof.

∗ Step 1: Bound the expectation of D(S).

· Recall that S = (z1, . . . , zn), (z′1, . . . , z
′
n), z0 are all independent and there-

fore exchangeable. The basic trick is just to rename variables that pre-
serve the dependency structure and therefore the expectation E[D(S)],
and get it into a form where we can apply the definition of uniform sta-
bility:

E[D(S)] = E

[
1

n

n∑
i=1

[`(z0, A(S))− `(zi, A(S))]

]
[definition] (320)

= E

[
1

n

n∑
i=1

[`(z′i, A(S))− `(z′i, A(Si))]

]
[renaming] (321)

≤ β [definition of uniform stability] (322)

The point is that in the first term z0 is not in S and zi is in S. This logic
is preserved: z′i is not in S and z′i is in Si.

∗ Step 2: show that D(S) satisfies the bounded differences property.

· We should expect such a property to hold given the definition of uniform
stability. But we are not directly applying the bounded differences to the
loss `(z0, A(S)), but rather to D(S). So there is slightly more work. The
trick here is to break down differences using the triangle inequality into
a chain of comparisons, each involving a single perturbation.

· Let L̂i denote the empirical expectation with respect to Si.

· We have

|D(S)−D(Si)| (323)

= |L(A(S))− L̂(A(S))− L(A(Si)) + L̂i(A(Si))| (324)

≤ |L(A(S))− L(A(Si))|+ |L̂(A(S))− L̂i(A(Si))| [triangle inequality]
(325)

≤ |L(A(S))− L(A(Si))|︸ ︷︷ ︸
≤β

+ |L̂(A(S))− L̂(A(Si))|︸ ︷︷ ︸
≤β

+ |L̂(A(Si))− L̂i(A(Si))|︸ ︷︷ ︸
≤ 2M

n

(326)

≤ 2β +
2M

n
. (327)
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In the first two cases, we just used the fact that A is β-stable; recall that
L̂(h) = 1

n

∑n
i=1 `(zi, h) and L(h) = Ez0∼p∗ [`(z0, h)]; here it’s important

that β-stability holds uniformly for any first argument of `, so that we
can upper bound by β regardless of the dependence structure between
the two arguments. In the third case, L̂ and L̂i just differ by one term
which can differ by at most 2M and is scaled by 1

n
.

∗ Step 3: apply McDiarmid’s inequality to bound D(S) in high probability.

· This is a straightforward application. We have

P[D(S))− E[D(S)] ≥ ε] ≤ exp

(
−2ε2

n(2β + 2M
n

)2

)
(328)

= exp

(
−nε2

2(βn+M)2

)
def
= δ. (329)

Rewriting the bound and using the fact that E[D(S)] ≤ β, we have that
with probability at least 1− δ,

D(S) ≤ β + (βn+M)

√
2 log(1/δ)

n
. (330)

– Application to linear functions

∗ Recall that for regularized ERM on linear functions with 1-Lipschitz losses

(like hinge loss), β =
C2

2

λn
, where λ is the regularization strength and ‖x‖2 ≤

C2
2 . Plugging this value of β into Theorem 16, we get that with probability

at least 1− δ,

L(A(S)) ≤ L̂(A(S)) +O

(
C2

2 +M

λ
√
n

)
. (331)

Note that this bound has the right dependence on n, but has a worse depen-
dence on C2 compared to the Rademacher bounds.

3.15 PAC-Bayesian bounds (Lecture 9)

• Bayesians and frequentists

– A Bayesian estimation procedure starts with a prior distribution P (h) over hy-
potheses, observe the training data z1, . . . , zn, and produces a posterior distri-
bution Q(h) ∝ P (h)

∏n
i=1 F (zi | h), where F is the likelihood function. Bayesian

procedures are optimal (see the work of Edwin Jaynes) assuming the prior and
the likelhood functions are correct. But what happens if either is wrong (which
is all the time)? We still want some guarantees.
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– From the cold frequentist perspective, this Bayesian procedure is just another
estimator, an algorithm that takes some data z1, . . . , zn and returns a single hy-
pothesis ĥ or a posterior Q(h) over hypotheses. In this light, we can still ask for
frequentist guarantees: how does the expected and empirical risks compare when
data is generated form any distribution?

– Philosophically, this hybrid view is quite satisfying: Bayesian procedures are often
very sensible, and now we can still hold them up to the scrutiny of frequentist
analysis.

• Bounds that depend on the prior

– In fact, we already have frequentist guarantees that relate the expected and em-
pirical risks for all h ∈ H, and thus for any estimator ĥ.

– Recall that for finite hypothesis classes with loss bounded in [0, 1], using Ho-
effding’s inequality plus the union bound, we have that with probability at least
1− δ,

∀h ∈ H : L(h) ≤ L̂(h) +

√
log |H|+ log(1/δ)

2n
. (332)

(This is similar to Theorem 7, but the bound is on L− L̂ rather than excess risk.)

– But in this bound, each h ∈ H is treated the same, whereas the prior P (h)
explicitly says that some are more likely than others. Can we incorporate the
prior P (h) into the analysis without assuming that the prior is “correct”?

– PAC-Bayesian bounds provide exactly this. In this class, we will consider two
types:

∗ Occam bound: assume a countable hypothesis class, algorithm outputs a
single hypothesis

∗ PAC-Bayesian theorem: assume an infinite hypothesis class, algorithm out-
puts a posterior

Let us start with Occam bound, which captures the key intuitions:

• Theorem 17 (Occam bound)

– Let H be a countable hypothesis class.

– Let the loss function be bounded: `(z, h) ∈ [0, 1].

– Let P be any “prior” distribution over H.

– Then with probability at least 1− δ,

∀h ∈ H : L(h) ≤ L̂(h) +

√
log(1/P (h)) + log(1/δ)

2n
. (333)
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• Let’s try to understanding this bound with a few special cases.

– If the prior puts all its mass on one hypothesis h0 (P (h) = I[h = h0]), then the
bound is just the standard Hoeffding bound you would get for a single hypothesis.

– If we have a uniform distribution over some subset of hypotheses S ⊆ H (P (h) =
I[h ∈ S]/|S|), then we recover the standard result for finite hypotheses (similar
to Theorem 7, which is for excess risk).

– This reveals how PAC-Bayes is a generalization: rather than commiting to prior
distributions which are uniform over some support S ⊆ H, we can have prior dis-
tributions which place different probability mass on different hypotheses. We can
letH be as large as we want as long as we still have probabilities (

∑
h∈H P (h) = 1).

In some sense, P (h) defines a fuzzy hypothesis class.

• Proof of Theorem 17:

– The proof is very simple. The key idea is to allocate our confidence parameter δ
across different hypotheses proportionally based on the prior P (h).

– By Hoeffding’s inequality, we have that for any fixed h ∈ H:

P[L(h) ≥ L̂(h) + ε] ≤ exp(−2nε2). (334)

– If we set the RHS to δP (h), then we get that with probability at most δP (h),

L(h) ≥ L̂(h) +

√
log(1/(δP (h)))

2n
. (335)

– Applying the union bound across all h ∈ H, we have that with probability at
most δ,

∃h ∈ H : L(h) ≥ L̂(h) +

√
log(1/(δP (h)))

2n
. (336)

– Take the contrapositive of this statement to get the statement in the theorem.

• The bound also suggests an algorithm:

– The ultimate goal is to finte h that minimizes L(h). Of course, we can’t evaluate
L(h). But we do have an alleged upper bound on L(h)!

– The bound is interesting because the penalty term log(1/P (h)) actually depends
on the hypothesis h, whereas all our previous bounds depended only on the com-
plexity of H. Let’s treating the RHS bound as an objective to be minimized by
an algorithm. Recall that this bound holds simultaneously for all h ∈ H, which
means that it will hold for the output of any algorithm A(S).
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– Motivated by the bound, we can define an algorithm that actually uses the bound
by minimizing the RHS:

A(S)
def
= arg min

h∈H
L̂(h) +R(h), R(h) =

√
log(1/P (h)) + log(1/δ)

2n
. (337)

From this perspective, the bound provides a regularizer R(h) which penalizes h
more if it has small prior probability P (h). The algorithm A(S) thus balances
the empirical risk L̂(h) with the regularizer R(h).

– As we get more data (n→∞), the regularizer also goes to zero, meaning that we
will trust the empirical risk more, allowing us to consider more complex hypotheses
in H. This is a pretty nice behavior to have.

– Note this is not a Bayesian procedure. The closest thing is if we let the loss
function be the negative log-likelihood `(z, h) = − logF (z | h), then the MAP

estimate would be arg minh∈H L̂(h)+ log(1/P (h))
n

, so the only difference is the square
root. A partial explanation is that in order to obtain frequentist guarantees
without any smoothness conditions, we need to regularize more (with the square
root).

• There are two things lacking about the Occam bound:

– It only applies to countableH, which does not include the set of all weight vectors,
for example.

– It only embraces half of the Bayesian story: while we have a prior P (h), only a
single h ∈ H is returned rather than a full posterior Q(h).

The following theorem generalizes the Occam bound:

• Theorem 18 (PAC-Bayesian theorem (McAllester))

– Let the loss function be bounded: `(z, h) ∈ [0, 1].

– Let P be any “prior” distribution over H.

– Let QS be any “posterior” distribution over H, which is a function of the training
data S.

– Then with probability at least 1− δ,

Eh∼QS [L(h)] ≤ Eh∼QS [L̂(h)] +

√
KL (QS‖P ) + log(4n/δ)

2n− 1
. (338)

• Proof: see the McAllester paper.

• To recover the Occam bound (up to constants), we simply set QS to be a point mass
at some h.
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3.16 Interpretation of bounds (Lecture 9)

• Now that we’ve derived a whole host of generalization bounds, let us take a step back
and ask the question: how should we think about these bounds?

• Properties

– One could evaluate these bounds numerically, but they will probably be too loose
to use directly. The primary purpose of these bounds is to instead formalize the
relevant properties of a learning problem and characterize their relationship to
the expected risk, the quantity of interest.

– The relationships solidify intuitions about learning. Here are some examples:

∗ If we have d features, n ∼ d training examples suffices to learn. If the number
of features increase by 2, we need to increase n by 2 as well to maintain the
same estimation error.

∗ We can actually have as many features d as we want (even infinite), so long
as we regularize properly using L2 regularization: bounds depend on norm B
not dimension d.

∗ If there are many irrelevant features use L1 regularization: the L1 ball is just
much smaller than the L2 ball. Here, exploiting the structure of the problem
leads to better bounds (and algorithms).

∗ If there is low noise in the problem (in the realizable setting, some predictor
obtains zero expected risk), then estimation error is smaller (O(1/n) versus
O(1/

√
n) convergence).

• Excess risk is only part of the story.

– It is important to note that generalization bounds focus on addressing the (excess
risk L(ĥ)− L(h∗), not the approximation error L(h∗).

– For example, if d is the number of features, then L(ĥ) − L(h∗) = O(
√

d
n
) shows

that by adding more features, the estimation error will worsen. However, we hope
that L(h∗) will improve. Therefore, in practice, one can still hope to reduce L(ĥ)
by adding additional features.

– The technical core of this section is concentration of measure: as you aggregate
over increasing amounts of independent data, many of the relevant quantities
convergence. Insight is obtained by closely observing how fast these quantities
converge.

• What loss function?

– The bounds derived using finite hypothesis classes or finite VC dimension operated
on the zero-one loss (supposing for the moment that’s our desired loss function).
However, the empirical risk minimizer in this case is NP-hard to compute.
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– However, the norm-based bounds using Rademacher complexity required a Lips-
chitz loss function such as the hinge loss, which is a surrogate loss. This gives us
results on an empirical risk minimizer which we can actually evaluate in practice.
One can say is that the zero-one loss is upper bounded by the hinge loss, but this
is relatively weak, and in particular, minimizing the hinge loss even in the limit
of infinite data will not give you something that minimizes the zero-one loss. A
special case is that for universal kernels, minimizing the hinge loss (among oth-
ers) does correspond to minimizing the zero-one loss in the limit of infinite data
(Bartlett/Jordan/McAuliffe, 2005).

3.17 Summary (Lecture 9)

• The main focus of this section was to study the excess risk L(ĥ) − L(h∗) of the
empirical risk minimizer ĥ. In particular, we wanted that with probability at least
1 − δ, the excess risk L(ĥ) − L(h∗) is upper bounded by something that depends on
the complexity of the learning problem and n, the number of i.i.d. training examples.
(Another goal is to bound the difference between expected and empirical risks L(ĥ)−
L̂(ĥ).)

• The excess risk is often within a factor of two of the difference between empirical and
expected risk: suph∈H |L(h) − L̂(h)|, which has a form which suggests using uniform
convergence tools to bound it.

• Results on excess risk L(ĥ)− L(h∗):

– Realizable, finite hypothesis class: O
(

log |H|
n

)
– Finite hypothesis class: O

(√
log |H|
n

)
– Shattering coefficient / VC dimension: O

(√
log s(H,n)

n

)
= O

(√
VC(H) logn

n

)
– L2 norm constrained—kernels (‖w‖2 ≤ B2, ‖x‖2 ≤ C2): O

(
B2C2√

n

)
– L1 norm constrained—sparsity (‖w‖1 ≤ B1, ‖x‖∞ ≤ C∞): O

(
B1C∞

√
log d√

n

)
– Non-decreasing functions (via covering numbers and chaining): O

(∫∞
0

√
logN(ε,H,L2(Pn))

n
dε

)
=

O

(√
logn
n

)
• Technical tools

– Tail bounds
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∗ How much do random variables deviate from their mean? We generally look
for sharp concentration bounds, which means that the probability of deviation
by a constant decays exponentially fast as a function of n: P[Gn−E[Gn] ≥
ε] ≤ c−nε

2
.

∗ When Gn is an average of i.i.d. sub-Gaussian variables Zi we can bound
the moment generating function and get the desired bound (Hoeffding’s
inequality for bounded random variables). Sub-Gaussian random variables
include Gaussian and bounded random variables (it is convenient to assume
our loss or data is bounded), but not Laplace random variables, which has
heavier tails (there, we need sub-exponential bounds).

∗ When Gn is the result of applying a function with bounded differences to
i.i.d. variables, then McDiarmid’s inequality gives us the same bound.

– Complexity control

∗ For a single hypothesis, we can directly apply the tail bound to control the
difference L(h) − L̂(h). However, we seek uniform convergence over all
h ∈ H.

∗ Finite hypothesis classes: log |H| (use simple union bound)

∗ For infinite hypothesis classes, the key intuition is that the complexity of H
is described by how it acts on n data points. Formally, symmetrization
(introduce ghost dataset and Rademacher variables) reveals this.

∗ The complexity is the shattering coefficient s(H, n) (technically of the
loss class A). By Sauer’s lemma, the shattering coefficient can be upper
bounded using the VC dimension VC(H).

∗ Rademacher complexity Rn(H) measures how well H can fit random binary
labelings (noise). Rademacher complexity is nice because of the numerous
compositional properties (convex hull, Lipschitz composition, etc.)

· By Massart’s finite lemma, we can relate Rn(H) to the shattering
coefficient.

· For L2 norm constrained linear functions, we used linearity and Cauchy-
Schwartz, which enables us to analyze kernels.

· For L1 norm constrained linear functions, we used the fact that the L1

polytope is really simple as it only has 2d vertices.

• Other paradigms

– We also studied two alternative pardigms for analyzing learning, both of which
were motivated by the need for greater nuance. Let A be any learning algorithm
that maps training data S to a hypothesis ĥ ∈ H. The algorithm A could be the
ERM, but it need not be.

– Typical uniform convergence bounds yield results that depend on the complexity
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of the entire hypothesis class H:

L(A(S))− L̂(A(S)) ≤ SomeFunction(H). (339)

– Algorithmic stability allows us to obtain a bound that depends on properties of
the algorithm A (i.e., its stability β) rather than H. We obtained bounds of the
form:

L(A(S))− L̂(A(S)) ≤ SomeFunction(A). (340)

– PAC-Bayesian bounds allow us to incorporate the prior into the analysis without
sacrificing objective rigor. We obtained bounds of the form:

L(A(S))− L̂(A(S)) ≤ SomeFunction(A(S)). (341)

Note that the bound depends on the output of the algorithm.

Of course, algorithmic stability and PAC-Bayes bounds only bound the expected and
empirical risks, not the excess risk, which requires the heavyweight uniform conver-
gence. Intuitively, one expects this: to bound excess risk A(S) has to be related to h∗

somehow, not just be stable or be based on a possibly incorrect prior.
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4 Kernel methods
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[begin lecture 10] (10)

4.1 Motivation (Lecture 10)

• So far in this class, we have focused on studying the excess risk L(ĥ) − L(h∗), which
measures how far our estimated predictor ĥ is away from the best possible predictor
h∗ ∈ H in terms of expected risk. But this is only half of the story, since the expected
risk that we care about is the sum of the excess risk and the best expected risk of the
hypothesis class:

L(ĥ) = L(ĥ)− L(h∗) + L(h∗). (342)

The latter term has to do with how expressive H is.

• We have mainly focused on linear models, where the prediction is a function of the
inner product 〈w, x〉 between a weight vector w ∈ Rd and an input x ∈ Rd (e.g., for
regression, the prediction function is just f(x) = 〈w, x〉). However, real data often
exhibit highly non-linear relationships which are important to model.

• But we can sneakily replace 〈w, x〉 with 〈w, φ(x)〉, where φ : X → Rd is an arbitrary
feature map:

– Example: φ(x) = (1, x, x2) for x ∈ R
– Example: φ(x) = (count of a appearing in x, . . . ) for a string x.

Note that x does not even need to be a real vector. In general, we assume that x ∈ X
for some set X of all possible inputs (we won’t assume any further structure on X for
now).

• Therefore, we can represent very expressive non-linear functions by making φ(x)
complex, but the problem is that φ(x) might have to be very high-dimensional in order
to attain the desired degree of expressiveness, resulting in computationally expensive
algorithms.

• But perhaps we can cut down on computation.

– Suppose we are trying to minimize the average squared loss over n training ex-
amples:

L̂(w) =
1

n

n∑
i=1

1

2
(y(i) −

〈
w, φ(x(i))

〉
)2. (343)
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Optimization algorithms typically access the function only through the gradient,
which is:

∇L̂(w) =
1

n

n∑
i=1

(y(i) −
〈
w, φ(x(i))

〉
)φ(x(i)). (344)

An algorithm that only accumulates (scaled) gradients will ultimately produce a
weight vector w that can be written as a linear combination of the feature vectors
of the data points (we will revisit this property in much greater generality when
we study the representer theorem):

w =
n∑
i=1

αiφ(x(i)). (345)

Given a weight vector of this form, we can make predictions as follows:

〈w, φ(x)〉 =
n∑
i=1

αi
〈
φ(x(i)), φ(x)

〉
. (346)

– The key is that predictions only depend on the inner product between the
feature vectors. This suggests we can work with in high (even infinite!) dimensions
as long as we can compute this inner product efficiently. The computational
tradeoff is as follows: we store the αi’s (n numbers) rather than w (d numbers).
If the number of features d is much larger than the number of training examples
n, then we win on space. On the other hand, if we have a lot of data (n), we must
resort to approximations, as we’ll see later.

– Example 13 (computing with quadratic features)

∗ Let the raw input be x ∈ Rb.

∗ Feature map with all quadratic terms:

φ(x) = [x2
1, . . . , x

2
b ,
√

2x1x2, . . . ,
√

2x1xb,
√

2x2x3, . . . ,
√

2x2xb, . . . ,
√

2xb−1xb],
(347)

There are O(b2) dimensions.

∗ Explicit computation: 〈w, φ(x)〉 takes O(b2) time.

∗ Implicit computation: 〈φ(x), φ(x′)〉 = 〈x, x′〉2, which takesO(b) time. 〈w, φ(x)〉
requires doing this for each of n data points, which takes O(bn) time.

– It’s important to realize that mathematically, we’re still computing the same
function values as before. All we’ve done is perform a computational sleight of
hand, known as the kernel trick.

– Aside: sometimes, we can compute dot products efficiently in high (even infinite)
dimensions without using the kernel trick. If φ(x) is sparse (as is often the case
in natural language processing), then 〈φ(x), φ(x′)〉 can be computed in O(s) time
rather than O(d) time, where s is the number of nonzero entries in φ(x).
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• Since these algorithms only depend on the inner product, maybe we can just cut
to the chase and directly write down functions k that correspond to inner products:
k(x, x′) = 〈φ(x), φ(x′)〉 for some feature map φ.

• This is a key conceptual change: it shifts our perspective from thinking in terms of
features of single inputs to thinking about notions of “similarity” k(x, x′) between two
inputs x and x′. Sometimes, similarities might be more convenient from a modeling
point of view.

• Therefore, kernels offers two things:

– A computationally efficient way of working with high (and even infinite) dimen-
sional φ(x) implicitly.

– A different perspective on features, which can be more natural from a modeling
perspective for certain applications, and help us understand our model family,
even if we computationally end up working with features.

4.2 Kernels: definition and examples (Lecture 10)

• We now define kernels formally. While we have suggested that kernels are related to
feature maps, we hold back on establishing their formal connection until later to avoid
confusion.

• Definition 16 (kernel)

– A function k : X × X → R is a positive semidefinite kernel (or more simply,
a kernel) iff for every finite set of points x1, . . . , xn ∈ X , the kernel matrix
K ∈ Rn×n defined by Kij = k(xi, xj) is positive semidefinite.

• Let us now give some examples of kernels, and then prove that they are indeed valid
according to Definition 16. Assume in the following that the input space is X = Rb.
Note that we can visualize a kernel for X = R by fixing x′ to some value (say 1) and
plotting k(x, 1).

– Linear kernel:

k(x, x′) = 〈x, x′〉 . (348)

– Polynomial kernel:

k(x, x′) = (1 + 〈x, x′〉)p. (349)

∗ Intuition: for boolean features (x ∈ {0, 1}b), this corresponds to forming
conjunctions of the original features.
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∗ Here, we can check that the corresponding dimensionality (number of fea-
tures) is O(bp), which is exponential in p.

– Gaussian kernel:

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
. (350)

∗ A Gaussian kernel puts a smooth bump at x.

∗ The bandwidth parameter σ2 governs how smooth the functions should be:
larger σ2 yields more smoothness.

∗ The corresponding dimensionality is infinite (as we’ll see later), so computa-
tionally, we really have no choice but to work with kernels.

∗ The Gaussian is in some sense the “go to” kernel in machine learning, because
it defines a very expressive hypothesis class, as we will see.

– Sequence mis-match kernel:

∗ The above kernels have been defined for continuous input spaces X ⊆ Rb, but
we can define kernels on any type of object.

∗ Suppose X = Σ∗ is the set of all possible sequences (strings) over some
alphabet Σ. We want to define a kernel between two strings which measures
their similarity, a problem that arises in NLP and computational biology. For
example, consider the strings format and fmt.

∗ A string u ∈ X is a subsequence of x ∈ X if there exists a sequence of indices
i = (i1, . . . , i|u|) such that 1 ≤ i1 < · · · < i|u| ≤ |x| such that uj = xij . In this
case, we write u = x(i).

∗ Note that x has exponentially many subsequences in general.

∗ Now define a kernel between two sequences x, x′ to be a weighted number of
common subsequences:

k(x, x′) =
∑
u∈Σ∗

∑
(i,j):x(i)=x′(j)=u

λ|i|+|j|, (351)

for some decay parameter 0 ≤ λ ≤ 1. Smaller values of λ discount longer
subsequences more.

• Non-example: k(x, x′) = I[‖x− x′‖2 ≤ 1]

– Exercise: show that k is not a kernel function.

• Now we show the above kernels (linear, polynomial, Gaussian) are actually valid ac-
cording to Definition 16. Let x1, . . . , xn ∈ X be any points. We have to check that the
kernel matrix K formed by Kij = k(xi, xj) is positive semidefinite. But we first start
with some general principles that will allow us to easily check whether a given function
k is a kernel easily.
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• General principles for checking kernels

– Base case: for any function f : X → R, k(x, x′) = f(x)f(x′) is positive semidefi-
nite.

∗ Proof: the kernel matrix can be written as K = uu> � 0, where u =
(f(x1), · · · , f(xn)).

– Recursive case: given two kernels k1, k2, we can create new kernels k. Note that
to check that k is a kernel, it suffices to check that K1, K2 � 0 ⇒ K � 0, where
K1, K2, K are the corresponding kernel matrices of k1, k2, k.

– Sum (recursive case): k(x, x′) = k1(x, x′) + k2(x, x′)

∗ Since positive semidefiniteness is closed under addition, K = K1 +K2 � 0.

– Product (recursive case): k(x, x′) = k1(x, x′)k2(x, x′)

∗ K = K1 ◦K2 corresponds to elementwise product.

∗ Since K1, K2 are positive semidefinite, we can take their eigendecompositions:

· K1 =
∑n

i=1 λiuiu
>
i

· K2 =
∑n

j=1 τjzjz
>
j

∗ Taking the elementwise product yields the following eigendecomposition, show-
ing that K is also positive semidefinite:

· K =
∑n

i=1

∑n
j=1 λiτj(ui ◦zj)(ui ◦zj)>, where ◦ denotes elementwise prod-

ucts.

• Using these three principles, we can show that the linear, polynomial, and Gaussian
kernels are valid.

– Linear kernel: sum over kernels defined by functions of the form f(x) = xi.

– Polynomial kernel: given the linear kernel 〈x, x′〉, add 1 (which is a kernel); this
shows that the sum 〈x, x′〉+ 1 is a kernel. By the product property, (〈x, x′〉+ 1)2

is also a kernel. Repeat p− 1 times to show that (〈x, x′〉+ 1)p is a kernel.

– Gaussian kernel:

∗ Rewrite

k(x, x′) = exp

(
−‖x‖2

2

2σ2

)
exp

(
−‖x′‖2

2

2σ2

)
exp

(
〈x, x′〉
σ2

)
. (352)

∗ The first two factors are handled by the base case.

∗ For the third factor, take the Taylor expansion:

exp

(
〈x, x′〉
σ2

)
= 1 +

〈x, x′〉
σ2

+
1

2

〈x, x′〉2

σ4
+

1

6

〈x, x′〉3

σ6
+ · · · (353)

Each term is just a homogenous polynomial kernel. Summing a finite number
of terms yields a kernel. Kernels are closed under taking limits (since the set
of positive semidefinite matrices is closed).
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4.3 Three views of kernel methods (Lecture 10)

• We now start laying the mathematical foundation for kernel methods. Specifically, we
will develop three views of kernel methods, as illustrated in Figure 8.

– Feature map φ: maps from a data point x ∈ X to an element of an inner product
space (the feature vector). This allows us to think about properties of single data
points.

– Kernel k: takes two data points x, x′ ∈ X and returns a real number. This allows
us to think about similarity between two data points.

– RKHS H: a set of functions f : X → R equipped a norm ‖ · ‖H for measuring the
complexity of functions. This allows us to think about the prediction function f
itself.

We will define each of the three views separately, but eventually show that they are all
in a sense equivalent.

Feature map φ(x)

Kernel k(x, x′) RKHS H with ‖ · ‖H

unique

unique

Figure 8: The three key mathematical concepts in kernel methods.

• First, we need a formal notion of infinite feature vectors (the range of a feature map
φ) that generalizes Rd.

• Definition 17 (Hilbert space)

– A Hilbert space H is an complete11 vector space with an inner product 〈·, ·〉 :
H×H → R that satisfies the following properties:

∗ Symmetry: 〈f, g〉 = 〈g, f〉
∗ Linearity: 〈α1f1 + α2f2, g〉 = α1 〈f1, g〉+ α2 〈f2, g〉
∗ Positive definiteness: 〈f, f〉 ≥ 0 with equality only if f = 0

The inner product gives us a norm: ‖f‖H
def
=
√
〈f, f〉.

– Examples

11 Completeness means that all Cauchy sequences (in which elements get closer and closer to each other)
converge to some element in the space (see Definition 31). Examples: set of real numbers is complete, set of
rational numbers is not.
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∗ Euclidean space: Rd, with 〈u, v〉 =
∑d

i=1 uivi

∗ Square summable sequences: `2 = {(ui)i≥1 :
∑∞

i=1 u
2
i < ∞}, with 〈u, v〉 =∑∞

i=1 uivi.

∗ Square integrable functions on [0, 1]: L2([0, 1]) = {f :
∫ 1

0
f(x)2dx <∞}, with

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.12

• Definition 18 (feature map)

– Given a Hilbert space H, a feature map φ : X → H takes inputs x ∈ X to
infinite feature vectors φ(x) ∈ H.

• Theorem 19 (feature map defines a kernel)

– Let φ : X → H be a feature mapping some input space X to a Hilbert space H.

– Then k(x, x′)
def
= 〈φ(x), φ(x′)〉 is a kernel.

• Proof:

– The key idea is that the definition of the kernel only needs to look at n points,
which reduces everything to a finite problem.

– Let x1, . . . , xn be a set of points, and let K be the kernel matrix where Kij =
〈φ(xi), φ(xj)〉.

– To show that K is positive semidefinite, take any α ∈ Rn. We have

α>Kα =
n∑
i=1

n∑
j=1

αiαj 〈φ(xi), φ(xj)〉 (354)

=

〈
n∑
i=1

αiφ(xi),
n∑
i=j

αjφ(xj)

〉
(355)

≥ 0, (356)

where we use linearity of the inner product.

• Theorem 20 (kernel defines feature maps)

– For every kernel k (Definition 16), there exists a Hilbert space H and a feature
map φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉.

12 Technically, L2([0, 1]) is not a vector space since a function f which is non-zero on a measure zero set
will still have ‖f‖H = 0. But the quotient space (with respect to functions f with ‖f‖H = 0) is a vector
space.
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• We will prove Theorem 20 later since it requires more sophisticated machinery (RKHSes).
But to get some intuition, let’s prove it for the case where the number of inputs X is
finite.

– Let X = {x1, . . . , xn} and define the kernel matrix K (which defines the entire
kernel).

– Since K ∈ Rn×n is positive semidefinite, we can write it as K = ΦΦ>. For
example we can take an eigendecomposition K = UDU> and let Φ = UD1/2 or
the Cholesky decomposition K = LL>.

– Let the feature vector φ(xi) ∈ Rn be the i-th row of Φ. We can verify that
K = ΦΦ> (equivalently, k(xi, xj) = 〈φ(xi), φ(xj)〉).

– Note: the feature map is not unique, since we can also define an alternate fea-
ture matrix Φ′ = ΦQ for any orthogonal matrix Q. In this light, kernels are a
more “pure” way of defining models, because feature vectors have this rotational
indeterminancy.

– If the input space X infinite, then we need to generalize our notion of feature
vector from Rn to an infinite dimensional space. What is that space?

4.4 Reproducing kernel Hilbert spaces (RKHS) (Lecture 10)

• We will now introduce RKHSes (a type of Hilbert space), the third view on kernel
methods. RKHSes allow us to work directly on the prediction function. Concretely, in
linear regression, we fit a weight vector w, constraining or regularizing the norm ‖w‖2,
and we use w to predict on a new input x via x 7→ 〈w, φ(x)〉. But can we get a handle
on this prediction function x 7→ f(x) directly as well as a norm ‖f‖H measuring the
complexity of f?

• Our first reaction might be to consider a Hilbert space over functions f : X → R. But
not all Hilbert spaces are not suitable for machine learning.

– For example, consider H = L2([0, 1]). Recall that every f ∈ H is actually an
equivalence class over functions which differ on a measure zero set, which means
pointwise evaluations f(x) at individual x’s is not even defined.

– This is highly distressing given that the whole point is to learn an f for the
purpose of doing pointwise evaluations (a.k.a. prediction)!

– RKHSes remedy this problem by making pointwise evaluations really nice, as we’ll
see.

• Definition 19 (bounded functional)

– Given a Hilbert space H, a functional L : H → R is bounded iff there exists an
M <∞ such that

|L(f)| ≤M‖f‖H for all f ∈ H. (357)
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– Example: H = Rd with the usual inner product, L(f) = 〈c, f〉 is bounded (with
M = ‖c‖2 by Cauchy-Schwartz)

• Definition 20 (evaluation functional)

– Let H be a Hilbert space consisting of functions f : X → R.

– For each x ∈ X , define the evaluation functional Lx : H → R as

Lx(f)
def
= f(x). (358)

– Example: for X = Rd and H = {fc : c ∈ Rd} where fc(x) = 〈c, x〉 be linear
functions, then the evaluation functional is Lx(fc) = 〈c, x〉.

– Intuitively, the evaluation functional is a projection operator that turns a function
f into one component f(x). Hence, evaluation functionals are linear. This will
be important later.

• Definition 21 (reproducing kernel Hilbert space)

– A reproducing kernel Hilbert space H is a Hilbert space over functions f : X → R
such that for each x ∈ X , the evaluation functional Lx is bounded.

• Non-example

– Let H be the set of all square integrable continuous functions from [0, 1] to R.

– Consider fε(x) = max(0, 1− |x−
1
2
|

ε
), which is zero except for a small spike at x = 1

2

up to f(x) = 1. Note that ‖fε‖H → 0 as ε→ 0.

– Consider the evaluation functional L 1
2
. Note that L 1

2
(fε) = fε(

1
2
) = 1. So there

cannot exist an M such that L 1
2
(fε) ≤M‖fε‖H for all ε > 0.

– So this H is not a RKHS. Note that continuity ensures that functions are actually
defined pointwise, not just up to a measure zero set. The problem is that this H
is just too big of a set.

Having defined what an RKHS is, we now show the connection with kernels. In par-
ticular:

– Each RKHS H is associated with a unique kernel k (Theorem 21)

– Each kernel k is associated with a unique RKHS H (Theorem 22)

• Theorem 21 (RKHS defines a kernel)

– Every RKHS H over functions f : X → R defines a unique kernel k : X ×X → R,
called the reproducing kernel of H.
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• Proof (construction of the kernel)

– Note that Lx is a linear functional: Lx(cf) = cLx(f) and Lx(f + g) = Lx(f) +
Lx(g).

– The Riesz representation theorem states that all bounded linear functionals
L on a Hilbert space can be expressed as an inner product L(f) = 〈R, f〉 for a
unique R ∈ H.

– Applying this theorem to the evaluation functionals Lx, we can conclude that
for each x ∈ X , there exists a unique representer Rx ∈ H such that Lx(f) =
〈Rx, f〉. Recall that we also have Lx(f) = f(x) by definition. Combining yields
the reproducing property:

f(x) = 〈Rx, f〉 for all f ∈ H. (359)

This is the key property: function evaluations can be expressed as inner products.

– Now let’s define a function k:

k(x, x′)
def
= Rx(x

′). (360)

Applying the reproducing property one more time with f = Rx yields

k(x, x′) = Rx(x
′) = 〈Rx, Rx′〉. (361)

If we define a feature map φ(x)
def
= Rx, we can invoke Theorem 19 to conclude

that k(x, x′) is a valid kernel.

– In summary, any RKHS H gives rise to a kernel k called the reproducing kernel
of H. The key is the Riesz representation, which turns function evaluations into
inner products.

To complete the connection between RKHSes and kernels, we need to show the con-
verse, namely that a kernel defines an unique RKHS:

• Theorem 22 (Moore-Aronszajn theorem)

– For every kernel k, there exists a unique RKHS H with reproducing kernel k.

• Proof sketch:

– Let k be a kernel. We will construct a RKHS H from the functions {k(x, ·) : x ∈
X}.
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– First, define H0 to contain all finite linear combinations of the form

f(x) =
n∑
i=1

αik(xi, x), (362)

for all n, α1:n, x1:n. By construction, H0 is a vector space (not necessarily complete
though). This is a very natural class of functions: just a linear combination of
basis functions centered around the points x1, . . . , xn.

– Second, define the inner product between f(x) =
∑n

i=1 αik(xi, x) and g(x) =∑n′

j=1 βjk(x′j, x) as follows:

〈f, g〉 def
=

n∑
i=1

n′∑
j=1

αiβjk(xi, x
′
j). (363)

Let’s check that our definition of 〈·, ·〉 is an actual inner product:

∗ Symmetry (〈f, g〉 = 〈g, f〉): by symmetry of k

∗ Linearity (〈α1f1 + α2f2, g〉 = α1 〈f1, g〉+ α2 〈f2, g〉): by definition of f and g
(they are just a linear sum of terms).

∗ Positive definiteness (〈f, f〉 ≥ 0 with equality only if f = 0):

· For any f ∈ H0, we have 〈f, f〉 = α>Kα ≥ 0 by the positive semidefinite
property of kernels.

· Now we will show that 〈f, f〉 = 0 implies f = 0. Let f(x) =
∑n

i=1 αik(xi, x).
Take any x ∈ X and define c = [k(x1, x), . . . , k(xn, x)]>. Since(

K c
c> k(x, x)

)
� 0, (364)

we must have that

α>Kα + 2bc>α + b2k(x, x) ≥ 0 (365)

for all b. Note that 〈f, f〉 = α>Kα = 0. We now argue that c>α = 0.
If c>α > 0, then as b approaches 0 from the negative side, we have that
the LHS of (365) is strictly negative (since the b term will dominate the
b2 term), which is a contradiction. If c>α < 0, then as b approaches 0
from the positive side, we get a contradiction as well. Therefore, f(x) =
c>α = 0.

– So far we have a valid Hilbert space, but we need to still check that all evaluation

functionals Lx are bounded to get an RKHS. Also, we should check that Rx
def
=

k(x, ·) is indeed a representer of function evaluationals. Take any f ∈ H0. Then:

f(x) =
n∑
i=1

αik(xi, x) [definition of f ] (366)

= 〈f, k(x, ·)〉 [definition of inner product] (367)

= 〈Rx, f〉 [definition of Rx]. (368)
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Boundedness of Lx follows from |Lx(f)| = | 〈f, k(x, ·)〉 | ≤ ‖f‖H‖k(x, ·)‖ = ‖f‖Hk(x, x)
by Cauchy-Schwartz.

– Finally, let H be the completion of H0 (by including all limit points of sequences
in H0). This is the only part of the proof that we’re punting on. For details, see
the references at the end of this section.

– This proves Theorem 20 because the RKHS H is an inner product space by
construction.

• Summary

– A feature map φ : X → H: maps points in X to some inner product space H.

– A (positive semidefinite) kernel k : X × X → R has the property that every
derived kernel matrix K is positive semidefinite.

– A reproducing kernel Hilbert Space (RKHS) H containing functions f : X → R
such that function evaluations are bounded linear operators.

– Equivalences

∗ f(x) =
∑∞

i=1 αik(xi, x), Rx = k(x, ·): Moore-Aronszajn establishes connec-
tion between kernels and RKHSes

∗ φ(x) = Rx: can set feature map (not unique) to map x to the representer of
x in the RKHS

∗ k(x, x′) = 〈φ(x), φ(x′)〉: every kernel k corresponds to some inner product
(via RKHS) and vice-versa (easy)
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[begin lecture 11] (11)

4.5 Learning using kernels (Lecture 11)

• We have established that kernels k provide a space of functionsH; this is the hypothesis
class.13 Now let’s talk about learning, which is about combining the hypothesis class
H with actual data.

• Let’s start with kernelized ridge regression, where we obtain examples {(xi, yi)}ni=1,
and want to find a function f ∈ H that fits the data, where H is an RKHS. A natural
objective function is to penalize the squared loss plus a penalty for the complexity of
f , where the complexity is the RKHS norm:

f ∗ ∈ arg min
f∈H

n∑
i=1

1

2
(f(xi)− yi)2 +

λ

2
‖f‖2

H. (369)

• More generally, a learning problem can be posed as the following optimization problem:

f ∗ ∈ arg min
f∈H

L({(xi, yi, f(xi))}ni=1) +Q(‖f‖2
H), (370)

where

– L : (X × Y × R)n → R is an arbitrary loss function on n examples.

∗ Example (regression): L({(xi, yi, f(xi))}ni=1) =
∑n

i=1
1
2
(f(xi)− yi)2.

– Q : [0,∞)→ R is a strictly increasing function (regularizer).

∗ Example (quadratic): Q(‖f‖2
H) = λ

2
‖f‖2

H.

This optimization problem may seem daunting since it is optimizing over a potentially
very large function space H. But the following representer theorem reassures us that
all minimizers can be written as a linear combination of the kernel functions evaluated
at the training points.

• Theorem 23 (representer theorem)

– Let V denote the span of the representers of the training points:

V
def
= span({k(xi, ·) : i = 1, . . . , n}) =

{
n∑
i=1

αik(xi, ·) : α ∈ Rn

}
. (371)

– Then all minimizers f ∗ of (370) satisfy f ∗ ∈ V .

13For regression, our prediction at x is simply f(x), where f ∈ H. For classification and ranking problems,
we need to pass the function values through some non-linear transformation.
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• Proof

– FIGURE: [projection of f ∗ onto V ]

– The key is to use the fact that an RKHS has an inner product structure, which
allows us to use linear algebra.

– Define the orthogonal complement:

V⊥ = {g ∈ H : 〈f, g〉 = 0 for all f ∈ V }. (372)

– Any f ∈ H can be decomposed in to a part in the span of the examples and an
orthogonal part:

f ∗ = f + f⊥, (373)

where f ∈ V and f⊥ ∈ V⊥.

– The idea is that the loss is unchanged by f⊥ but the regularizer grows with non-
zero f⊥, so we must have f⊥ = 0.

– The loss depends on f ∗ only through {f ∗(xj) : j = 1, . . . , n}, which can be written
as:

f ∗(xj) = f(xj) + 〈f⊥, k(xj, ·)〉 . (374)

The second term is zero, so the loss doesn’t depend on f⊥.

– The regularizer:

Q(‖f ∗‖2
H) = Q(‖f‖2

H + ‖f⊥‖2
H). (375)

Since Q is strictly monotonic and f ∗ is a minimizer, we must have f⊥ = 0.

– Therefore, f ∗ ∈ V .

• Remark: the representer theorem does not require the loss function L to be convex.

• The representer theorem tells us α’s exist, but how to find the α’s depends on the
actual loss function and regularizer. Let’s now look at some examples.

• Example 14 (Kernelized ridge regression)

– Recall the optimization problem for regression:

min
f∈H

n∑
i=1

1

2
(f(xi)− yi)2 +

λ

2
‖f‖2

H. (376)

By the representer theorem, we have the equivalent optimization problem:

min
α∈Rn

n∑
i=1

1

2

(
n∑
j=1

αjk(xi, xj)− yi

)2

+
λ

2

n∑
i=1

n∑
j=1

αiαjk(xi, xj). (377)
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– Letting K ∈ Rn×n be the kernel matrix and Y ∈ Rn denote the vector of outputs,
we have:

min
α∈Rn

1

2
‖Kα− Y ‖2

2 +
λ

2
α>Kα. (378)

Differentiating with respect to α and setting to zero:

K(Kα− Y ) + λKα = 0. (379)

Rearranging:

K(K + λI)α = KY. (380)

Solving yields a solution:

α = (K + λI)−1Y. (381)

Note that the solution is not necessarily unique, since we could add any vector in
the null space of K, but there’s no reason to consider them.

– To predict on a new example x, we form kernel evaluations c ∈ Rn where ci =
k(xi, x), and then predict

y = c>α. (382)

• Example 15 (SVM classification)

– This was done in CS229, so we won’t go through it again.

– Primal (yi ∈ {−1,+1}):

min
f∈H

n∑
i=1

max{0, 1− yif(xi)}+
λ

2
‖f‖2

H. (383)

– Dual (define K̃ij = yiyjKij):

min
α∈Rn

−1>α + α>K̃α subject to 0 ≤ αi ≤
1

λ
, Y >α = 0. (384)

The dual is computed by taking the Lagrange dual of the primal optimization
problem.

• Example 16 (Kernel PCA)

– Review of PCA
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∗ Recall in (featurized) PCA, we want to find directions in our data with highest
variance.

∗ Suppose we have data points x1, . . . , xn and a feature map φ : X → Rd.

∗ Assume that the data points are centered at zero:
∑n

i=1 φ(xi) = 0.

∗ Define the empirical covariance matrix as follows:

C
def
=

1

n
Φ>Φ, (385)

where the i-th row of Φ is φ(xi).

∗ Then PCA seeks to find the principal eigenvector of C:

Cv = λv. (386)

In practice, take the first r eigenvectors v1, . . . , vr (principal components) as
an approximation of the entire feature space. Note that the vi’s form an
orthonormal basis (have unit norm and are orthogonal).

∗ The squared reconstruction error of a new point x is:∥∥∥∥∥
r∑
i=1

〈φ(x), vi〉 vi − φ(x)

∥∥∥∥∥
2

2

. (387)

For example, if we were doing anomaly detection, if a data point x has a large
reconstruction error, then x is an anomaly.

– Heuristic derivation of kernel PCA

∗ By the representer theorem (or even more simply, by inspecting the form of
the covariance matrix), we have v =

∑n
i=1 αiφ(xi) = Φ>α, so an equivalent

characterization is to project the vectors on the data points:

ΦCv = λΦv. (388)

∗ Using the definition of C and the fact that Φv = Kα, we have

1

n
K2α = λKα. (389)

Again, any solution to the following is a valid solution to the above (but we
can always add spurious vectors in the null space of K):

1

n
Kα = λα. (390)

∗ In practice, we compute the eigendecomposition of K and take the first r
eigenvectors as the approximation. For simplicity, let’s assume we just take
one principal component v ∈ H.
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– Computing in infinite dimensions

∗ Though the derivation assumed φ(x) ∈ Rd, the result is the same for φ(x) =
k(x, ·) ∈ H in general.

∗ We won’t go through the details, but the idea is to define a covariance operator
(rather than a matrix) C : H → H. The intuition is the same.

∗ Recall the principal component is now a function v ∈ H with ‖v‖H = 1,14

where v(x) =
∑n

i=1 αik(xi, x).

∗ The squared reconstruction error of a new point x is:

‖v(x)v − φ(x)‖2
H = v(x)2 − 2v(x)2 + k(x, x) = k(x, x)− v(x)2. (391)

As expected, all we need are kernel evaluations.

– Interpretation

∗ The point of PCA is to reduce the dimensionality of the data, so it might
seem strange at first we would want to use kernel PCA to first increase the
number of dimensions (possibly to infinity).

∗ This is actually okay, because the point of kernels is to reshape the data (in
non-linear ways). In doing so, we can expose better directions than those
present in the original data.

∗ For example, if we use a quadratic kernel, we are saying that we believe
the data lies close to a quadratic surface. Of course, with more dimensions,
statistical error in the directions could increase.

4.6 Fourier properties of shift-invariant kernels (Lecture 11)

• Having explored how kernels can be used in practice, let us turn back to studying
their theoretical properties. Specifically, we will use Fourier analysis to get a handle
on what information about the data a kernel is capturing. We will also see that this
leads to a new basis representation of kernels. In this section, we will focus on shift-
invariant kernels, which are kernels that don’t depend on the absolute position of the
data points.

• Definition 22 (shift-invariant kernel)

– A kernel k : X × X → R where X ⊆ Rb is shift invariant (a.k.a. stationary,
translation invariant) iff k can be written as k(x, x′) = h(x−x′) for some function
h.

– Example: Gaussian kernel

– Non-example: linear kernel ((x+ a)(x′ + a) 6= xx′)

14To make v a unit vector, we just rescale v by ‖v(x)‖−1H .
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• Our goal is to understand shift-invariant kernels in the frequency domain. In particular,
it will shed insight into the smoothness properties of the kernel.

• First, let’s warmup with some basic facts from Fourier analysis:

– FIGURE: [complex unit circle]

– eiωt = cos(ωt) + i sin(ωt)

– e−iωt = cos(ωt)− i sin(ωt)

– cos(ωt) = 1
2
eiωt + 1

2
e−iωt

– Here ω ∈ R is the frequency of the sinusoid.

– Note that everything thus far generalizes to ω ∈ Rb and t ∈ Rb; just replace ωt
with 〈ω, t〉.

• Now let’s try to construct a kernel using the Fourier basis:

– First define a feature map for a fixed ω: φ(x) = e−i〈ω,x〉 (note that this is complex-
valued, but that’s okay).

– Using this feature map, let’s define a kernel:

k(x, x′) = φ(x)φ(x′) = e−i〈ω,x−x
′〉, (392)

where ā denotes the complex conjugate of a. This kernel deems two points to be
similar if they are close modulo 2π/ω (for some fixed scalar frequency ω); clearly
this is a bit silly.

– To get more realistic kernels, we need to incorporate multiple frequencies. We can
do this by simply averaging over multiple kernels (recall that the sum of kernels is
a kernel). Specifically, let µ(·) be a finite non-negative measure over frequencies.
Then

k(x, x′) =

∫
e−i〈ω,x−x

′〉µ(dω). (393)

is also a valid kernel. Or in terms of h (recall that t = x− x′):

h(t) =

∫
e−i〈ω,t〉µ(dω). (394)

– The corresponding feature map consists of the following basis functions: {x 7→
e−i〈ω,x〉 : ω ∈ Rb}

– Intuitively µ tells us how much focus to put on various frequencies.

• Example 17 (constant)

– Let the spectral measure µ = δ0 place all its mass at 0.
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– Then k(x, x′) = h(t) = 1 is the constant kernel.

• Example 18 (single frequency)

– Suppose µ places mass only at −ω and ω:

µ =
1

2
(δ−ω + δω). (395)

– Then the resulting kernel is:

k(x, x′) = h(t) = cos(ωt). (396)

– In general, h(t) defined via µ might be complex-valued, but if µ is symmetric
(that is, µ(A) = µ(−A) for all measurable sets A), then h(t) will be real-valued.

• Example 19 (sinc)

– Let the spectral density s be the 1 over [−a, a] (that is, we only keep frequencies
below a):

s(ω) = I[−a ≤ ω ≤ a]. (397)

– Then the resulting kernel is:

h(t) =
2 sin(at)

t
. (398)

– Proof: just integrate:

h(t) =

∫ a

−a
e−iωtdω =

1

−it
(e−iat − eiat) =

1

−it
(−2i sin(at)). (399)

– Note: as a increases, we cover more frequencies. If a→∞, then h(t) converges to
a delta function at 0, which corresponds to the degenerate kernel k(x, x) = I[x =
x′].

• At first, it might seem that this is a funny way of defining certain types of kernels, but
what’s remarkable is that all shift-invariant kernels can be written in the form (393)
for some appropriate choice of µ. This statement is precisely Bochner’s theorem:

• Theorem 24 (Bochner’s theorem)

– Let k(x, x′) = h(x− x′) be a continuous shift-invariant kernel (x ∈ Rb).
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– Then there exists a unique finite non-negative measure µ (called the spectral
measure) on Rb such that

h(t) =

∫
e−i〈t,ω〉µ(dω). (400)

– Furthermore, if µ has a density s,

µ(dω) = s(ω)dω, (401)

then we call s the spectral density, and h is the Fourier transform of s.

• So far, we’ve defined kernels through various spectral measures µ. But we can also take
a given kernel and compute its spectral measure to study the properties of the kernel.
Given a candidate kernel function k(x, x′) = h(x − x′), take the Fourier transform of
h (which for symmetric functions is the inverse Fourier transform times 1/(2π)) to get
the spectral density s.

• Example 20 (box is not a kernel)

– Consider the following function:

h(t) = I[−1 ≤ t ≤ 1]. (402)

– The inverse Fourier transform times 1/(2π) is

s(ω) =
sin(ω)

πω
, (403)

reusing the result from above.

– But notice that s(ω) is negative in some places, which means, by Bochner’s theo-
rem, that h(t) is not a valid (positive semidefinite) kernel! Now we have another
way to check whether a shift-invariant function specifies a kernel—simply take
the inverse Fourier transform and see whether it’s non-negative everywhere.

• Example 21 (Gaussian kernel)

– Let the spectral density s be the density of the multivariate Gaussian distribution
with variance 1/σ2:

s(ω) =

(
2π

σ2

)−d/2
exp

(
−σ2‖ω‖2

2

2

)
. (404)
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– Then the resulting kernel is the Gaussian kernel with variance σ2 (note the in-
verting of the variance):

h(t) = exp

(
−‖t‖2

2

2σ2

)
. (405)

– Proof:

h(t) =

∫ (
2π

σ2

)−d/2
exp

(
(−σ2‖ω‖2

2 − 2i 〈ω, t〉 − σ−2i2‖t‖2
2) + σ−2i2‖t‖2

2

2

)
dω.

(406)

Complete the square and note that the Gaussian distribution (with mean it/σ)
integrates to 1.

– Intuition: the larger σ2 is, one can see from s(ω) that high frequency components
are dampened. Consequently, the smoother the kernel h(t) is.

• Example 22 (rational quadratic kernel)

– Motivation: with Gaussian kernels, how do we set the variance σ2?

– Putting on our Bayesian hats, let’s define a prior over τ = σ−2.

– Let kτ (x, x
′) be the Gaussian kernel with hyperparameter τ .

– Recalling that the sum of kernels is a kernel, we have that∫
kτ (x, x

′)p(τ)dτ (407)

is also a kernel for any p(τ).

– For mathematical convenience, let’s put a Gamma(α, β) prior on τ .

– By conjugacy, we can integrate a Gamma distribution against a Gaussian, which
yields a student-t distribution.

– Ignoring normalization constants, the kernel is the rational quadratic kernel
(derivation omitted):

h(t) =

(
1 +

βt2

2α

)−α
. (408)

– When α = 1 and β = 2, we have:

h(t) =
1

1 + t2
. (409)

– Compared with the Gaussian kernel:
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∗ The area near zero is steeper, so the function can change rapidly.

∗ The tails decay slower, function values can have longer range dependencies.

This flexbility comes from integrating over values of σ2.

– Note that as α, β →∞ with α = β, the rational quadratic approaches the Gaus-
sian kernel with σ2 = 1.
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[begin lecture 12] (12)

4.7 Efficient computation (Lecture 12)

• We saw how kernel methods could be used for learning: Given n points x1, . . . , xn, we
form the n × n kernel matrix K, and optimize an objective function whose variables
are α ∈ Rn. For example, in kernel ridge regression, we have α = (K + λI)−1Y ,
which requires O(n3) time. When we have large datasets (e.g., n = 106), this is
prohibitively expensive. On the other hand, when the feature vector φ(x) is high-
dimensional (especially infinite-dimensional), then scaling with n is the lesser of two
evils. But can we do better? Note that even merely computing the full kernel matrix
K takes O(n2) time, which is already too large, so we will probably have to cut some
corners.

• We will introduce two types of kernel approximations:

– Random features: We will write the kernel function as an integral, and using
Monte Carlo approximations of this integral. These approximations are of the
kernel function and are data-independent.

– Nyström method: We will sample a subset of the n points and use these points
to approximate the kernel matrix. These approximations are of the kernel matrix
and are data-dependent.

• Gaussian kernel intuitions

– Let’s get some intuition about when approximations might be a sensible thing to
do on a concrete scenario. Recall the Gaussian kernel:

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
. (410)

– If the points x1, . . . , xn are far apart (relative to the bandwidth of σ2), then the
kernel matrix K will be roughly the identity matrix. In this case, we can’t possibly
hope for a low-rank approximation to capture everything.

– On the other hand, if the points are tightly clustered into m clusters, then the
kernel matrix (with sorted columns/rows) looks like a block diagonal matrix with
m blocks, where each block is a rank 1 all-ones matrix. Here, you would expect
a rank m approximation to be effective.

– In reality, the situation is somewhere in between. Of course, kernel methods are
exactly useful when the data are fairly complex, so we shouldn’t expect these
approximations to provide magical savings, unless the data is very redundant.

• Random Fourier features (Rahimi/Recht, 2008)
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– Our starting point is Bochner’s theorem (Theorem 24), which allows us to write
shift-invariant kernels in terms of an integral over some spectral measure µ:

k(x, x′) =

∫
φω(x)φω(x′)µ(dω), (411)

where φω(x) = e−i〈ω,x〉 is a single (Fourier) feature.

– The key idea is to replace the integral with a finite sum over m elements. For
simplicity, assume that µ is a probability distribution. If it is not, then we can
normalize it and then multiply the result by µ(Cb). Let ω1, . . . , ωm be drawn
i.i.d. from µ. Then, define the approximate kernel as:

k̂(x, x′) =
1

m

m∑
i=1

φωi(x)φωi(x). (412)

This kernel corresponds to having the following random feature map:

φ̂(x) =
1√
m

[φω1(x), . . . , φωm(x)] ∈ Cm. (413)

– As a concrete example, consider the Gaussian kernel, which has a Gaussian spec-
tral density (recall µ(dω) = s(ω)dω) with the inverse variance:

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

)
, (414)

s(ω) =

(
2π

σ2

)−b/2
exp

(
−σ2‖ω‖2

2

2

)
. (415)

This means that each ωi ∼ N (0, σ−2I) is drawn from a Gaussian.

– Algorithm

∗ The practical upshot of random Fourier features on the Gaussian kernel is
that it is dirt simple.

∗ Before you get data, draw ω1, . . . , ωm ∼ N (0, σ−2I), which defines the random
feature map φ̂. This feature map is fixed once and for all.

∗ In training/test, given a new data point x, we can apply the feature map
φ̂(x), which simply involves m Gaussian projections.

– Note that the approximate kernel is unbiased (E[k̂(x, x′)] = k(x, x′)), so as m→
∞, we have that k̂(x, x′) converges to k(x, x′) for a fixed x, x′. We want this to
work well on average for all the data that we’re going to see, which smells almost
like uniform convergence. The following theorem quantifies this:

– Theorem 25 (random features (Rahimi/Recht, 2008))

∗ Let k be a shift-invariant kernel on x ∈ Rb.
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∗ Let

F def
=

{
x 7→

∫
α(ω)φω(x)µ(dω) : ∀ω, |α(ω)| ≤ C

}
(416)

be the subset of functions in the RKHS H with bounded Fourier coefficients
α(ω).

∗ Let

F̂ def
=

{
x 7→ 1

m

m∑
i=1

α(ωi)φωi(x) : ∀ω, |α(ω)| ≤ C

}
(417)

be the subset that is spanned by the random feature functions, where ω1:k be
drawn i.i.d. from µ.

∗ Let p∗ be any distribution over X = Rb.

∗ Define the inner product with respect to the data-generating distribution (this
is not the RKHS inner product):

〈f, g〉 def
= Ex∼p∗ [f(x)g(x)]. (418)

∗ Let f ∗ ∈ F be any true function.

∗ Then with probability at least 1− δ, there exists f̂ ∈ F̂ that

‖f̂ − f ∗‖ ≤ C√
m

(
1 +

√
2 log(1/δ)

)
. (419)

– Proof of Theorem 25:

∗ This proof uses fairly standard tools: McDiarmid’s inequality and Jensen’s
inequality. The function we’re applying involves taking a norm of a function,
but we just need the bounded differences condition to hold.

∗ Fix f ∗ ∈ F with coefficients α(ω).

∗ Construct f̂ with the same coefficients, and note that f̂ ∈ F̂ and E[f̂ ] = f ∗.

∗ Define

D(ω1:m) = ‖f̂ − f ∗‖. (420)

Note that D satisfies the bounded differences inequality: letting ωi1:m = ω1:m

except on the i-th component, where it is ω′i:

D(ω1:m)−D(ωi1:m) ≤ ‖f̂ − f ∗‖ − ‖f̂ i − f ∗‖ (421)

≤ ‖f̂ − f̂ i‖ [triangle inequality] (422)

≤ 1

m
‖α(ωi)φωi − α(ω′i)φω′i‖ (423)

≤ 2C

m
. (424)

Note that the last line follows because |α(ωi)| ≤ C and φωi(x) = e−i〈ωi,x〉 and
|e−ia| = 1 for all a.
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∗ We can bound the mean by passing to the variance:

E[D(ω1:m)] ≤
√

E[D(ω1:m)2] [Jensen’s inequality] (425)

=

√√√√√E

∥∥∥∥∥ 1

m

m∑
i=1

(α(ωi)φωi − f ∗)

∥∥∥∥∥
2
 [expand] (426)

=

√√√√ 1

m2

m∑
i=1

E
[
‖α(ωi)φωi − f ∗‖

2] [variance of i.i.d. sum]

(427)

≤ C√
m

[use |α(ωi)| ≤ C]. (428)

∗ Applying McDiarmid’s inequality (Theorem 8), we get that

P
[
D(ω1:m) ≥ C√

m
+ ε

]
≤ exp

(
−2ε2∑m

i=1(2C/m)2

)
. (429)

Rearranging yields the theorem.

– Remark: the definition of α here differs from the Rahimi/Recht paper.

– Corollary:

∗ Suppose we had a loss function `(y, v) which is 1-Lipschitz in the second
argument. (e.g., the hinge loss). Define the expected risk in the usual way:

L(f)
def
= E(x,y)∼p∗ [`(y, f(x))]. (430)

Then the approximation ratio is bounded:

L(f̂)− L(f ∗) ≤ E[|`(y, f̂(x))− `(y, f ∗(x))|] [definition, add | · |] (431)

≤ E[|f̂(x)− f ∗(x)|] [fix y, ` is Lipschitz] (432)

≤ ‖f̂ − f ∗‖ [concavity of
√
·]. (433)

– So far, we have analyzed approximation error due to having a finite m, but as-
suming an infinite amount of data. Separately, there is the estimation error due
to having n data points:

L(f̂ERM)− L(f̂) ≤ Op

(
C√
n

)
, (434)

where f̂ERM minimzes the empirical risk over the random hypothesis class F̂ . So,
the total error, which includes approximation error and estimation error is

L(f̂ERM)− L(f ∗) = Op

(
C√
n

+
C√
m

)
. (435)
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This bound suggests that the approximation and estimation errors are balanced
when m and n are on the same order. One takeaway is that we shouldn’t over-
optimize one without the other. But one might also strongly object and say that if
m u n, then we aren’t really getting any savings! This is indeed a valid complaint,
and in order to get stronger results, we would need to impose more structure on
the problem.

• Dot product kernels (Kar/Karnick, 2012)

– We have seen that shift-invariant kernels admit an integral representation, which
allows us to use Monte Carlo to approximate it. What about non-shift invariant
kernels such as polynomial kernels, such as the following?

k(x, x′) = 〈x, x′〉p . (436)

– Although random Fourier features will not work, we can still try to write the
kernel as an expectation. The key is that if we draw a Rademacher variable ω ∈
{−1,+1}b (uniform), randomly projecting x onto ω yields an unbiased estimate
of the inner product:

〈x, x′〉 = E[〈ω, x〉 〈ω, x′〉]. (437)

Of course, this isn’t useful by itself, but it does reduce x to a scalar 〈ω, x〉, which
is useful.

– To generalize to polynomial kernels, we simply do the above construction p times
and multiply it all together. For the quadratic kernel, let ω1 and ω2 be two
independent Rademacher vectors. Then:

〈x, x′〉2 = E[〈ω1, x〉 〈ω1, x
′〉]E[〈ω2, x〉 〈ω2, x

′〉] (438)

= E[〈ω1, x〉 〈ω2, x〉 〈ω1, x
′〉 〈ω2, x

′〉], (439)

where the first line follows from the earlier calculation, and the second line follows
from independence of ω1 and ω2. Note that 〈ω1, x〉 〈ω2, x〉 is still just a number.

– More generally, if the kernel is a analytic function of the dot product, then it
admits the following Taylor expansion around 0:

k(x, x′) = f(〈x, x′〉), f(z) =
∞∑
j=0

ajz
j. (440)

– To construct a random feature,

∗ Choose J with probability proportional to aj (if we can’t sample from aj
exactly, then we can use importance weighting).
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∗ Choose ω1, . . . , ωJ Rademacher vectors, and let

φω1:J
(x) =

J∏
j=1

〈ωj, x〉 . (441)

– If we do this m times to form a m-dimensional feature vector, then we have a
Monte Carlo estimate of the kernel k. Note that in the process, we have to draw
an expected mbE[J ] Rademacher variables.

– At this point, we have only showed that we have an unbiased estimate of the
kernel. We still need to show that the variance isn’t too large. See the paper in
the references below for that.

• Arc-cosine kernel (Cho/Saul, 2009)

– The random features perspective is very suggestive of the computation in neural
networks. A one layer neural network computes a function

f(x) =
m∑
j=1

αjσ(ωj · x), (442)

where the parameters α1:m and ω1:m are optimized via (stochastic) gradient de-
scent (backpropagation), and σ is a non-linear function such as a hard-threshold
(σ(z) = I[z ≥ 0]) or rectified linear unit (σ(z) = I[z ≥ 0]z).

– For comparison, the random features view of kernels defines a function class where
ω1:m is chosen randomly rather than optimized, while α1:m are optimized. Typ-
ically, neural network weights are initialized randomly, sometimes according to
a Gaussian with the appropriate variance. The fact that random features ap-
proximates a kernel suggests that even the random initialization is quite sensible
starting point (provided the final layer α1:m are optimized).

– What if we take σ to be a rectified linear unit and let the number of hidden units
m→∞? Does this limiting quantity have a nice form? To answer this question,
let us define a more general family.

– Define the random basis function:

φω(x) = I[ω · x ≥ 0](ω · x)q. (443)

∗ For q = 0, we obtain the threshold function.

∗ For q = 1, we obtain the rectified linear unit (ReLU).

– As m→∞, we obtain the following kernel:

k(x, x′) = 2

∫
φω(x)φω(x′)p(ω)ω. (444)
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– This kernel can be shown to have the following closed form solution:

k(x, x′) =
1

π
‖x‖q‖x′‖qJq(θ), (445)

where

θ = arccos

(
x · x′

‖x‖‖x′‖

)
(446)

is the angle between x and x′ and Jq(θ) captures the angular dependence. In
other words, this arc-cosine kernel decouples the magnitude from the angle.

– In general Jq is a complex function, but we can consider two simple cases:

J0(θ) = π − θ (447)

J1(θ) = sin(θ) + (π − θ) cos(θ). (448)

– The punchline is that even if we are using neural networks, we can use kernel
methods to better understand them from a representational point of view.

• Nyström method (Williams/Seeger, 2000)

– In the above, we have constructed random features, which were independent of the
data. A technique that predates these, which can work better when the spectrum
of the kernel matrix is to form a low-rank approximation. This method applies
more generically to approximating large PSD matrices.

– Given a kernel matrix K ∈ Rn×n, we will sample a subset of the indices I ⊆
{1, . . . , n} with |I| = m, and let J = {1, . . . , n}\I be the other indices. We
then evaluate the kernel on points in I paired with all other points, for a total of
O(|I|n) evaluations. Then we can define the approximate kernel matrix:

K =

(
KII KIJ

KJI KJJ

)
u
(
KII KIJ

KJI KJIK
†
IIKIJ ,

)
= K̃ (449)

or more compactly:

K̃
def
= K·IK

†
IIKI·. (450)

Note that the difference KJJ−KJIK
†
IIKIJ is the Schur complement of KJJ . If we

interpret K as a covariance matrix of a Gaussian Z, then this is the conditional
variance Var[ZJ | ZI ].

– Note that if K is rank m and and KII also contains linearly independent columns
(so that it captures the subspace of K), then the Schur complement is zero, and
the Nyström method is exact. If not, then the error stems from simply not being
able to capture the low rank solution by having a rank m matrix plus an error
from doing column sampling (which doesn’t yield the eigenvectors). We can think
of this as projecting the kernel matrix K on to the subspace of the data points in
I.
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– How do we choose I? Two popular choices are uniform sampling and sampling
proportional to Kii = k(xi, xi), which corresponds to the squared magnitude of
xi. Intuitively, the weighted sampling focuses more energy on points which are
more important.

– The following theorem formalizes the error bound:

– Theorem 26 (Nyström with non-uniform sampling (Drineas/Mahoney, 2005))

∗ Suppose we choose I by sampling (with replacement), choosing i ∈ {1, . . . , n}
with probability Kii/

∑n
j=1Kjj.

∗ Let K̃m be the best rank m approximation of K.

∗ Let K̃ be defined as in (449), but where we replace KII with the best rank
m approximation of KII .

∗ Then with probability at least 1− δ,

‖K − K̃‖2
F ≤ ‖K − K̃m‖2

F + 4(1 +
√

8 log(1/δ)) tr(K)2

√
m

|I|
. (451)

– Proof: follows from algebraic manipulation and concentration. Note that the
theorem statement is a correct version of Drineas and Mahoney’s Theorem 3,
where we just combined equation 31 with Lemma 9.

– The theorem suggests that we should take |I| > m, which gives us more oppor-
tunities to cover the column space of K̃m.

4.8 Universality (skipped in class)

• We have explored several different kernels, and we can (and should) certainly choose
one based on domain knowledge.

• But one can ask: is there a general purpose kernel k, in the sense that k can be used
to solve any learning problem given sufficient data? The notion of general purpose is
defined as follows.

• Definition 23 (universal kernel)

– Let X be a locally compact Hausdorff space (e.g., Rb or any discrete set, but not
infinite-dimensional spaces in general).

– Let k : X × X → R be a kernel.

– We say that k is a universal kernel (specifically, a c0-universal kernel) iff the
RKHS H with reproducing kernel k is dense in C0(X ), the set of all continuous
bounded functions on X (with respect to the uniform norm). In other words,
for any function f ∈ C0(X ) and ε > 0, there exists some g ∈ H such that
supx∈X ‖f − g‖ ≤ ε.
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• The premise is that the target function we want to learn is in C0(X ), so by using
a universal kernel, we are defining an RKHS which can approximate any function in
C0(X ) as well as we want.

• The following theorem characterizes universal kernels in terms of their Fourier proper-
ties:

• Theorem 27 (Carmeli, 2010)

– Let k be a shift-invariant kernel with spectral measure µ on X = Rd.

– If the support of µ is all of Rb, then k is a universal kernel.

Intuition: in order to represent any C0(X ) function, we must not have any gaps in our
spectrum.

• Example: the Gaussian kernel is universal; the sinc kernel is not universal.

• The final piece of the puzzle is universal consistency, which means that that a
learning algorithm will actually achieve the best possible error as the number of training
examples tends to infinity. Steinwart showed that using SVMs with a universal kernel
guarantees universal consistency. Of course, universality is only about how well we can
represent the target function; it says nothing about readily we can actually estimate
that function based on finite data.

4.9 RKHS embedding of probability distributions (skipped in class)

• So far, we’ve showed that kernels can be used for estimating functions for regression,
classification, dimensionality reduction (PCA), etc. Now we will show how kernels
can be used to represent and answer questions about probability distributions without
having to explicitly estimate them.

• As a motivating example, consider the problem of testing whether two probability
distributions P and Q are the same by only observing expectations under the distri-
butions.

• Given a distribution P , we can look at various moments of the distribution Ex∼P [f(x)]
for various functions f . For example, if f(x) = x, then we get the mean. Such a f only
gives us partial information about P : if two distributions differ in their mean, then
we know they are different, but if they have the same mean, we cannot conclude that
they are same.

• More generally, assume P and Q are defined on some locally compact Hausdorff space
X (e.g., Rb). Define the maximum mean discrepancy (MMD) as follows:

D(P,Q,F)
def
= sup

f∈F
(Ex∼P [f(x)]− Ex∼Q[f(x)]) , (452)
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for some set of functions F . Shorthand: EP [f ] means Ex∼P [f(x)].

• Can we find F so that

D(P,Q,F) = 0⇔ P = Q? (453)

Note that P = Q always implies D(P,Q,F), but the other direction requires some
work.

• If we knew P and Q were Gaussian, then it suffices to take F = {x 7→ x, x 7→ x2}, since
the first two moments define a Gaussian distribution. However, what about general P
and Q? We need a much larger class of functions F :

• Theorem 28 (Dudley, 1984)

– If F = C0(X ) (all continuous bounded functions), then D(P,Q,F) = 0 implies
P = Q.

• However, C0(X ) is a large and difficult set to work with. Fortunately, it suffices to
take F to be any set that is dense in C0(X ), in particular an RKHS:

• Theorem 29 (Steinwart, 2001)

– Let F = {f ∈ H : ‖f‖H ≤ 1}, where H is the RKHS defined by a universal kernel
k.

– Then D(P,Q,F) = 0 implies P = Q.

• Proof:

– Let P 6= Q be two distinct distributions.

– Then there exists f ∈ C0(X ) such that |EP [f ]− EQ[f ]| = ε > 0.

– Since H is universal (i.e., H is dense in C0(X ) with respect to the uniform norm),
there exists g ∈ H with g 6= 0 such that

‖f − g‖∞
def
= sup

x∈X
|f(x)− g(x)| ≤ ε/3. (454)

– This means |EP [f ]− EP [g]| ≤ ε/3 and |EQ[f ]− EQ[g]| ≤ ε/3.

– By the triangle inequality, |EP [g]− EQ[g]| ≥ ε/3 > 0.

– Rescale g: let u = g/‖g‖H ∈ F .

– We still have D(P,Q,F) ≥ |EP [u]− EQ[u]| > 0.

• Computing D(P,Q,F)
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– We’ve established thatD(P,Q,F) contains sufficient information for testing whether
two distributions are equal. But how do we actually compute the max over F?
This seems daunting at first sight. Fortunately, we can compute D(P,Q,F) in
closed form by exploiting properties of the RKHS.

– First, a general statement. By the reproducing property and linearity of the inner
product, we can express expected function value as an inner product:

Ex∼P [f(x)] = Ex∼P [〈k(·, x), f〉] =

〈
Ex∼P [k(x, ·)]︸ ︷︷ ︸

def
= µP

, f

〉
. (455)

Here, µP ∈ H is the RKHS embedding of the probability distribution P .

– We can now write the MMD solution as follows:

D(P,Q,F) = sup
f∈F
〈µP − µQ, f〉 = ‖µP − µQ‖H, (456)

where the sup is obtained by setting f to be a unit vector in the direction of
µP − µQ.

– Unpacking the square of the last expression and rewriting in terms of kernel
evaluations:

‖µP − µQ‖2
H = EP×P [k(x, x′)]− EP×Q[k(x, y)]− EQ×P [k(y, x)] + EQ×Q[k(y, y′)].

(457)

• Of course, in practice, we only have samples from P,Q: let x1, . . . , xn ∼ P and
y1, . . . , yn ∼ Q all be drawn independently.

• We can obtain an empirical estimate of D(P,Q,F) as a U-statistic (a U-statistic is a
function which is an average over some function applied to all pairs of points):

D̂n(P,Q,F) =
1(
n
2

)∑
i<j

[k(xi, xj)− k(xi, yj)− k(yi, xj) + k(yi, yj)]. (458)

This estimate is unbiased, since the expectation of each term is D(P,Q,F).

• Let the null hypothesis be that P = Q. Under the null hypothesis, as n → ∞, we

know that D̂n(P,Q,F)
P−→ 0, but in order to use D̂n as a test statistic for hypothesis

testing, we need to know its (approximate) distribution. (Recall that D̂n(P,Q,F) is a
random variable that is a function of the data points.)

• There are two ways to go about this:

– We can derive finite sample complexity bounds to bound the deviation of D̂(P,Q,F)
from its mean D(P,Q,F).

– We can show that D̂(P,Q,F) is asymptotically normal with some variance, and
use the normal as an approximation of the distribution.

• In the next section, we will develop the tools to analyze random variables such as these.

141



4.10 Summary (Lecture 12)

• We began by noting that some algorithms (e.g., gradient descent) do not require ar-
bitrary inner products between weight vectors and feature vectors, but only inner
products between feature vectors.

• This motivated the use of kernels (defined to be positive semidefinite functions), which
can provide both computational (ability to implicitly compute inner products between
infinite-dimensional feature vectors) and modeling advantages (thinking in terms of
similarities between two inputs).

• Taking a step back, we saw that all that matters at the end of the day are functions
evaluated at various inputs. This motivated the definition of reproducing kernel
Hilbert spaces (RKHS), in which two important properties hold: (i) function evalu-
ations were bounded (meaningful), and (ii) there is a nice inner product structure.

• We showed that the three distinct viewpoints above (features, kernels, functions) are
actually all equivalent (due to the Moore-Aronszajn theorem).

• The representer theorem shows that the optimum over an appropriately regularized
function space H is attained by a function in the span of the training data. This allows
us to derive kernelized SVMs, kernelized regression, kernel PCA, RKHS embeddings
of probability distributions.

• Bochner’s theorem, allows us to study the Fourier properties of shift-invariant ker-
nels, relating universality and smoothness properties of a kernel to the frequencies that
the kernel passes through.

• Bochner’s theorem allowed us to obtain computationally efficient ways to approximate
kernel methods by writing kernels as an integral over dot products of random fea-
tures. This leads to efficient algorithms. but have uncertainty estimates over function
values. Uncertainty estimates are critical for active learning and Bayesian optimization.
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[begin lecture 13] (13)

5 Online learning

5.1 Introduction (Lecture 13)

• Thus far, we have analyzed algorithms (maximum likelihood, ERM) in the statistical
setting, where we assume the the training and test data are both drawn i.i.d. from some
distribution p∗. We even boasted that we need not make any assumption about what
p∗ is. In this unit, we will weaken the assumptions even more and assume that data can
be generated completely adversarily. In addition, we will move to the online setting
where training and test are interleaved. Thus we make two shifts to the learning setup:

– Batch to online

– Statistical to adversarial

• We will first discuss the online learning framework, focusing on prediction. Then, we
will cast online learning as online convex optimization and develop several algorithms
and prove regret bounds for these algorithms. Finally, we will look at multi-armed
bandit problems, where the learner obtains partial feedback. Throughout this section,
there will be very little probability (since we will be working in the adversarial setting),
but we will draw quite a bit from convex analysis.

• Framework

– Prediction task: we want to map inputs x ∈ X to outputs y ∈ Y .

– The online learning setting can be thought of as the following game between a
learner and nature:

Learner

x1

p1

y1

...

xT

pT

yT

Nature

Figure 9: Online learning game.

∗ Iterate t = 1, . . . , T :
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· Learner receives input xt ∈ X
· Learner outputs prediction pt ∈ Y
· Learner receives true label yt ∈ Y
· (Learner suffers loss `(yt, pt))

· (Learner updates model parameters)

– More formally, the learner is a function A that returns the current prediction
given the full history:15

pt+1 = A(x1:t, p1:t, y1:t, xt+1). (459)

Nature can be defined similarly.

• Example 23 (online binary classification for spam filtering)

– Inputs: X = {0, 1}d are boolean feature vectors (presence or absence of a word).

– Outputs: Y = {+1,−1}: whether a document is spam or not spam.

– Zero-one loss: `(yt, pt) = I[yt 6= pt] is whether the prediction was incorrect.

• Remarks

– The typical training phase (setting model parameters) and testing phase (making
predictions for evaluation) are interleaved in online learning.

– Note that the the online learning setting leaves completely open the time and
memory usage of the algorithms that operate in this setting. Technically, we
could just train an SVM on all the data that we’ve seen so far, and predict on the
next example. However, the spirit of online learning suggests that the amount of
work an algorithm does per iteration should not grow with t. In practice, online
learning algorithms update parameters after each example, and hence tend to be
faster than traditional batch optimization algorithms such as Newton’s method.

– The real world is complex and constantly-changing, but online learning algorithms
have the potential to adapt (although we will not analyze their adapative capa-
bilities in this course).

– In some applications such as spam filtering, the inputs could be generated by an
adversary. In our analyses, we will make no assumptions about the input/output
sequence.

• Evaluation

– Now comes the most important part: How we measure the quality of an online
learner A? While seemingly simple and obvious, how we answer this question has
a defining impact on the behavior of A.

15 For now, assume deterministic algorithms. Later, we’ll consider stochastic algorithms, which will be
important against adversaries.
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– The first attempt is to just write down the cumulative loss of the learner:

T∑
t=1

`(yt, pt). (460)

However, if we are in the adversarial setting, no algorithm can do better than the
maximum regret T (for the zero-one loss) since the adversary can always choose
yt 6= pt. What do you do when your performance is awful? You show that others
are doing even worse than you.

– Less flippantly, let H be a set of experts, where each expert is a function h : X →
Y that predicts h(x) on input x ∈ X . Note that the learner can adapt (change
over time) whereas the experts are fixed.

– Definition 24 (regret)

∗ The regret of a learner with respect to an expert h is the cumulative difference
between the loss incurred by the learner and the loss incurred by expert h:

Regret(h)
def
=

T∑
t=1

[`(yt, pt)− `(yt, h(xt))]. (461)

Note that Regret(h) depends on H, T , the sequences x1:T , y1:T , and of course
the algorithm A itself; but we’re eliding the dependence on all of these things
in the notation.

∗ The regret with respect to a class of experts H is the maximum regret

Regret
def
= max

h∈H
Regret(h). (462)

Equivalently, we can write:

Regret =
T∑
t=1

`(yt, pt)︸ ︷︷ ︸
learner

−min
h∈H

T∑
t=1

`(yt, h(xt))︸ ︷︷ ︸
best expert

. (463)

– The best expert is a role model for the learner. While it is technically possible for
the learner to do better than all the experts since it can adapt over time (leading
to negative regret), this generally won’t happen, and therefore, we will be content
with trying to achieve small positive regret.

– We are interested in particular in the maximum possible regret over all sequences
x1:T , y1:T ; in more colorful language, an adversary chooses the inputs and outputs
as to maximize regret.

– Having a comparison set of experts gives us some hope to compete against an
adversary. Intuitively, if the adversary tries to screw over the learner, it will
probably screw over the experts too.
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• In the next few lectures, we will prove results of the following form for various online
learning algorithms A: for all H, T, x1:T , y1:T , we have:

Regret ≤ SomeFunction(H, T ). (464)

Usually, we want the regret to be sublinear in T , which means that the average regret
per example goes to zero.

5.2 Warm-up (Lecture 13)

We will give two examples, one where online learning is impossible and one where it is
possible.

• Example 24 (negative result)

– Assume binary classification: y ∈ {−1,+1}
– Assume zero-one loss: `(yt, pt) = I[yt 6= pt]

– Assume the learner is fully deterministic.

– Claim: for all learners A, there exists an H and input/output sequence x1:T , y1:T

such that:

Regret ≥ T/2 [awful!] (465)

– Key point: adversary (having full knowledge of learner) can choose yt to be
always different from pt.

– Learner’s cumulative loss: T (make mistake on every example).

– We’re not done yet, because remember regret is the difference between learner’s
cumulative loss and the best expert’s, so we have to check how well the experts
do in this case.

– Consider two experts, H = {h−1, h+1}, where hy always predicts y.

– The sum of the cumulative losses of the experts equals T because `(yt, h−1(xt)) +
`(yt, h+1(xt)) = 1, so one of the experts must achieve loss ≤ T/2.

– Therefore, the difference between T and ≤ T/2 is ≥ T/2.

– It is perhaps not surprising that no learner can do well because nature is too
powerful here (it can choose any sequence with full knowledge of what the learner
will do). Not even measuring regret with respect to only two experts is enough.
So we will need assumptions to get positive results.

• Example 25 (positive result (learning with expert advice))

– Assume zero-one loss: `(yt, pt) = I[yt 6= pt].
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– Clearly, we need to make some assumptions to make progress. Here, we will make
a fairly strong assumption just to get some intuition.

– Assumption 3 (realizable)

Assume the best expert h∗ ∈ H obtains zero cumulative loss (`(yt, h
∗(xt)) = 0 for

all t = 1, . . . , T ); or equivalently, since we’re dealing with zero-one loss, yt = h∗(xt)
for all t. This assumption places a joint restriction on H, x1:T , y1:T .

– We will design an algorithm that queries the experts on each example xt, and try
to combine their predictions in some way; this setting is called learning with
expert advice.

– Algorithm 1 (majority algorithm)

∗ Maintain a set Vt ⊆ H of valid experts (those compatible with the first t− 1
examples).

∗ On each iteration t, predict pt to be the majority vote over predictions of
valid experts {h(xt) : h ∈ Vt}.
∗ Keep experts which were correct: Vt+1 = {h ∈ Vt : yt = h(xt)}.

– Analysis:

∗ On each mistake, at least half of the experts are eliminated.

∗ So 1 ≤ |VT+1| ≤ |H|2−M , where M is the number of mistakes (also equal to
Regret since the best expert has zero loss).

∗ Note that the lower bound is due to the realizability assumption.

∗ M is the exactly the regret here.

∗ Take logs and rearrange:

Regret ≤ log2 |H|. (466)

– Notes:

∗ This is a really strong result: note that the regret is constant; after a finite
number of iterations, we cease to make any more mistakes forever.

∗ However, realizability (that some expert is perfect) is too strong of an as-
sumption.

∗ Also, the regret bound is useless here if there are an infinite number of experts
(|H| =∞).

5.3 Online convex optimization (Lecture 13)

• In order to obtain more general results, we move to a framework called online convex
optimization. Convexity will give us considerable leverage. Afterwards, we’ll connect
online convex optimization with online learning.

• Let S ⊆ Rd be a convex set (e.g., representing the set of allowed weight vectors).
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– Example: S = {u : ‖u‖2 ≤ B}.

• FIGURE: [convex function with subgradients]

• Definition 25 (convexity)

A function f : S → R is convex iff for all points w ∈ S, there is some vector z ∈ Rd

such that

f(u) ≥ f(w) + z · (u− w) for all u ∈ S. (467)

This says that at any point w ∈ S, we can find a linear approximation (RHS of (467))
that lower bounds the function f (LHS of (467)).

• Definition 26 (subgradient)

For each w ∈ S, the set of all z satisfying (467) are known as the subgradients at w:

∂f(w)
def
= {z : f(u) ≥ f(w) + z · (u− w) for all u ∈ S}. (468)

If f is differentiable at w, then there is one subgradient equal to the gradient: ∂f(w) =
{∇f(w)}.

• Convexity is remarkable because it allows you to say something (in particular, lower
bound) the global behavior (for all u ∈ S) of a function f by something local and
simple (a linear function). An important consequence of f being convex is that if
0 ∈ ∂f(w), then w is a global minimum of f .

• Checking convexity

– How do you know if a function is convex? You can try to work it out from the
definition or if the function is twice-differentiable, compute the Hessian and show
that it’s positive semidefinite.

– But often, we can check convexity by decomposing the function using a few rules.
This is by no means an exhaustive list, but these are essentially all the important
cases that we’ll need in this class.

∗ Linear functions: f(w) = w · z for any z ∈ Rd

∗ Quadratic functions: f(w) = w>Aw for positive semidefinite A ∈ Rd×d

∗ Negative entropy: f(w) =
∑d

i=1 wi logwi on w ∈ ∆d.

∗ Sum: f + g if f and g are convex

∗ Scale: cf where c ≥ 0 and f is convex

∗ Supremum: supf∈F f , where F is a family of convex functions

– Example: hinge loss (skipped in class)

∗ Function: f(w) = max{0, 1− y(w · x)}.
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∗ Subgradient:

· ∂f(w) = {0} if y(w · x) > 1 (w achieves margin at least 1)

· ∂f(w) = {−yx} if y(w · x) < 1

· ∂f(w) = {−yxα : α ∈ [0, 1]} if y(w · x) = 1

• The setup for online convex optimization is similar to online learning:

– Iterate t = 1, . . . , T :

∗ Learner chooses wt ∈ S
∗ Nature chooses convex loss function ft : S → R

Formally, the learner A chooses wt+1 depending on the past:

wt+1 = A(w1:t, f1:t). (469)

– Regret is defined in the way you would expect (cumulative difference of losses):

Regret(u)
def
=

T∑
t=1

[ft(wt)− ft(u)]. (470)

Regret
def
= max

u∈S
Regret(u). (471)

– The set S plays two roles: it is the set of experts with which we define our regret,
and it is also the set of parameters that our learner is going to consider. For
simplicity, we assume these two are the same, although in general, they do not
have to be.

• We now turn to our original goal of doing online learning. We will show some examples
of reducing online learning to online convex optimization. In particular, given an
input/output sequence input x1:T , y1:T , we will construct a sequence of convex functions
f1:T such that the low regret incurred by a learner on the online convex optimization
problem implies low regret on the online learning problem. Let OL be the online learner
who has access to OCO, a online convex optimizer.

– Example 26 (linear regression)

∗ FIGURE: [two boxes, OL and OCO with arrows between]

∗ Assume we are doing linear regression with the squared loss, `(yt, pt) = (pt−
yt)

2.

∗ On each iteration t = 1, . . . , T :

· OL receives an input xt ∈ Rd from nature.

· OL asks OCO for a weight vector wt ∈ Rd.

· OL sends the prediction pt = wt · xt to nature.

· OL receives the true output yt from nature.
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· OL relays the feedback to OCO via the loss function

ft(w) = (w · xt − yt)2. (472)

Note that (xt, yt) is baked into ft, which changes each iteration. Since the
squared loss is convex, ft is convex. One can check easily based on matching
definitions that the regret of OCO is exactly the same as regret of OL.

– Example 27 (learning with expert advice)

∗ Now let’s turn to a problem where the convexity structure isn’t as apparent.

∗ Assume we have a finite number (this is important) of experts H, which the
learner can query. Let

H = {h1, . . . , hd}. (473)

∗ Assume we are doing binary classification with the zero-one loss (this is not
important—any bounded loss function will do), `(yt, pt) = I[yt 6= pt].

∗ Note that neither the loss function nor the set of experts H is convex; in fact,
this doesn’t really make sense, since the domains are discrete.

∗ Nonetheless, we can convexify the problem using randomization. Specif-
ically, we allow the learner to produce a probability distribution wt ∈ ∆d

(∆d ⊆ Rd is the (d− 1)-dimensional simplex)16 over the d experts H, sample
an expert from this distribution, and predict according to that expert. The
expected zero-one loss is then a convex (in fact, linear) function of wt.

∗ Formally, the reduction is as follows:

· OL receives an input xt from nature.

· OL asks OCO for a weight vector wt ∈ ∆d, which represents a distribution
over d experts.

· OL samples an expert jt ∼ wt and send prediction pt = hjt(xt) to nature.

· OL receives the true output yt from nature.

· OL relays the feedback to OCO via the loss function

ft(w) = w · zt, (474)

where zt is the vector of losses incurred by each expert:

zt = [`(yt, h1(xt)), . . . , `(yt, hd(xt))] ∈ {0, 1}d. (475)

Again, ft bakes the loss and the data into the same function, and one can
check that the expected regret of OL is the same as the regret of OCO.
Note that we assume no structure on xt and yt—they could be arbitrarily
complicated; we are only exposed to them via the the experts and the
loss function.

16 Formally, think of a probability distribution over a random variable J ∈ {1, . . . , d}, with P[J = j] = wj .
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∗ This convexify-by-randomization trick applies more generally to any loss func-
tion and any output space Y . The key is that the set of experts is finite, and
the learner is just choosing a convex combination of those experts.

∗ Yet another way to convexify non-convex losses without randomization is to
use an upper bound (e.g., hinge loss or logistic loss upper bounds the zero-
one loss). However, minimizing the convex upper bound does not guarantee
minimizing the zero-one loss.

5.4 Follow the leader (FTL) (Lecture 13)

We first start out with a natural algorithm called follow the leader (FTL), which in some
sense is the analog of the majority algorithm for online learning. We’ll see that it works for
quadratic functions but fails for linear functions. This will give us intuition about how to
fix up our algorithm.

• Algorithm 2 (follow the leader (FTL))

– Let f1, . . . , fT be the sequence of loss functions played by nature.

– The learner chooses the weight vector wt ∈ S that minimizes the cumulative loss
so far on the previous t− 1 iterations:

wt ∈ arg min
w∈S

t−1∑
i=1

fi(w). (476)

(If there are multiple minima, choose any one of them. This is not important.)

– Aside: solving this optimization problem at each iteration is expensive in general
(which would seem to destroy the spirit of online learning), but we’ll consider
special cases with analytic solutions.

– Note: We can think of FTL as an empirical risk minimizer where the training set
is the first t− 1 examples.

• We want to now study the regret of FTL. Regret compares the learner (FTL) with
any expert u ∈ S, but this difference can be hard to reason about. So to get started,
we will use the following result (Lemma 7) to replace u in the bound by (i) something
easier to compare wt to and (ii) at least as good as any u ∈ S.

• Lemma 7 (compare FTL with one-step lookahead cheater)

– Let f1, . . . , fT be any sequence of loss functions.

– Let w1, . . . , wT be produced by FTL according to (476). For any u ∈ S:

Regret(u)
def
=

T∑
t=1

[ft(wt)− ft(u)] ≤
T∑
t=1

[ft(wt)− ft(wt+1)]. (477)
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– Note: This is saying our regret against the best fixed u is no worse than comparing
against the one-step lookahead wt+1 that peeks at the current function ft (which
is cheating!).

– Note: The RHS terms ft(wt) − ft(wt+1) measure how stable the algorithm is;
smaller is better. Stability is an important intuition to develop.

• Proof of Lemma 7:

– Subtracting
∑

t ft(wt) from both sides, it suffices to show

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u) (478)

for all u ∈ S. Intuitively, this says that wt+1 (which takes the minimum over the
first t functions) is better than using a fixed u for all time.

– Proof by induction:

∗ Assume the inductive hypothesis on T − 1:

T−1∑
t=1

ft(wt+1) ≤
T−1∑
t=1

ft(u) for all u ∈ S. (479)

∗ Add fT (wT+1) to both sides:

T∑
t=1

ft(wt+1) ≤
T−1∑
t=1

ft(u) + fT (wT+1) for all u ∈ S. (480)

∗ In particular, this holds for u = wT+1, so we have:

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(wT+1). (481)

∗ Since wT+1 ∈ arg minu
∑T

t=1 ft(u) by definition of FTL, we have:

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u) for all u ∈ S, (482)

which is the inductive hypothesis for T .

• Note that Lemma 7 doesn’t actually require on convexity of ft, but rather only stability
of the iterates {wt} as measured by ft. As we’ll see later, strong convexity is the main
way we will achieve this stability. For now, let’s consider two examples to gain some
intuition: one where the {wt} are stable (Example 28) and one where they are not
(Example 29).
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• Example 28 (quadratic optimization: FTL works)

– Assume nature always chooses quadratic functions:

ft(w) =
1

2
‖w − zt‖2

2, (483)

where the points are bounded: ‖zt‖2 ≤ L for all t = 1, . . . , T .

– FTL (minimizing over S = Rd) has a closed form solution, which is just the
average of the previous points:

wt =
1

t− 1

t−1∑
i=1

zi. (484)

– Bound one term of the RHS of Lemma 7 (intuitively the difference is only one
term):

ft(wt)− ft(wt+1) =
1

2
‖wt − zt‖2

2 −
1

2
‖(1− 1/t)wt + (1/t)zt − zt‖2

2 (485)

=
1

2
(1− (1− 1/t)2)‖wt − zt‖2

2 (486)

≤ (1/t)‖wt − zt‖2
2 (487)

≤ (1/t)4L2. (488)

– Side calculation: summing 1/t yields log T :

T∑
t=1

(1/t) ≤ 1 +

∫ T

1

(1/t)dt = log(T ) + 1. (489)

– Summing over t yields:

Regret ≤
T∑
t=1

[ft(wt)− ft(wt+1)] ≤ 4L2(log(T ) + 1). (490)

– The important thing here is that the difference between wt and wt+1 (measured
in terms of loss) is really small (only 1/t), which means that FTL for quadratic
functions is really stable. This makes sense because averages are stable: adding
an extra data point should only affect the running average by O(1/t).

• Example 29 (linear optimization: FTL fails)

– We will construct an evil example to make FTL fail.
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– Let S = [−1, 1] be FTL’s possible predictions. This is a nice bounded one-
dimensional convex set, so we’re not even trying hard to be pathological.

– Consider linear functions ft(w) = wzt in d = 1 dimension, where

(z1, z2, . . . ) = (−0.5, 1,−1, 1,−1, 1,−1, . . . ). (491)

– The minimizer computed by FTL will be attained at an extreme point, causing
oscillating behavior.

(w1, w2, . . . ) = (0, 1,−1, 1,−1, 1,−1, 1, . . . ). (492)

– FTL obtains T − 1 cumulative loss (get loss 1 on every single example except the
first).

– Expert u = 0 obtains 0 cumulative loss (not necessarily even the best).

– Therefore, the regret is pretty depressing:

Regret ≥ T − 1 . (493)

• What’s the lesson?

– For these quadratic functions, wt and wt+1 must get closer (low regret).

– For these linear functions, wt and wt+1 do not get closer (high regret).

– It seems then that FTL works when functions ft offer “stability” (e.g., quadratic)
but fail when they do not (e.g., linear).

– We will reveal the more general principle (strong convexity) later work.
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[begin lecture 14] (14)

5.5 Follow the regularized leader (FTRL) (Lecture 14)

• It would be nice if nature just handed us quadratic-looking ft’s, but in general, we’re
not the ones calling the shots there. But we do control the learner, so the key idea is
to add some regularization of our own to stablize the learner.

• Algorithm 3 (follow the regularized leader (FTRL))

– Let ψ : S → R be a function called a regularizer (this defines the learner).

– Let f1, . . . , fT be the sequence of loss functions played by nature.

– On iteration t, the learner chooses the weight vector that minimizes the regularizer
plus the losses on the first t− 1 examples:

wt ∈ arg min
w∈S

ψ(w)+
t−1∑
i=1

fi(w). (494)

– Note: FTL is just FTRL with ψ = 0.

• Quadratic ψ, linear ft

– For the remainder of the section, just to build the right intuition in a transparent
way, let’s specialize to quadratic regularizers ψ and linear loss functions ft:

ψ(w) =
1

2η
‖w‖2

2, ft(w) = w · zt. (495)

– Then the FTRL optimization problem (494) is:

wt = arg min
w∈S

{
1

2η
‖w‖2

2 − w · θt
}
, (496)

where

θt = −
t−1∑
i=1

zi (497)

is the negative sum of the gradients zt. Interpret θt as the direction that we want
to move in to reduce the loss, but now, unlike in FTL, we’re held back by the
quadratic regularizer.
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– If S = Rd, then FTRL has a closed form solution:

wt = ηθt, (498)

a scaled down version of θt. We can write wt = −ηz1 − ηz2 − · · · − ηzt−1 and
equivalently think of the weights as being updated incrementally according to the
following recurrence:

wt+1 = wt − ηzt. (499)

From this perspective, the recurrence in (499) looks awfully like an online sub-
gradient update where zt is the gradient and η is the step size.

– If S 6= Rd, then FTRL requires a projection onto S. We rewrite (496) by com-
pleting the square (add η

2
‖θt‖2

2):

wt ∈ arg min
w∈S

1

2η
‖w − ηθt‖2

2 = ΠS(ηθt), (500)

which is a Euclidean projection of ηθt onto set S. This is called a lazy projection
since θt still accumulates unprojected gradients, and we only project when we need
to obtain a weight vector wt for prediction. This is also known as Nesterov’s dual
averaging algorithm.

• Regularizers in online and batch learning

– It’s worth pausing to examine the difference in the way regularization enters online
learning versus batch learning, with which you’re probably more familiar.

– In batch learning (e.g., in training an SVM or ridge regression), one typically seeks
to optimize a function which is the sum of the training loss plus the regularizer.
Notably, the regularizer is part of the objective function.

– In online learning here, our objective in some sense is the regret, which makes no
mention of the regularizer. The regularizer lies purely inside the learner’s head,
and is used to defines the updates. In our example so far, the regularizer (in the
context of FTRL) gives birth to the online gradient algorithm in (499).

• Now we will analyze the regret FTRL for quadratic regularizers and linear losses.

• Theorem 30 (regret of FTRL)

– Let S ⊆ Rd be a convex set (of weight vectors).

– Let f1, . . . , fT be any sequence of linear loss functions: ft(w) = w · zt for some
zt ∈ Rd.

– Let ψ(w) = 1
2η
‖w‖2

2 be a quadratic regularizer for any η > 0.
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– Then the regret of FTRL (as defined in Algorithm 3) with respect to any u ∈ S
is as follows:

Regret(u) ≤ 1

2η
‖u‖2

2 +
η

2

T∑
t=1

‖zt‖2
2. (501)

• Interpretation: the step size η allows us to trade off two terms:

– First term: “squared bias” due to regularization. To compete with u, the learner’s
iterates wt must somehow get close to u. Smaller η means more regularization
(remember wt = ηθt), which means it’s harder to get there.

– Second term: “variance” due to changing zt. A smaller η means that successive
weight vectors are closer and thus stabler (recall wt+1−wt = −ηzt). With a small
η, we can hope to avoid the bad scenario in Example 29.

• FIGURE: [ellipse with u at edge, draw iterates wt trying to reach u]

• Corollary:

– To make the bound look cleaner:

∗ Let ‖zt‖2 ≤ L.

∗ Let ‖u‖2 ≤ B for all experts u ∈ S.

Now (501) can be rewritten as:

Regret(u) ≤ B2

2η
+
ηTL2

2
. (502)

– Side calculation:

∗ Suppose we want to minimize some function with the following form: C(η) =
a/η + bη.

∗ Take the derivative: −a/η2 + b = 0, resulting in η =
√
a/b and C(η) = 2

√
ab,

which is just twice the geometric average of a and b.

– Letting a = B2/2 and b = TL2/2, we get η = B
L
√
T

and

Regret ≤ BL
√
T . (503)

Note that the average regret goes to zero as desired, even though not as fast as
for quadratic functions (log T ).

• Proof of weakened version of Theorem 30
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– We will prove Theorem 30 later using Bregman divergences, but just to give some
intuition without requiring too much technical machinery, we will instead prove
a slightly weaker result (note that the second term is looser by a factor of 2):

Regret(u) ≤ 1

2η
‖u‖2

2 + η

T∑
t=1

‖zt‖2
2. (504)

– The key idea is to reduce FTRL to FTL. Observe that FTRL is the same as FTL
where the first function is the regularizer.

– Let us then apply Lemma 7 to the sequence of functions ψ, f1, . . . , fT (when
applying the theorem, note that the indices are shifted by 1). This results in the
bound:

[ψ(w0)− ψ(u)] +
T∑
t=1

[ft(wt)− ft(u)] ≤ [ψ(w0)− ψ(w1)] +
T∑
t=1

[ft(wt)− ft(wt+1)].

(505)

– Canceling ψ(w0), noting that ψ(w1) ≥ 0, and rearranging, we get:

Regret(u)
def
=

T∑
t=1

[ft(wt)− ft(u)] ≤ 1

2η
‖u‖2

2 +
T∑
t=1

[ft(wt)− ft(wt+1)]. (506)

– Now let’s bound one term of the RHS sum:

ft(wt)− ft(wt+1) = zt · (wt − wt+1) [since ft(w) = w · zt] (507)

≤ ‖zt‖2‖wt − wt+1‖2 [Cauchy-Schwartz] (508)

= ‖zt‖2‖ΠS(ηθt)− ΠS(ηθt+1)‖2 [since wt = ΠS(ηθt)] (509)

≤ ‖zt‖2‖ηθt − ηθt+1‖2 [projection decreases distance] (510)

= η‖zt‖2
2 [since θt+1 = θt − zt]. (511)

Plugging this bound back into (506) completes the proof.

5.6 Online subgradient descent (OGD) (Lecture 14)

• So far, we have proven regret bounds for FTRL with linear loss functions. However,
many loss functions we care about in practice (e.g., squared loss, hinge loss) are not
linear.

• Even if did derive a regret for FTRL with more general losses, there would still be
a computational problem: FTRL (see (494)) requires minimizing over all the loss
functions seen so far, which in general is computationally impractical, especially for
an online learning algorithm. For linear loss functions, on the other hand, we could
optimize wt easily by maintaining θt as a “sufficient statistics” (by linearity).
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• Our strategy to handling general losses efficiently is by appealing to the linear ma-
chinery we already have. The key idea is to run FTRL on a linear approximation of
ft.

• What linear approximation w 7→ w · zt should we use? Let’s use the subgradient of ft
at the current weights wt: take any zt ∈ ∂ft(wt). Just to highlight the simplicity of
the algorithm, here it is:

• Algorithm 4 (Online subgradient descent (OGD))

– Let w1 = 0.

– For iteration t = 1, . . . , T :

∗ Predict wt and receive ft.

∗ Take any subgradient zt ∈ ∂ft(wt).
∗ If S = Rd, perform the update:

wt+1 = wt − ηzt. (512)

∗ If S ⊆ Rd, project cumulative gradients onto S:

wt+1 = ΠS(ηθt+1), θt+1 = θt − zt. (513)

• To emphasize: OGD on ft is nothing more than FTRL on quadratic regularizers and
linear subgradient approximations of ft.

• Analyzing regret

– From our earlier analysis of FTRL (Theorem 30), we already have a bound on
the regret on the linearized losses:

T∑
t=1

[wt · zt − u · zt]. (514)

– We are interested on controlling the actual regret with respect to ft:

T∑
t=1

[ft(wt)− f(u)]. (515)

– How do we relate these two? Here’s where convexity comes in a crucial way.

– Since zt ∈ ∂ft(wt) is a subgradient, we have by the definition of subgradient:

ft(u) ≥ ft(wt) + zt · (u− wt). (516)

Rearranging, we get a direct comparison for each term of the regret:

ft(wt)− ft(u) ≤ (wt · zt)− (u · zt). (517)
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– The upshot is that the bounds we got for linear losses apply without modification
to general losses! Intuitively, linear functions are the hardest to optimize using
online convex optimization.

– FIGURE: [draw convex ft with linearized]

• Remarks:

– OGD works for any convex loss function ft (so does FTRL, but we only analyzed
it for linear losses).

– OGD is in some sense the first practical, non-toy algorithm we’ve developed.

– Gradient-based methods are most commonly thought of as a procedure for opti-
mizing a global objective, but this analysis provides a different perspective: that
of doing full minimization of linearized losses with quadratic regularization.

– The minimization viewpoint opens way to many other algorithms, all of which
can be thought of as using different regularizers or using better approximations
of the loss functions, while maintaining efficient parameter updates.

• Example 30 (Online SVM)

– Let us use our result on OGD to derive a regret bound for learning SVMs in an
online manner.

– We will just apply OGD on the hinge loss for classification (xt ∈ Rd, yt ∈
{+1,−1}):

ft(w) = max{0, 1− yt(w · xt)}. (518)

The algorithm (assume S = Rd, so we don’t need to project):

∗ If yt(wt · xt) ≥ 1 (classify correctly with margin 1): do nothing.17

∗ Else: wt+1 = wt + ηytxt.

– Analysis:

∗ Assume the data points are bounded: ‖xt‖2 ≤ L. Then zt ∈ ∂ft(wt) also
satisfies that bound ‖zt‖2 ≤ L.

∗ Assume that expert weights are bounded: ‖u‖2 ≤ B.

∗ The regret bound from Theorem 30 is as follows:

Regret ≤ BL
√
T . (519)

• Example 31 (Learning with expert advice)

17This algorithm is very similar to the Perceptron algorithm; the only difference is that Perceptron just
requires any positive margin, not necessarily 1.
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– Now let us consider learning with expert advice.

∗ We maintain a distribution wt ∈ ∆d over d experts and predict by sampling
an expert from that distribution.

∗ Assume the zero-one loss: `(yt, pt) = I[yt 6= pt].

∗ The loss function is linear: ft(wt) = wt · zt, where

zt = [`(yt, h1(xt)), · · · , `(yt, hd(xt))] ∈ {0, 1}d (520)

is the loss vector.

– Bound on set of experts (B): the experts live in the simplex S = ∆d, which has
its 2-norm bounded by B = 1 (attained at a corner).

– Bound on loss gradient (L):

∗ The Lipschitz constant is bounded by the norm of the gradient zt, which is
at most

√
d.

∗ Therefore, the regret bound we get is

Regret ≤ BL
√
T =

√
dT . (521)

– Note that we are depending on the square root of the number of experts d rather
than the log of the number of experts in our first online learning bound for learn-
ing with expert advice. Can we obtain a log d dependence without assuming
realizability? We will find out in the next section.

5.7 Online mirror descent (OMD) (Lecture 14)

So far, we have analyzed FTRL for quadratic regularizers, which leads to (lazy projected)
gradient-based algorithms. Quadratic regularization is imposing a certain prior knowledge,
namely that there is a good parameter vector w in a small L2 ball. But perhaps we know
some dimensions to be more important than others. Then we might want to use a non-
spherical regularizer. Or in the case of learning with expert advice, we know that w ∈ ∆d

(a probability distribution), so negative entropy might be more appropriate. In this section,
we will develop a general way of obtaining regret bounds for general regularizers, and make
explicit the glorious role that strong convexity plays. We make make extensive use of Fenchel
duality and Bregman divergences.

• The goal for this lecture is to analyze FTRL (Algorithm 3) for arbitrary convex loss
functions and regularizers. The resulting algorithm is this:

• Algorithm 5 (online mirror descent (OMD))

– Let ψ : Rd → R be the regularizer (this defines the learner).

– Let f1, . . . , fT be the sequence of loss functions played by nature.
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– On each iteration t = 1, . . . , T , the learner chooses weights wt to minimize the
regularized (linearized) loss:

wt ∈ arg min
w∈Rd
{ψ(w)− w · θt}, (522)

where zt ∈ ∂ft(wt) is the t-th subgradient, and θt = −
∑t−1

i=1 zi is the negative sum
of the first t− 1 subgradients.

• Technical note: we will let the domain of weight vectors be unconstrained (S = Rd).
We can always fold a constraint into the regularizer by setting ψ(w) =∞ if w violates
the constraint.

• To recap the terminology:

– OMD on ft is equivalent to FTRL on the linearizations w 7→ w · zt.
– OGD is OMD with the quadratic regularizer ψ(w) = 1

2η
‖w‖2

2

• Examples of regularizers:

– Quadratic regularizer: ψ(w) = 1
2η
‖w‖2

2.

– Non-spherical quadratic regularizer: ψ(w) = 1
2η
w>Aw for A � 0.

– Entropic regularizer: ψ(w) = 1
η

∑d
j=1wj logwj if w ∈ ∆d (this is the negative

entropy defined on the probability simplex), and ∞ otherwise.

– Note: the difference between the two regularizers is that the entropic regularizer
slopes up violently when w approaches the boundary of the simplex ∆d (the
function value is finite but the gradient goes to infinity).

• We now need to build up some tools to help us analyze OMD. First, we introduce
Fenchel duality, an important tool in optimization:

– Definition 27 (Fenchel conjugate)

∗ The Fenchel conjugate18 of a function (not necessarily convex) ψ : Rd → R
is

ψ∗(θ)
def
= sup

w∈Rd
{w · θ − ψ(w)}. (523)

– Intuition

∗ For scalars w, θ ∈ R, given a fixed θ (interpreted as a slope), −ψ∗(θ) is the
position where the supporting hyperplane of ψ with slope θ hits the vertical
axis.

18Also known as the convex conjugate or Legendre-Fenchel transformation.
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· FIGURE: [draw ψ]

∗ One can think of sweeping θ and reading out ψ∗(θ); this information in some
sense encodes the epigraph of ψ if ψ is convex.

– Useful facts:

∗ ψ∗ is always convex (even if ψ is not), since it’s just a supremum over a
collection of linear functions θ 7→ w · θ − ψ(w).

∗ ψ∗(θ) ≥ w · θ − ψ(w) for all w ∈ Rd (Fenchel-Young inequality). This
follows directly from the definition of ψ∗.

∗ If r(w) = aψ(w) with a > 0, then r∗(θ) = aψ∗(θ/a). This is useful because
once we’ve computed the Fenchel conjugate for one function, we know it for
different scalings. In fact, Fenchel duality has a very nice algebra that makes
computing Fenchel conjugates modular.

∗ ψ∗∗ = ψ iff ψ is convex (and lower semi-continuous). In this case, we have

ψ(w) = ψ∗∗(w) = sup
θ∈Rd
{w · θ − ψ∗(θ)}. (524)

∗ If ψ is differentiable, then

∇ψ∗(θ) = arg max
w∈Rd
{w · θ − ψ(w)}. (525)

This is because the gradient of the supremum of a collection of functions at
θ is the gradient of the function that attains the max at θ.

– Mirroring

∗ Comparing this with the the OMD update (522), we see that wt = ∇ψ∗(θt),
and −ψ∗(θt) is the corresponding value of the regularized loss.

∗ Since wt attains the supremum of the Fenchel conjugate ψ∗, the optimality
conditions (differentiate with respect to w) tell us that θt = ∇ψ(wt).

∗ We have a one-to-one mapping between weights w and negative cumulative
subgradients θ, linked via the gradients of ψ and ψ∗, which are inverses of
one another:

wt = ∇ψ∗(θt), θt = ∇ψ(wt). (526)

∗ This provides a very elegant view of what online mirror descent is doing.
OMD takes a series of gradient updates θt+1 = θt−zt, generating θ1, θ2, . . . , θT .
These steps are mirrored via Fenchel duality in the sequence w1, w2, . . . , wT .

∗ FIGURE: [mapping]

– Example 32 (Quadratic regularizer)

∗ Let ψ(w) = 1
2η
‖w‖2

2.

∗ Then ψ∗(θ) = η
2
‖θ‖2

2, attained by w = ∇ψ∗(θ) = ηθ.
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∗ In this case, w and θ are simple rescalings of each other.

– Example 33 (Entropic regularizer)

∗ Let ψ(w) = 1
η

∑d
j=1 wj logwj for w ∈ ∆d (negative entropy).

∗ Then ψ∗(θ) = 1
η

log
(∑d

j=1 e
ηθj

)
(log partition function), attained by wj =

∇ψ∗(θ) = eηθj∑d
k=1 e

ηθk
.

∗ Aside: this is maximum entropy duality in exponential families, where w
and θ represent the mean and canonical parametrization of a multinomial
distribution.
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[begin lecture 15] (15)

5.8 Regret bounds with Bregman divergences (Lecture 15)

• Motivation

– Having reinterpreted OMD as a mapping using a conjugate function, let’s turn
to proving a regret bound. Recall that in order to prove bounds, we needed to
ensure that wt and wt+1 don’t change too much according to some criteria.

– For quadratic regularization, this criteria was based on Euclidean distance.

– We now generalize this by using Bregman divergences, which generalizes the no-
tion of distance based on the regularizer.

– Definition 28 (Bregman divergence)

∗ Let f be a continuously-differentiable convex function.

∗ The Bregman divergence between w and u is the difference at w between
f and a linear approximation around u:

Df (w‖u)
def
= f(w)− f(u)−∇f(u) · (w − u). (527)

∗ Intuitively, the divergence captures the the error of the linear approximation
of f based on the gradient ∇f(u).

∗ FIGURE: [show gap between f and its linear approximation]

– Property: Df (w‖u) ≥ 0 (by definition of convexity).

– Note: Bregman divergences are not symmetric and therefore not a distance metric.

– Example 34 (Quadratic regularizer)

∗ Let f(w) = 1
2
‖w‖2

2.

∗ Then Df (w‖u) = 1
2
‖w − u‖2

2 (squared Euclidean distance).

– Example 35 (Entropic regularizer)

∗ Let f(w) =
∑d

j=1wj logwj for w ∈ ∆d (negative entropy).

∗ Then Df (w‖u) = KL (w‖u) =
∑

j wj log(wj/uj) for w ∈ ∆d (KL divergence).

– Property (scaling): Daf (w‖u) = aDf (w‖u).

• Theorem 31 (regret of OMD using Bregman divergences)

– OMD (Algorithm 5) obtains the following regret bound:

Regret(u) ≤ [ψ(u)− ψ(w1)] +
T∑
t=1

Dψ∗(θt+1‖θt). (528)
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– Furthermore, if all ft’s are linear, the inequality is actually an equality if u is the
best expert. So this bound is pretty air tight.

• Proof of Theorem 31:

– We assume all the loss functions are linear; recall in our analysis of OGD that
linear functions are the worst case.

– The key step is to find a potential function which allows us to monitor progress.
The pivoting quantity is ψ∗(θT+1), the negative regularized loss of the best fixed
expert. This will allow us to relate the learner (wt) to the expert (u).

– Recall:

∗ Learner’s loss is
∑T

t=1 wt · zt.
∗ Expert’s loss is

∑T
t=1 u · zt.

∗ The regret is the difference between the two.

– The expert:

ψ∗(θT+1) ≥ u · θT+1 − ψ(u) (529)

=
T∑
t=1

[−u · zt]− ψ(u) (530)

by the Fenchel-Young inequality. Note that we have equality if u is the best
expert, by definition of ψ∗.

– The learner:

ψ∗(θT+1) = ψ∗(θ1) +
T∑
t=1

[ψ∗(θt+1)− ψ∗(θt)] [telescoping sums] (531)

= ψ∗(θ1) +
T∑
t=1

[∇ψ∗(θt) · (θt+1 − θt) +Dψ∗(θt+1‖θt)] [Bregman definition]

(532)

= ψ∗(θ1) +
T∑
t=1

[−wt · zt +Dψ∗(θt+1‖θt)] [definition of OMD (526) and θt].

(533)

Note that ψ∗(θ1) = −ψ(w1) since θ1 = 0.

– Combining last equations for the expert and learner and rearranging yields the
result.

– The regret bound (528) is a generalization of (501), where ψ(w) = 1
2η
‖w‖2

2 is

quadratic regularizer, and Dψ∗(θt+1‖θt) = η
2
‖zt‖2

2.

– However, a general Bregman divergence usually doesn’t have such a nice form,
and thus it is useful to bound it using a nicer quantity: a norm of some kind.
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5.9 Strong convexity and smoothness (Lecture 15)

• First, let’s review some intuition behind norms.

– Lp norms decrease as p increases:

‖w‖1 ≥ ‖w‖2 ≥ ‖w‖∞. (534)

– The difference between the norms can be huge. For example, take w = (1, . . . , 1) ∈
Rd. Then ‖w‖1 = d, ‖w‖2 =

√
d, ‖w‖∞ = 1.

– Recall that the dual norm of a norm ‖ · ‖ is

‖x‖∗ = sup
‖y‖≤1

(x · y). (535)

Thinking of y as a linear operator on x, the dual norm measures the gain when
we measure perturbations in x using ‖ · ‖.

– The norms ‖ · ‖p and ‖ · ‖q are dual to each other when 1
p

+ 1
q

= 1. Two common
examples are:

‖ · ‖1 is dual to ‖ · ‖∞. (536)

‖ · ‖2 is dual to ‖ · ‖2. (537)

• We will now use these squared norms to control Bregman divergences provided the
Bregman divergences have an important special structure called strong convexity :

• Definition 29 (strong convexity/smoothness)

– A function f is α-strongly convex with respect to a norm ‖ · ‖ iff for all w, u:

Df (w‖u) ≥ α

2
‖w − u‖2. (538)

– A function f is α-strongly smooth with respect to a norm ‖ · ‖ iff for all w, u:

Df (w‖u) ≤ α

2
‖w − u‖2. (539)

• Intuitions

– Strong convexity means that f must be growing at least quadratically.

– Strong smoothness means that f must be growing slower than some quadratic
function.

– Example: the quadratic regularizer ψ(w) = 1
2
‖w‖2

2 is both 1-strongly convex and
1-strongly smooth with respect to the L2 norm, since Dψ(w‖u) = 1

2
‖w − u‖2

2.
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• Duality links strong convexity and strong smoothness, as the following result shows.

• Lemma 8 (strong convexity and strong smoothness)

– The following two statements are equivalent:

∗ ψ(w) is 1/η-strongly convex with respect to a norm ‖ · ‖.
∗ ψ∗(θ) is η-strongly smooth with respect to the dual norm ‖ · ‖∗.

– Sanity check the quadratic regularizer: ψ(w) = 1
2η
‖w‖2

2 and ψ∗(θ) = η
2
‖θ‖2

2.

• With these tools, we can finally make some progress on our regret bound from Theo-
rem 31, rewriting the Bregman divergences in terms of norms.

• Theorem 32 (regret of OMD using norms)

– Suppose ψ is a 1
η
-strongly convex regularizer.

– Then the regret of online mirror descent is

Regret(u) ≤ [ψ(u)− ψ(w1)] +
η

2

T∑
t=1

‖zt‖2
∗. (540)

• Proof of Theorem 32

– By Lemma 8, since ψ is 1/η-strongly convex, the Fenchel conjugate ψ∗ is η-
strongly smooth.

– By definition of strong smoothness and the fact that θt+1 = θt − zt,

Dψ∗(θt+1‖θt) ≤
η

2
‖zt‖2

∗. (541)

– Plugging this bound into (528) gives us the result.

• Remarks:

– If we plug in the quadratic regularizer ψ(w) = 1
2η
‖w‖2

2, then we get back the

original result (501).

– However, (540) generalizes to other regularizers.

– We get to measure the size of zt using the dual norm ‖ · ‖∗ rather than the default
L2 norm, which will help us get tighter bounds for the learning from expert advice
problem.

• Learning form expert advice

– Let’s now use our tools to improve the regret bound that we got for learning from
expert advice.
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– Recall that when we used the quadratic regularizer, we got a regret bound of
√
dT

because ‖zt‖2 could be as big as
√
d.

– To reduce this, let’s just use another norm: ‖zt‖∞ ≤ 1; no dependence on d!

– But this means that the regularizer ψ has to be strongly convex with respect to
the L1 norm, but this is harder because ‖ · ‖1 ≥ ‖ · ‖2.

– Failure: the quadratic regularizer ψ(w) = 1
2η
‖w‖2

2 is only 1
ηd

-strongly convex with
respect to the L1 norm:

Dψ(w‖u) ≥ 1

2η
‖w − u‖2

2 ≥
1

2ηd
‖w − u‖2

1. (542)

Sanity check: ‖(1, . . . , 1)‖2
2 = d but ‖(1, . . . , 1)‖2

1 = d2. So if we try to use this in
the regret bound, we get 1

2η
+ Tηd

2
, which is still

√
dT (for optimal η).

– Failure: the L1 regularizer ψ(w) = ‖w‖1 is neither strongly convex nor strongly
smooth with respect to the any norm for any α: it doesn’t grow fast enough for
large w and grows too fast for small w.

– Success: entropic regularizer ψ(w) = 1
η

∑
j wj logwj for w ∈ ∆d is 1/η-strongly

convex with respect to the L1 norm. This requires some algebra and an application
of Cauchy-Schwartz (see Example 2.5 in Shai Shalev-Shwartz’s online learning
tutorial).

– FIGURE: [compare quadratic and entropic regularizer for d = 2]

• Example 36 (exponentiated gradient (EG))

– Entropic regularizer: ψ(w) = 1
η

∑d
j=1wj logwj for w ∈ ∆d.

– Recall ψ∗(θ) = 1
η

log
∑d

j=1 e
ηθj and ∇ψ∗j (θ) = eηθj∑d

k=1 e
ηθk

.

– OMD updates:

wt,j ∝ eηθt,j . (543)

The equivalent recursive formula:

wt+1,j ∝ wt,je
−ηzt,j . (544)

Interpretation: we maintain a distribution over the d experts. We use the gradient
zt to reweight the experts, normalizing afterwards to ensure a proper distribution.

– Recap: the exponentiated gradient (EG) algorithm is just online mirror descent
using the entropic regularizer.

• Example 37 (EG for learning with expert advice)
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– Consider learning with expert advice (Example 27).

– We use the expected zero-one loss: ft(w) = w · zt, where zt is the loss vector.

– We have that the dual norm of the gradients are bounded ‖zt‖∞ ≤ 1.

– The minimum and maximum values of the regularizer:

∗ maxw ψ(w) = 0 (minimum entropy)

∗ minw ψ(w) = log(1/d)
η

= − log d
η

(maximum entropy)

– Then

Regret =
log(d)

η
+
ηT

2
. (545)

– Setting η =
√

2 log d
T

yields:

Regret =
√

2 log(d)T . (546)

• To compare with quadratic regularization (OGD):

– Quadratic: [maxu ψ(u)−minu ψ(u)] ≤ 1
2η

, ‖zt‖2 ≤
√
d

– Entropic: [maxu ψ(u)−minu ψ(u)] ≤ log d
η

, ‖zt‖∞ ≤ 1

• Discussion

– Online mirror descent (OMD) allows us to use different regularizers based on our
prior knowledge about the expert vector u and the data zt. As we see with EG,
tailoring the regularizer can lead to better bounds.

– Using the L2 norm means that we use the bound ‖zt‖2 ≤
√
d. To get rid of the

dependence on d here, we use the L∞ norm with ‖zt‖∞ ≤ 1.

– However, this means that ψ must be strongly convex with respect to the L1

norm. The quadratic regularizer isn’t strong enough (only 1
ηd

-strongly convex

with respect to L2), so we need the entropic regularizer, which is 1-strongly convex
with respect to L1.

– Curvature hurts us because [ψ(u)−ψ(w1)] is now larger, but the simplex is small,
so [ψ(u)−ψ(w1)] only grows from 1 (with the quadratic regularizer) to log d (with
the entropic regularizer).

– So the tradeoff was definitely to our advantage.
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5.10 Local norms (Lecture 15)

• Recall that that the general online mirror descent (OMD) analysis (Theorem 31) yields:

Regret(u) ≤ [ψ(u)− ψ(w1)] +
T∑
t=1

Dψ∗(θt+1‖θt). (547)

Using the fact that ψ is 1/η-strongly convex with respect to some norm ‖ · ‖, we can
upper bound the Bregman divergence by the following (540):

Dψ∗(θt+1‖θt) ≤
η

2
‖zt‖2

∗. (548)

• If we use the entropic regularizer for ψ with norm ‖ · ‖ = ‖ · ‖1 and dual norm ‖ · ‖∗ =
‖ · ‖∞, we get our key

√
2 log(d)T regret bound for EG.

• In this section, we will use the local norms technique to improve (548). This will allow
us to do two things:

– Recover the strong O(log d) bound for the realizable setting.

– Allow us to analyze the multi-armed bandit setting.

• Why we should do better:

– Consider an example where there are two experts: one which is perfect (zt,1 = 0
for all t) and one which is horrible (zt,2 = 1 for all t).

– The EG algorithm will quickly downweight the bad expert exponentially fast:

wt,1 ∝ 1 wt,2 ∝ e−η(t−1). (549)

– So as t→∞, we have basically put all our weight on the first expert, and should
be suffering no loss.

– But ‖zt‖2
∞ = 1, so in the regret bound we still pay ηT

2
, which is simply a travesty.

– We would hope that ‖zt‖2
∞ = max1≤j≤d z

2
t,j should be replaced with something

that is sensitive to how much weight we’re placing on it, which is wt,j. Indeed the
following theorem fulfills this dream:

• Theorem 33 (exponentiated gradient (analysis using local norms))

– Assume nature plays a sequence of linear loss functions ft(w) = w · zt, where
zt,j ≥ 0 for all t = 1, . . . , T and j = 1, . . . , d.

– Then the exponentiated gradient (EG) algorithm (Example 37) achieves the fol-
lowing regret bound:

Regret(u) ≤ [ψ(u)− ψ(w1)] + η

T∑
t=1

d∑
j=1

wt,jz
2
t,j. (550)
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• This bound (550) is better than the bound in Theorem 32 because we are taking an
average (with respect to the distribution wt ∈ ∆d) instead of a max:

d∑
j=1

wt,jz
2
t,j ≤ max

1≤j≤d
z2
t,j

def
= ‖zt‖2

∞. (551)

This allows some components of the loss subgradients zt,j to be large provided that the
corresponding weights wt,j are small.

• Example 38 (exponentiated gradient in the realizable setting)

– Assume the loss vector is bounded: zt ∈ [0, 1]d.

– Assume there exists an expert u ∈ ∆d with zero cumulative loss (realizability).

– Recall the regret bound from using local norms:

Regret(u)
def
=

T∑
t=1

(wt · zt)−
T∑
t=1

(u · zt)︸ ︷︷ ︸
=0

≤ log d

η
+ η

T∑
t=1

d∑
j=1

wt,jz
2
t,j︸ ︷︷ ︸

≤wt·zt

(552)

.

– Note that
∑d

j=1wt,jz
2
t,j ≤ wt·zt, because all quantities are non-negative and a2 ≤ a

for a ∈ [0, 1].

– Rearranging, we get:

Regret(u) ≤ log d

η(1− η)
. (553)

– Minimize the bound with η = 1
2

to obtain:

Regret(u) ≤ 4 log d. (554)

– Recall that the majority algorithm (which aggressively zeros out the weights of
components as soon as they err) also obtained the very low O(log d) regret (see
Example 25), so it’s really nice to see that EG obtains the same regret guarantee.

– If the problem isn’t realizable, the majority algorithm isn’t even correct (it will
eliminate all the experts), whereas EG will gracefully fall back to O(

√
log(d)T )

regret.

• Now that you are hopefully somewhat convinced that the theorem is useful, let’s prove
it.

• Proof of Theorem 33:
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– This proof mostly involves starting with the Bregman divergence, and perform-
ing some low-level algebraic manipulation. Perhaps the most useful high-level
take-away is whenever we’re trying to massage some expression with log’s and
exp’s, it’s useful to try to approximate the functions using linear and quadratic
approximations (think Taylor approximations).

– Specifically, we will use the following two facts:

∗ Fact 1: e−a ≤ 1− a+ a2 for a ≥ 0 (this actually holds for smaller a, but let’s
keep it simple)

∗ Fact 2: log(1− a) ≤ −a
– Recall the Fenchel conjugate of the entropic regularizer is the log-partition func-

tion:

ψ∗(θ) =
1

η
log

d∑
j=1

eηθj . (555)

– By the definition of Bregman divergences (this was used in the proof of Theo-
rem 31), we have:

Dψ∗(θt+1‖θt) = ψ∗(θt+1)− ψ∗(θt)−∇ψ∗(θt)︸ ︷︷ ︸
wt

· (θt+1 − θt)︸ ︷︷ ︸
−zt

. (556)

– The rest is just applying the two facts and watching stuff cancel:

Dψ∗(θt+1‖θt) = ψ∗(θt+1)− ψ∗(θt) + wt · zt (557)

=
1

η
log

(∑d
j=1 e

ηθt+1,j∑d
j=1 e

ηθt,j

)
+ wt · zt [definition of ψ∗] (558)

=
1

η
log

(
d∑
j=1

wt,je
−ηzt,j

)
+ wt · zt [definition of θt] (559)

≤ 1

η
log

(
d∑
j=1

wt,j[1− (ηzt,j − η2z2
t,j)]

)
+ wt · zt [fact 1] (560)

=
1

η
log

(
1−

d∑
j=1

wt,j(ηzt,j − η2z2
t,j)

)
+ wt · zt [wt ∈ ∆d] (561)

≤ 1

η

d∑
j=1

wt,j(−ηzt,j + η2z2
t,j) + wt · zt [fact 2] (562)

= η

d∑
j=1

wt,jz
2
t,j [algebra]. (563)
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[begin lecture 16] (16)

5.11 Adaptive optimistic mirror descent (Lecture 16)

• Motivation

– Recall that the local norm bound technique for exponentiated gradient (EG) yields
the following bound (550):

Regret(u) ≤ log d

η
+ η

T∑
t=1

d∑
j=1

wt,jz
2
t,j, (564)

improving the ‖zt‖2
∞ from the standard mirror descent analysis (Example 37)

to the local norm ‖zt‖2
diag(wt)

. (Note that this was just an improvement in the

analysis, not the algorithm.)

– But there are two weaknesses of this regret bound. To see the first weakness,
consider the following example.

– Example 39 (perfect and confused expert)

∗ We have two experts:

· Expert 1 is perfect (zt,1 = 0).

· Expert 2 is just confused and alternates between loss of −1 and +1 (zt,2 =
(−1)t−1).

∗ Playing either expert 1 or expert 2 alone is optimal, yielding a cumulative
loss of 0 (for expert 2, for even T ). But expert 2 has higher variance and is
thus intuitively riskier, so maybe we should avoid it.

∗ However, the EG algorithm does not:

wt ∝

{
[1, 1] if t is odd

[1, exp(−η)] if t is even.
(565)

EG doesn’t penalize expert 2 on the odd rounds at all and barely penalizes
it on the even rounds, because expert 2 redeems itself on the even rounds.

∗ On this example, assuming the step size η ≤ 1, EG incurs a regret (not just
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a regret bound) of:

EG regret =
T

2

(
1

2
(1) +

exp(−η)

1 + exp(−η)
(−1)

)
(566)

=
T

2

(
1

2
− 1

1 + exp(η)

)
(567)

≥ T

2

(
1

2
− 1

2 + 2η

)
[exp(η) ≤ 1 + 2η for η ≤ 1] (568)

≥ T

2
η. (569)

∗ Typically, η = Θ( 1√
T

), in which case, the regret is Ω(T ).

∗ If η is too large, then EG ends up swinging back and forth between the two
experts, and incurring a lot of regret, just as in the FTL example with linear
loss functions (Example 29). On the other hand, η can’t be too small either,
or else we don’t end up being able to switch to a good expert quickly enough
(consider the example where expert 2 gets a loss of 1 always).

– The second weakness is that if we add 5 to the losses of all the experts on all
T iterations, then the regret bound suffers something like an extra 25ηT . But
morally, the problem hasn’t changed!

– In what follows, we will produce two improvements to the EG algorithm. There
are two key ideas:

∗ Adaptivity: instead of using a fixed regularizer ψ, we will use a regularizer ψt
that depends on the current iteration. This way, we can adapt the regularizer
to the loss functions that we’ve seen so far.

∗ Optimism: we will incorporate hints m1, . . . ,mT , which are a guess of the
actual loss sequence z1, . . . , zT . By incorporating these hints, our algorithm
can do much better when the hints are correct, but still be robust enough to
perform well when the hints are not correct. As a concrete example, think of
mt = zt−1 (a recency bias), which hints that the subgradients aren’t changing
very much.

Using these two ideas, we define an algorithm called adaptive optimistic mirror
descent (AOMD), which obtain the following regret bound for learning with
expert advice (for η ≤ 1

4
):

Regret(u) ≤ log d

η
+ η

T∑
t=1

d∑
j=1

uj(zt,j −mt,j)
2. (570)

Compared to (564), (570) depends on the expert uj rather than the learner wt,j;
and it also depends on the squared errors (zt,j − mt,j)

2 rather than z2
t,j. Unlike

local norms, this requires an actual change to the algorithm—a change which is
inspired by the theory.

175



• Recall that the normal mirror descent updates are given as follows:

wt = arg min
w∈Rd

{
ψ(w) +

t−1∑
i=1

w · zi

}
= ∇ψ∗(θt). (571)

• Define the following adaptive mirror descent updates:

wt = arg min
w∈Rd

{
ψt(w) +

t−1∑
i=1

w · zi

}
= ∇ψ∗t (θt), (572)

where all we’ve done is replaced ψ with ψt.

• To put optimism in, suppose we have a sequence of hints

m1, . . . ,mT , (573)

which are guesses of z1, . . . , zT . These have the property that mt only depends on
z1:t−1. For example, the simplest one could be mt = zt−1 (recency bias), which means
that we believe the subgradients do not change very much. Note that if mt = zt, then
we would be cheating and using the one-step lookahead. The adaptive optimistic
mirror descent updates are as follows:

wt = arg min
w∈Rd

{
ψ(w) +

t−1∑
i=1

w · zi + w ·mt

}
= ∇ψ∗(θ̃t), (574)

where θ̃t
def
= θt −mt is the guess of θt+1.

• Theorem 34 (regret of adaptive optimistic mirror descent)

– Let m1, . . . ,mT be any sequence of hints. Assume m1 = 0.

– Suppose we have a sequence of regularizers ψ1, . . . , ψT satisfying the following
loss-bounding property:

ψ∗t+1(θt+1) ≤ ψ∗t (θ̃t)− wt · (zt −mt). (575)

– Then

Regret(u) ≤ ψT+1(u)− ψ(w1). (576)

• Note: in our previous mirror descent analysis, we had two terms, one coming from
the regularizer, and one coming from the stability of our estimates. In contrast, (575)
“pushes the loss into the regularizer”, which gives us a bit more flexibility.
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• Proof of Theorem 34:

u · θT+1 − ψT+1(u) ≤ ψ∗T+1(θT+1) [Fenchel-Young] (577)

= ψ∗1(θ1) +
T∑
t=1

[ψ∗t+1(θt+1)− ψ∗t (θt)] [telescoping] (578)

= ψ∗1(θ1) +
T∑
t=1

[ψ∗t+1(θt+1)− ψ∗t (θ̃t)−∇ψ∗(θ̃t)︸ ︷︷ ︸
wt

·mt] [convexity of ψ∗t ]

(579)

= ψ∗1(θ1) +
T∑
t=1

−wt · zt [loss-bounding property] (580)

= −ψ1(w1) +
T∑
t=1

−wt · zt [since m1 = 0]. (581)

Recall that θT+1 = −
∑T

t=1 zt. Algebra completes the proof.

• Now what kind of regularizer should we use to satisfy the loss-bounding property?

– First attempt: let’s try just using a fixed regularizer ψt(w) = ψ(w). This means
that we need

ψ∗(θt+1) ≤ ψ∗(θ̃t)− wt · (zt −mt). (582)

But in fact, since ψ∗ is convex, and recalling wt = ∇ψ∗(θ̃t) and θt+1 − θ̃t =
−(zt −mt) we actually have:

ψ∗(θt+1) ≥ ψ∗(θ̃t)− wt · (zt −mt), (583)

which is the opposite of what we want!

– FIGURE: [graph of ψ∗ θt, θ̃t, θt+1]

– Second attempt: let’s try to provide a second-order correction:

ψ∗(θt+1 − η(zt −mt)
2) ≤ ψ∗(θ̃t)− wt · (zt −mt). (584)

The η(zt−mt)
2 term makes the LHS smaller. However, condition doesn’t look like

the loss-bounding precondition we need for Theorem 34. To make the condition
match, the key is to fold the second-order term into the regularizer.

– To that end, define the vector at to be the squared magnitude deviations between
zt and mt:

at
def
= (at,1, . . . , at,d), at,j

def
= (zt,j −mt,j)

2. (585)
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This motivates us to consider the following adaptive regularizer:

ψt(w)
def
= ψ(w) + η

t−1∑
i=1

w · ai. (586)

In the expert advice setting where w is a distribution over experts, we are penal-
izing experts that have large deviations from the hints, which is in line with our
intuitions that we want experts which match our hints (kind of like our prior).

– Algorithmically, AOMD with this choice of ψt is:

wt = arg min
w

{
ψ(w) + η

t−1∑
i=1

w · ai − w · θ̃t

}
(587)

= arg min
w

{
ψ(w)− w · β̃t

}
(588)

= ∇ψ∗(β̃t), (589)

where we define the second-corrected vectors (without and with mt-lookahead):

βt
def
= θt − η

t−1∑
i=1

ai, β̃t
def
= βt −mt. (590)

Recall that θ̃t = θt −mt.

• Theorem 35 (second-order corrections)

– Consider running AOMD using the adaptive regularizer ψt defined in (586).

– Assume the second-order-corrected loss-bounding property holds:

ψ∗(βt+1) ≤ ψ∗(β̃t)− wt · (zt −mt). (591)

– Then we have the following regret bound:

Regret(u) ≤ ψ(u)− ψ(w1) + η
T∑
t=1

u · at. (592)

• Proof of Theorem 35

– We need to translate the second-order-corrected loss-bounding property on ψ the
loss-bounding property on ψt.

∗ Since ψt(w) = ψ(w) +w · (η
∑t−1

i=1 ai) by definition, Fenchel conjugacy yields:

ψ∗t (x) = ψ∗

(
x− η

t−1∑
i=1

ai

)
. (593)

In other words, ψ∗t is just ψ∗ shifted by the second-order corrections.
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∗ Therefore,

ψ∗t+1(θt+1) = ψ∗(βt+1), , ψ∗t (θ̃t) = ψ∗(β̃t). (594)

– Note that β1 = 0, so ψ∗(β1) = −ψ(w1).

– Then:

Regret(u) ≤ ψT+1(u)− ψ(w1) [from Theorem 34] (595)

≤ ψ(u) + η

T∑
t=1

u · at − ψ(w1) [definition of ψt]. (596)

• Now let us apply this result to the expert advice setting.

• Theorem 36 (adaptive optimistic gradient descent (expert advice))

– Consider ‖zt‖∞ ≤ 1 and ‖mt‖∞ ≤ 1.

– Let ψ(w) = 1
η

∑d
j=1wj logwj be the standard entropic regularizer, which corre-

sponds to the following algorithm:

wt,j ∝ exp(β̃t,j) = exp

ηθt,j − ηmt,j︸ ︷︷ ︸
optimism

− η2

t−1∑
i=1

(zi,j −mi,j)
2

︸ ︷︷ ︸
adaptivity

 . (597)

– Assume 0 < η ≤ 1
4
.

– Then adaptive optimistic mirror descent (AOMD) obtains the following regret
bound:

Regret(u) ≤ log d

η
+ η

T∑
t=1

d∑
j=1

uj(zt,j −mt,j)
2. (598)

• Proof sketch: do algebra on ψ∗(βt+1) to show the condition of Theorem 35; see Stein-
hardt and Liang (2014).

• Example 40 (path length bound)

– Set mt = zt−1 be the average subgradients in the past.

– Algorithmically, this corresponds to counting the last zt−1 twice in addition to
penalizing deviations.

– FIGURE: [plot expert paths over time]

179



– We obtain

Regret ≤ log d

η
+ η

T∑
t=1

(zt,j∗ − zt−1,j∗)
2, (599)

where j∗ ∈ [d] is best expert (the one with the lowest cumulative loss).

– On Example 39, expert 1 is a best expert (obtains cumulative loss 0). We have
that the path length for expert 1 is (zt,1 − zt−1,1)2 = 0, so we obtain:

Regret ≤ log d

η
. (600)

The bound only holds for η ≤ 1
4
. By setting η = 1

4
, we that the regret is a mere

constant:

Regret ≤ 4 log d. (601)

– Note that unlike EG (which had Ω(
√
T ) regret), we don’t get distracted by expert

2, who has very low loss as well, but has longer path length and is thus discounted.

• At a high-level, what we’re doing with the hints mt is penalizing experts whose losses
zt,j don’t agree with our “prior” mt,j. Of course, the hints have only a secondary Θ(η)
effect, whereas the actual losses have a primary Θ(1) effect.

• This section is mostly based on Steinhardt and Liang (2014), who combines optimistic
mirror descent (Rakhlin and Sridharan, 2013) and adaptive mirror descent (Orabona
et al., 2015).

5.12 Online-to-batch conversion (Lecture 16)

• So far, we have been focusing on the online setting, where the learner receives one
example at a time and is asked to make a prediction on each one. Good online learners
have low regret.

• Sometimes it is more natural to operate in the batch setting, where the learner gets
a set of training examples, learns a model, and then is asked to predict on new test
examples. Good batch learners have low expected risk.

• In this section, we will show that low regret implies low expected risk by explicitly
reducing the online setting to the batch setting.

• Batch setting

– Assume we have a unknown data-generating distribution p∗(z), where we use
z = (x, y) ∈ Z to denote an input-output pair.
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– Assume our hypothesis class is a convex set of weight vectors S ⊆ Rd.

– As in online learning, we define a convex loss function `(z, w) ∈ R; for example,
the squared loss for linear regression would be `((x, y), w) = (w · x− y)2. Assume
`(z, w) is convex in w for each z ∈ Z.

– The expected risk of a weight vector w ∈ S is defined as follows:

L(w) = Ez∼p∗ [`(z, w)]. (602)

– Define the weight vector that minimizes the expected risk:

w∗ ∈ arg min
w∈S

L(w). (603)

– The batch learner gets T i.i.d. training examples (z1, . . . , zT ), where each zt ∼ p∗.
The goal is to output some estimate w ∈ S that hopefully has low L(w).

Assuming we have an online learner as a black box, we will construct a batch learner
as follows:

• Algorithm 6 (online-to-batch conversion)

– Input: T training examples z1, . . . , zT .

– Iterate t = 1, . . . , T :

∗ Receive wt from the online learner.

∗ Send loss function ft(w) = `(zt, w) to the online learner.

– Return the average of the weight vectors: w̄ = 1
T

∑T
t=1 wt.

• Remarks about randomness

– In contrast to the online learning (adversarial) setting, many of the quantities we
are working with now have distributions associated with them.

– For example, ft is a random function that depends on zt.

– Each wt is a random variable which depends on (i.e., is in the sigma-algebra of)
z1:t−1.

– Note that L(w∗) is not random.

• Theorem 37 (Online-to-batch conversion)

– Recall the usual definition of regret (which depends on z1:T ):

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)]. (604)
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– Online-to-batch conversion obtains the following expected expected risk:

E[L(w̄)] ≤ L(w∗) +
E[Regret(w∗)]

T
. (605)

• Interpretation: the expected expected risk of the online-to-batch conversion L(w̄) is
bounded by the best possible expected risk (attained by w∗ ∈ S) plus the online regret.

• Note that E[L(w̄)] has two expectations here: the E[·] is an expectation over possible
training datasets, and L contains an expectation over test examples.

• Proof:

– The first key insight is that ft(wt) provides an unbiased estimate of the expected
risk of wt.

E[ft(wt) | wt] = L(wt). (606)

This is true because all the examples are independent, so wt (deterministic func-
tion of z1:t−1) is independent of ft (deterministic function of zt).

– The second key insight is that averaging can only reduce loss. Since `(z, ·) is
convex, and an average of convex functions is convex, L is convex. By Jensen’s
inequality:

L(w̄) ≤ 1

T

T∑
t=1

L(wt). (607)

– Now, the rest is just putting the pieces together. Putting (607) and (606) together:

L(w̄) ≤ 1

T

T∑
t=1

E[ft(wt) | wt]. (608)

Adding and subtracting L(w∗) to the RHS, noting that L(w∗) = E[ft(w
∗)]:

L(w̄) ≤ L(w∗) +
1

T

T∑
t=1

(E[ft(wt) | wt]− E[ft(w
∗)]). (609)

– Taking expectations on both sides:

E[L(w̄)] ≤ L(w∗) +
1

T

T∑
t=1

(E[ft(wt)− ft(w∗)]). (610)

– The second term of the RHS is upper bounded by the regret, so we have:

E[L(w̄)] ≤ L(w∗) +
E[Regret(w∗)]

T
. (611)
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• Remarks

– If you run online subgradient descent once over your training data,19 you should
expect O(

√
T ) regret by our previous analyses.

– The resulting average weight vector will, in expectation,20 have an expected risk
which is within O(1/

√
T ) of the best weight vector.

– If the batch learner returns the last weight vector wT+1, then our analysis above
doesn’t apply.

– In general, averaging is a useful concept for stabilizing learning algorithms.

5.13 Adversarial bandits: expert advice (Lecture 16)

• In online learning with expert advice, on each iteration, after we choose one of the d
experts/actions, nature reveals the loss vector zt for every single action.

• However, in many applications such as clinical trials or advertisement placement,
packet routing, we only get to observe the loss of the action we took, not the losses of
the actions we didn’t take.

• This setting is known as the multi-armed bandit problem, which is a type of online
learning problem with partial feedback.

• This problem is much more difficult. Intuitively, the learner should choose actions
that we expect to yield low loss, but it must choose which actions to explore to get
more information about the losses. Thus, the multi-armed bandit problem exposes the
challenges of the classic exploration/exploitation tradeoff.21

• Setup

– FIGURE: [matrix with loss functions]

– There are d possible actions (corresponding to the arms of a row of slot machines).

– Let zt ∈ [0, 1]d denote the vector of losses of the d actions at iteration t.

– For each iteration t = 1, . . . , T :

∗ Learner chooses a distribution wt ∈ ∆d over actions, and samples an action
at ∼ wt.

∗ Learner observes the loss of only that particular action zt,at and no others.

19In practice, it helps to run the online learning algorithm multiple times over the training data.
20You can get high probability bounds too using martingales, but we won’t discuss those here.
21 Reinforcement learning requires managing the exploration/exploitation tradeoff, but is even more diffi-

cult because actions take the learner between different states in a way that is unknown to the learner.
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– The expected regret with respect to an expert u ∈ ∆d is defined in the same way
as it was for online learning with expert advice:

E[Regret(u)] =
T∑
t=1

[wt · zt − u · zt]. (612)

Note that taking the max over randomized experts u ∈ ∆d is equivalent to taking
the max over single actions a ∈ [d], since the maximum over a linear function is
attained at one of the vertices.

• Estimating the loss vector

– Recall that in online learning, we would observe the entire loss vector zt. In that
case, we could use the exponentiated gradient (EG) algorithm (wt+1,j ∝ wt,je

−ηzt,j)

to obtain a regret bound of Regret ≤
√

2 log(d)T (see Example 37).

– In the bandit setting, we don’t observe zt, so what can we do? Let’s try to estimate
it with some ẑt that (i) we can observe and (ii) is equal to zt in expectation
(unbiased) in that for all a = 1, . . . , d:

Eat∼wt [ẑt,a | wt] = zt,a. (613)

– Given these two constraints, it’s not hard to see that the only choice for ẑt is:

ẑt,a =

{
zt,a
wt,a

if a = at

0 otherwise.
(614)

Note that dividing wt,a compensates for sampling at ∼ wt.

• Algorithm 7 (Bandit-EG)

– Run EG with the unbiased esimate ẑt rather than zt. Really, that’s it.

• Theorem 38 (Bandit-EG analysis)

– Bandit-EG obtains expected regret (expectation taken over learner’s randomness)
of

E[Regret(u)] ≤ 2
√
d log(d)T . (615)

• Comparison of Bandit-EG (bandit setting) and EG (online learning setting):

– Compared with the bound for EG in the full information online learning setting
(546), we see that this bound (615) is worse by a factor of

√
d.
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– In other words, the number of iterations T for Bandit-EG needs to be d times
larger in order to obtain the same average regret as EG.

– This is intuitive since in the bandit setting, each iteration reveals (1/d)-th the
amount of information compared with the online learning setting.

• Proof of Theorem 38:

– If EG is run with the unbiased estimate ẑt (zt = E[ẑt | wt]), then the expected
regret is simply:

E[Regret(u)] ≤ log d

η
+ η

T∑
t=1

Eat∼wt

[
d∑
a=1

wt,aẑ
2
t,a | wt

]
. (616)

Note that the random variable ẑt only depends on the previous actions through
the random variable wt.

– So now, we just have to compute the expected local norm:

Eat∼wt

[
d∑
a=1

wt,aẑ
2
t,a | wt

]
=

d∑
a=1

w2
t,a

(
z2
t,a

w2
t,a

)
≤ d, (617)

since zt ∈ [0, 1]d.

– Note that it is crucial that we use local norms here; the generic bound (540) of
‖zt‖2

∞ is not good enough because ‖zt‖∞ is unbounded.

– Minimizing the regret bound with respect to η, we get 2
√
d log(d)T with η =√

log(d)/(dT ).

• Note that we have only gotten results in expectation (over randomness of the learner
at ∼ wt). To get high probability results, we also need to control the variance of ẑt. To
do this, we modify the EG algorithm by smoothing wt with the uniform distribution
over actions. This results in the standard Exp3 algorithm.

5.14 Adversarial bandits: online gradient descent (Lecture 16)

• In the online convex optimization setting, we are presented with a sequence of functions
f1, . . . , fT . Importantly, we could compute subgradients zt ∈ ∂ft(wt), which allowed
us to update our weight vector using online gradient descent (OGD). In the bandit
setting, suppose we can only query function values of ft. Can we still minimize regret?

• Intuitively, something should be possible. In one dimension, the gradient of ft at a point
w can be approximated by ft(w+δ)−ft(w−δ)

2δ
. But this requires two function evaluations,

which is not permitted in the bandit setting: you only get to administer one treatment
to a patient, not two! Can we do it with one function evaluation? Can we generalize
to high dimensions? The answer to both questions is yes. The original idea is from
Flaxman et al. (2005); we follow the exposition in Shalev-Shwartz (2011).
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• For a function f , define a smoothed version of f as follows:

f̃(w) = Ev∼U≤1
[f(w + δv)], (618)

where U≤1 is the uniform distribution over the unit ball (the set of vectors v with
‖v‖2 = 1). There are two important properties:

– We can compute the gradient of f̃ (this is the key step):

∇f̃(w) = Ev∼U1

[
d

δ
f(w + δv)v

]
. (619)

This is due to Stokes’ theorem, but the intuition can be seen in 1D due to the
Fundamental Theorem of calculus:

f̃(w) = E[f(w + δv)] =

∫ δ
−δ f(w + t)dt

2δ
=
F (w + δ)− F (w − δ)

2δ
, (620)

where F is the antiderivative of f and thus

f̃ ′(w) =
f(w + δ)− f(w − δ)

2δ
. (621)

In the general setting, if we draw v ∼ U1 from the unit sphere, then d
δ
f(w + δv)v

is an unbiased estimate of ∇f̃(w).

– We have that f̃ well approximates f :

|f̃(w)− f(w)| ≤ |E[f(w + δv)− f(w)]| ≤ Lδ, (622)

where L is the Lipschitz constant of f .

Now we are ready to define the algorithm:

• Algorithm 8 (Bandit-OGD)

– For t = 1, . . . , T :

∗ Set wt = arg minw∈S ‖w − ηθt‖2 (same as OGD)

∗ Pick random noise vt ∼ U1

∗ Predict w̃t = wt + δvt

∗ Compute zt = d
δ
ft(w̃t)vt

∗ Update θt+1 = θt − zt

• Theorem 39 (regret bound bandit online gradient descent)

– Let f1, . . . , fT be a sequence of convex functions.
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– Let B = maxu∈S ‖u‖2 be the magnitude of an expert.

– Let F = maxu∈S,t∈[T ] ft(u) be the maximum function value.

– Then Bandit-OGD obtains the following regret bound:

E[Regret(u)] = E

[
T∑
t=1

[ft(w̃t)− ft(u)]

]
(623)

≤ 3LδT +
B2

2η
+
η

2
Td2(F/δ + L)2, (624)

where the expectation is over the learner’s random choice (nature is still adver-
sarial).

• Let us set δ and η to optimize the bound.

– First, we optimize the step size η: setting η = B
d(F/δ+L)

√
T

yields a regret bound of

3LδT +Bd(F/δ + L)
√
T . (625)

– Second, we optimize the amount of smoothing δ: setting δ =
√

BdF
3L
T−1/4 yields

a final regret bound of

E[Regret] ≤
√

12BdFLT 3/4 +BdL
√
T (626)

= O(
√
BdFLT 3/4), (627)

where in the last equality, we’re thinking of the dependence on T as primary.

– Note that our regret bound of O(T 3/4) has a worse dependence than the O(T 1/4)
that we’re used to seeing. This comes from the fact that we’re only getting an
unbiased estimate of the gradient of the a smoothed function f̂ , not f . And as
usual, we have a

√
d dependence on the dimension since we are in the bandit

setting and only get 1/d-the the information of a full gradient.

• Proof of Theorem 39

– Our analysis of plain OGD Theorem 30 yields the following regret bound when
applied to wt and linear functions x 7→ x · zt:

T∑
t=1

[wt · zt − u · zt] ≤
1

2η
‖u‖2

2 +
η

2

T∑
t=1

‖zt‖2
2. (628)

– First, taking expectations on both sides, using the fact that f̃t is convex with
∇f̃t(wt) = E[zt] for the LHS, expanding the definition of zt on the RHS:

T∑
t=1

E[f̃t(wt)− f̃t(u)] ≤ 1

2η
‖u‖2

2 +
η

2

T∑
t=1

E[‖(d/δ)ft(w̃t)vt‖2
2]. (629)
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– Second, let’s handle the gradient: Since ft is L-Lipschitz, we have that

ft(w̃t) ≤ ft(wt) + Lδ ≤ F + Lδ. (630)

Plugging this inequality into (629):

T∑
t=1

E[f̃t(wt)− f̃t(u)] ≤ B2

2η
+
η

2

d2

δ2
(F + Lδ)2. (631)

– Finally, we need to relate f̃t(wt) to ft(w̃t). Using the Lipschitz property of ft, we
have:

ft(w̃t)− ft(u) ≤ ft(wt)− ft(u) + Lδ ≤ f̃t(wt)− f̃t(u) + 3Lδ. (632)

Plugging this into (631) completes the proof.

5.15 Stochastic bandits: upper confidence bound (UCB) (Lecture
16)

• Let us return to the learning from expert advice setting where at each iteration, we
are choosing an arm at ∼ wt and suffering loss zt,at . So far, we have assumed that the
losses zt were adversarial. Now, let us now consider the stochastic setting, where zt’s
are drawn from an (unknown) distribution. By leveraging the probabilistic structure
of the problem, we’ll show in this section that we can improve the regret bounds from
O(
√
T ) to O(log T ).

• We will show an algorithm called upper confidence bound (UCB) (Lai and Robbins,
1985; Auer et al., 2002) that is based on the principle of optimism in the face of
uncertainty : we maintain upper bounds on the reward of each action and choose the
action that maximizes the best possible payoff. The idea is that we either get very low
loss (which is great), or we learn something.

• Let us define the notation for the stochastic bandits setting:

– Let r1, . . . , rT be an i.i.d. sequence of reward vectors,22 where each rt ∈ [0, 1]d

– Define µ
def
= E[rt] to be the average rewards (µ doesn’t depend on t).

– Define j∗
def
= arg maxdj=1 µj be the best action.

– Define ∆j
def
= µj∗ − µj > 0 be the gap between action j and the best action j∗.

Let ∆
def
= minj 6=j∗ ∆j the smallest gap.

22In the stochastic bandits literature, we typically maximize reward rather than minimize loss, so think of
rt = −zt.
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– Let a1, . . . , aT ∈ [d] be the sequence of actions taken by the learner.

– Let Sj(t)
def
= {i ∈ [t] : ai = j} be the set of time steps i up to time t where we

took action j.

– Let Nj(t) = |Sj(t)| be the number of times we took action j.

– We are interested in minimizing the expected regret:

E[Regret] =
T∑
t=1

E[rt,j∗ − rt,at ] (633)

=
d∑
j=1

E[Nj(T )]∆j, (634)

where in the last inequality, we’ve rewritten the regret to sum over all possible
actions; each of the Nj(T ) times we take action j, we add ∆j to the regret. Note
that at each time step t, rt is independent of at, which is a function of the past.

• Now let’s design an algorithm for solving the stochastic bandits problem. The way
to think about it is that we’re just estimating the mean µ in an online manner. At
each time step t, we have Nj(t) i.i.d. draws of action j, from which we can form the
empirical estimate

µ̂j(t) =
1

|Sj(t)|
∑
i∈Sj(t)

ri,j. (635)

Provided that Sj(t) grows to infinity, we can estimate the means: µ̂j(t)
P−→ µj.

• The difference from mean estimation is that we are also trying to exploit and will
choose actions j that are more likely to have higher reward.

• By Hoeffding’s inequality,

P[µ̂j(t) ≤ µj − ε] ≤ exp
(
−2Nj(t)ε

2
)
. (636)

In other words, with probability at least 1− δ,

µj ≤ µ̂j(t) +

√
log(1/δ)

2Nj(t)
. (637)

This motivates the following algorithm:

• Algorithm 9 (upper confidence bound (UCB))

– Play each of the d actions once.
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– For each subsequent time step t = d+ 1, . . . , T :

∗ Choose action

at = arg max
1≤j≤d

{
µ̂j(t− 1) +

√
2 log t

Nj(t− 1)

}
, (638)

• Theorem 40 (regret of upper confidence bound (UCB))

– The UCB algorithm obtains the following expected regret bound:

E[Regret] ≤ 8d log T

∆
+ 5d. (639)

• Proof sketch:

– The main idea is to upper bound the number of times an suboptimal action j 6= j∗

was taken. This happens when the following event A happens:

µ̂j + εj ≥ µ̂j∗ + εj∗ . (640)

– FIGURE: [µ̂j, µj, µ̂j∗ , µj∗ on a line with ∆j gap]

– Recall that the separation between µj and µj∗ is ∆j. If the actual values µ̂j and
µ̂j∗ are within O(∆j) of their means, then we’re all set.

– The probability of that not happening after m rounds is e−O(m∆2) as given by
Hoeffding’s inequality. If we wait m rounds and look at the expected number of
times j was chosen:

m+
T∑
t=1

t2e−O(m∆2
j ), (641)

where the t2 comes from taking a sloppy union bound over pairs of time steps
(because we don’t know which time steps we’re comparing so just try all pairs).

If we set m = O
(

log T
∆2
j

)
, then we can make the second term be a constant.

Summing the first term over j and multiplying ∆j yields the result.

– Note that we’re being pretty sloppy here. For the full rigorous proof, see Auer
et al. (2002).

• Interpretation: that we have a logarithmic dependence on T , and a necessary linear
dependence on the number of actions d. There is also a dependence on ∆−1; a smaller
∆ means that it’s harder to distinguish the best action from the others.
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5.16 Stochastic bandits: Thompson sampling (Lecture 16)

• In UCB, our principle was optimism in the face of uncertainty. We now present an
alternative method called Thompson sampling, which dates back to Thompson (1933).
The principle is choose an action with probability proportional to it being optimal,
according to a Bayesian model of how the world works.

• Setup

– Prior p(θ) over parameters θ

– Probability over rewards given actions: p(r | θ, a)

The Thompson sampling principle leads to a simple, efficient algorithm:

• Algorithm

– For each time t = 1, . . . , T :

∗ Sample a model from the posterior: θt ∼ p(θ | a1:t−1, r1:t−1)

∗ Choose the best action under that model: at = arg maxa p(r | θt, a).

• Example for Bernoulli rewards

– Assume each reward rj ∼ Bernoulli(µj) (here the parameters θ are the means µ).

– For each action j = 1, . . . , d

∗ Let the prior be θj ∼ Beta(α, β)

∗ Keep track of the number of successes sj and failures fj.

– For each time t = 1, . . . , T :

∗ Sample θj ∼ Beta(α + sj, β + fj) for each j = 1, . . . , d

∗ Choose at = arg maxj θj and observe reward rt.

∗ If rt = 1 then increment sat ; else increment fat .

Despite its long history, Thompson sampling was not very popular until recently, where
rigorous regret bounds have appeared and people realize that it outperforms UCB in
many settings. Agrawal and Goyal (2012) prove the following:

• Theorem 41 (regret for Thompson sampling)

– For any ε > 0, the expected regret of Thompson sampling us upper bounded by:

E[Regret] ≤ (1 + ε)
∑
j:∆j>0

∆j log T

KL (µj‖µ∗)
+O

(
d

ε2

)
. (642)

• One strength of Thompson sampling is that it’s a principle that allows one to easily
generalize the algorithm to structured settings such as reinforcement learning.
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• One weakness of Thompson sampling is that it does not choose actions that takes into
account the value of information gained (especially important for structured settings).
As an example (from Ian Osband), consider θ ∈ {e1, . . . , ed} be an unknown indicator
vector, and suppose a ∈ {0, 1}d and the reward is is a · θ − 0.0001‖a‖1. The optimal
strategy would be to do binary search to find θ in O(log d) time, but Thompson sam-
pling would just choose one a at a time, which would take O(d) time. More expensive
methods such as Gittins index performs the actual dynamic programming and have
better guarantees but are computationally more expensive.

5.17 Summary (Lecture 16)

• This concludes our tour of online learning and its extensions to the bandit setting.

• Our measure of success is getting low regret, the difference between the learner’s
cumulative losses and the best fixed expert’s cumulative losses. In particular, we hope
for sublinear regret: Regret = o(T ).

• Without no additional assumptions (even with two experts), any deterministic algo-
rithm must have Regret = Ω(T ) (fail).

• In the realizable setting (some expert is perfect), the majority algorithm achieves
O(log d) regret (constant in T ).

• We started with the follow the leader (FTL), and saw that it worked for quadratic
loss functions (Regret = O(log T )), but failed for linear loss functions (Regret = Ω(T )).

• Inspecting the regret bounds reveals that in order to get low regret, we need to have a
stable learner, in the sense that wt and wt+1 should be close (according to some notion
of proximity).

• This motivated us to look at follow the regularized leader (FTRL), where we add
a quadratic regularizer, which gave us a regret bound with two terms: (i) a bias-like
term (value of regularizer applied to the best expert) and (ii) a variance-like term
(sum of the norm of the subgradients). Balancing the two by controlling the amount
of regularization (inverse step size) yields Regret = O(

√
T ).

• If our loss functions were non-linear, we could linearize using the subgradient. Cou-
pled with a quadratic regularizer, we get the online subgradient descent (OGD)
algorithm. We also showed that it suffices to analyze linear functions, since they result
in the most regret.

• We looked at learning with expert advice, and got regret bounds of O(
√
dT ), where d

is the number of experts. Inspired by the logarithmic dependence on d in the majority
algorithm, this motivated us to consider different regularizers.
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• The general algorithm that deals with different regularizers is online mirror descent
(OMD). We analyzed this algorithm using Fenchel duality and Bregman divergences,
which allowed us to look at arbitrary regularizers through the lens of the mapping
between wt and θt. Specializing to learning with expert advice, we get a O(

√
log(d)T )

regret bound with the entropic regularizer, resulting in the exponentiated gradient
(EG) algorithm.

• By exploiting properties of exponentiated gradient, we can perform a refined analysis
again using local norms to achieve stronger results, matching the O(log d) regret in
the realizable setting.

• In the bandit setting with partial feedback, we get O(
√
d log(d)T ) regret again us-

ing local norms to control the size of the now unbounded subgradients. The general
principle is to find an estimate of the loss vector zt and run existing online learning
algorithms (which are quite tolerant of noise).

• Finally, we showed that learners with low regret in the online setting directly lead to
learners with low expected risk in the batch setting via an online-to-batch conversion.

5.18 References

• Shalev-Shwartz, 2012: Online Learning and Online Convex Optimization (survey pa-
per)

– This is a nice introduction to online learning, on which much of these online
learning notes are based.
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6 Neural networks (skipped in class)

6.1 Motivation (Lecture 16)

• One major motivating factor for studying neural networks is that they have had a lot
of empirical success and attention in recent years. Here is the general recipe:

– Train on large amounts of data (Krizhevsky, 2012: 1 million examples).

– Use a very large neural network (Krizhevsky, 2012: 60 million parameters).

– Running simple stochastic gradient descent (with some (important) tweaks such
as step size control, sometimes momentum, dropout), and wait a moderately long
period of time (a week).

– Get state-of-the-art results across multiple domains.

∗ Object recognition (ImageNet): reduce error from 25.7% to 17.0% (Krizhevsky,
2012)

∗ Speech recognition (Switchboard): reduce error from 23% to 13% (Microsoft,
2009–2013)

Error reductions on these tasks/datasets are significant, since these are large real-
istic datasets (unlike MNIST) on which many serious people have tried to improve
accuracy.

• However, in theory, neural networks are poorly understood:

– The objective function is non-convex. SGD has no reason to work.

– What about the particular hypothesis class of neural networks makes them per-
form well across so many tasks? What types of functions are they good at repre-
senting?

This makes neural networks an important but challenging area to do new theoretical
research.

• Compared to the theory of online learning, uniform convergence, or kernel methods,
the theory of neural networks (“why/when do they work?”) is spotty at best. In
this lecture, we will attempt lay out the high-level important questions and provide
preliminary thrusts towards answering them, which in turn produces a series of more
concrete open questions.

• A caveat: there are many theorems that one could prove about neural networks. We
will write some of these down. However, most of these theorems only nibble off the
corners of the problem, and do not really answer the hard questions. But that’s where
we are. We will try to point out the interpretation of these results, which is especially
important to recognize in this prehistoric stage of understanding.
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6.2 Setup (Lecture 16)

• Definition

– Let x ∈ Rd be an input.

– A neural network defines a non-linear function on x. For concreteness, let us focus
on two-layer neural networks (which means it has one hidden layer).

– Let σ : R 7→ R be a non-linear function (called an activation or transfer function).
Examples:

∗ Logistic: z 7→ 1
1+e−z

(maps real numbers monotonically to [0, 1])

∗ Hyperbolic tangent (tanh): z 7→ ez−e−z
ez+e−z

(maps real numbers monotonically to
[−1, 1])

∗ Rectified linear: z 7→ max(0, z) (truncates negative numbers to zero)

We will extend σ to operate on vectors elementwise:

σ(x)
def
= [σ(x1), . . . , σ(xd)]. (643)

– An artificial neural network (not to be confused with and completely different
from the thing that’s in your brain) can be described by a function f : Rd 7→ R
which has the following form:

fθ(x) =
m∑
i=1

αiσ(wi · x+ bi). (644)

Here, the parameters are θ = (α1:m, w1:m, b1:m). In matrix notation:

fθ(x) = α · σ(Wx+ b), (645)

where the i-th row of W is wi ∈ Rd.

– A useful way to think about a neural network is that the first layer σ(Wx + b)
computes some non-linear features of the input and the second layer simply per-
forms a linear combination. So you can think of a neural network as parametrizing
the features as well as the weights α.

– FIGURE: [draw neural network]

• In practice, people use many layers (for example, in speech recognition, seven is not
uncommon). A three-layer neural network looks like this:

fθ(x) = σ(W2σ(W1x+ b1) + b2). (646)

People also use convolutional neural networks in whichW has additional low-dimensional
structure. Recurrent neural networks are good for representing time series. We will
not discuss these here and focus on the two-layer neural networks in this lecture.

195



• Let F = {fθ} be the class of all neural networks as we range over values of θ.

• We can use F for regression or classification in the usual way by minimizing the loss
on the training set. For regression:

f̂ERM = arg min
fθ

L̂(θ), L̂(θ)
def
=

1

n

n∑
i=1

(fθ(x
(i))− y(i))2. (647)

• The surprising thing about neural networks is that people use stochastic gradient
descent (online gradient descent where we choose i ∈ {1, . . . , n} at each step randomly),
which converges to f̂SGD. Since the objective function L̂ is non-convex, f̂SGD will be
different from f̂ERM. so there is an additional optimization error in addition to
the usual approximation and estimation errors. The decomposition must be taken
with a grain of salt, because having suboptimal optimization effectively restricts the
hypothesis class, which actually improves estimation error (a simple example is early
stopping). So approximation and optimization error are perhaps difficult to tease apart
in methods whose success is tied to an algorithm not just an optimization problem.

oracle

H

h∗
ĥERM

approximation estimation optimization
ĥALG

Figure 10: Cartoon showing error decomposition into approximation, estimation, and opti-
mization errors.

6.3 Approximation error (universality) (Lecture 16)

• Question: which functions can be represented by two-layer neural networks? Answer:
basically all of them.

• We saw that Gaussian kernels were universal (Theorem 27) in the sense that they are
dense in C0(X ), the set of all continuous bounded functions on X .

• Functions defined by (Gaussain) kernels can be represented in terms of the partial
kernel evaluations

f(x) =
n∑
i=1

αik(xi, x). (648)

or using Fourier features:

f(x) =
m∑
i=1

αie
−i〈wi,x〉. (649)
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Note that these expressions resemble neural networks (644). All of these are linear
combinations of some non-linear basis functions. So we might expect that neural
networks would be universal. The following theorem answers affirmatively, which is
not hard to show:

• Theorem 42 (neural networks are universal)

– Consider X = [0, 1]d.

– Then the class of two-layer neural networks F is dense in C0(X ) in the uniform
metric: for every f ∗ ∈ C0(X ), and ε > 0, there exists an fθ ∈ F such that
maxx∈X |f ∗(x)− fθ(x)| ≤ ε.

• Proof of Theorem 42:

– Fix f ∗ ∈ F . Because f ∗ is continuous over a compact set (X ), it is uniformly
continuous, which means we can find a width δ such that |x1 − x2| ≤ δ implies
|f(x1)− f(x2)| ≤ ε.

– Grid X into regions Rj which are of the form: Rj = {x : |x− xj|∞ ≤ δ}.
– FIGURE: [1D function]

– Note that z 7→ σ(Cz) converges to the step function as C →∞.

– Let us construct 3d hidden units for each Rj. For d = 1, let Rj = [xj−δ, xj +δ] =
[aj, bj].

f ∗(xj)σ(C(x− aj)) + f ∗(xj)σ(C(bj − x))− f ∗(xj)σ(0). (650)

This function is approximately f ∗(xj) on Rj and zero elsewhere, So we we do this
for all regions, then we can approximate f ∗ uniformly well.

• Note that the number of hidden units is exponential in d, since the number of regions
is O((1

δ
)d). This is just a glorified nearest neighbors. So while this theorem holds, it

doesn’t really provide much insight into why neural networks work well and generalize.

• Depth: One argument made in favor of deep neural networks is that they more com-
pactly represent the data compared to a shallower one. To get intuition, let us think
about networks that perform arithmetic operations on the raw inputs via addition and
multiplication. Such networks define polynomial functions in a compact way, since
internal nodes represent factors. For example, the polynomial

f(x) = x1x
2
2x3 + x1x2x3x4 + x2

2x
3
3 + x2x

3
3x4 (651)

= (a+ b)(b+ c), (652)

where a = x1x2, b = x2x3, and c = x3x4 correspond to internal nodes.
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6.4 Generalization bounds (Lecture 16)

• The excess risk L(ĥ)−L(h∗) captures the estimation error (the generalization ability) of
an estimator ĥ. Recall that the excess risk is controlled by the Rademacher complexity
(218) of the function class, so it suffices to study the Rademacher complexity. We will
perform the analysis for two-layer neural networks.

• Theorem 43 (Rademacher complexity of neural networks)

– Let x ∈ Rd be the input vector with ‖x‖2 ≤ C2.

– Let wj ∈ Rd be the weights connecting to the j-th hidden unit, j = 1, . . . ,m

– Let α ∈ Rm be the weights connecting the hidden units to the output

– Let h : R→ R be a non-linear activation function with Lipschitz constant 1 such
that h(0) = 0; examples include

∗ Hyperbolic tangent: h(z) = tanh(z)

∗ Rectified linear: h(z) = max{0, z}
– For each set of weights (w, α), define the predictor:

fw,α(x) =
m∑
j=1

vjh(wj · x). (653)

– Let F be the class of prediction functions where the weights are bounded:

F = {fw,α : ‖α‖2 ≤ B′2, ‖wj‖2 ≤ B2 for j = 1, . . . ,m}. (654)

– Then

Rn(F) ≤ 2B2B
′
2C2

√
m√

n
. (655)

• Proof of Theorem 43:

– The key is that the composition properties of Rademacher complexity aligns very
nicely with the layer-by-layer compositionality of neural networks.

– The function mapping the input layer to a hidden unit is just a linear function:

Rn({x 7→ w · x : ‖w‖2 ≤ B2}) ≤
B2C2√
n
. (656)

– Sending each of these through the 1-Lipschitz non-linearity does not change the
upper bound on the complexity:

Rn({x 7→ h(w · x) : ‖w‖2 ≤ B2}) ≤
B2C2√
n
. (657)
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For convenience, define G as the set of vector-valued functions mapping the input
to the hidden activations, as w ranges over different values:

g(x) = [h(w1 · x), . . . , h(wm · x)]. (658)

– Now let us handle the second layer:

Rn(F) ≤ E

[
sup

‖α‖2≤B′2,g∈G

1

n

n∑
i=1

σi(α · g(Zi)).

]
(659)

– Applying Cauchy-Schwartz:

Rn(F) ≤ B′2E

[
sup
g∈G

∥∥∥∥∥ 1

n

n∑
i=1

σig(Zi)

∥∥∥∥∥
2

]
. (660)

– Using the fact that if a ∈ Rm then ‖a‖2 ≤
√
mmax1≤j≤m |aj|:

Rn(F) ≤ B′2
√
mE

[
max

1≤j≤m
sup

‖wj‖2≤B2

∣∣∣∣∣ 1n
n∑
i=1

σih(wj · Zi)

∣∣∣∣∣
]
. (661)

– This is the same as taking the sup over a single generic w subject to ‖w‖2 ≤ B2:

Rn(F) ≤ B′2
√
mE

[
sup

‖w‖2≤B2

∣∣∣∣∣ 1n
n∑
i=1

σih(w · Zi)

∣∣∣∣∣
]
. (662)

Note that the expectation on the RHS is almost the Rademacher complexity of
a single unit (657), but with absolute values. In some parts of the literature,
Rademacher complexity is actually defined with absolute values (including the
original Bartlett/Mendelson (2002) paper), but the absolute value version is a bit
harder to work with in general. For that definition, the Lipschitz composition
property still holds with an additional factor of 2 but requires that h(0) = 0 (see
point 4 of Theorem 12 of Bartlett/Mendelson (2002)). So therefore we can adapt
(657) and plug it into (662) to obtain:

Rn(F) ≤ B′2
√
m

(
2B2C2√

n

)
. (663)

• Interpretation: the bottom line of this theorem is that neural networks with non-
linearities which are smooth (Lipschitz) will generalize regardless of convexity.
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6.5 Approximation error for polynomials (Lecture 16)

• There are two problems with the previous analyses:

– First, we defined approximation error with respect to the set of all bounded con-
tinuous functions, which is clearly much too rich of a function class, and as a
result we get exponential dependence on the dimension d.

– Second, we have not yet said anything about optimization error.

• We will now present part of an ICML paper (Andoni/Panigrahy/Valiant/Zhang), which
makes some progress on both points. We will focus on using neural networks to ap-
proximate bounded-degree polynomials, which is a reasonable class of functions which
itself approximates Lipschitz functions. Further, we will show that choosing weights
W randomly and optimizing α (which is convex) is sufficient.

• Setup

– Monomial xJ = xJ1 · · ·xJd with degrees J = (J1, . . . , Jd)

∗ Example: J = (1, 0, 7), xJ = x1x
7
3

– A polynomial is f(x) =
∑

J bJx
J

∗ Example: b(1,0,7) = 3 and b(0,1,0) = −5, f(x) = 3x1x
7
3 − 5x2

– Degree of polynomial: deg(f) = maxbJ 6=0 |J |, |J |
def
=
∑d

i=1 Ji

• Inner product structure

– Let p∗(x) is the uniform distribution over C(R)d, where C(R) is set of complex
numbers c with norm at most R (|c| =

√
cc ≤ R).

– Define the inner product over functions and the associated norm:

〈f, g〉p∗
def
= Ex∼p∗ [f(x)g(x)] (664)

‖f‖p∗
def
=
√
〈f, f〉p∗ . (665)

• Neural network as an infinite polynomial

– Let σ(z) =
∑

j≥0 ajz
j

∗ Example: for σ(z) = ez, aj = 1
j!

– For w ∈ Cd, we define the basis function, which can be written as a weighted
combination of monomials xJ :

φw(x)
def
= σ(w · x) =

∑
j≥0

aj

(
d∑

k=1

wkxk

)j

def
=
∑
J

aJw
JxJ . (666)

Here, wJ =
∏d

k=1w
Jk is the product of the base weights.
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– The neural network is

f(x) =
m∑
i=1

αiφ
wi(x). (667)

– Note that weights {wJ} are orthogonal in the following sense:

Ew∼C(R)d [w
JwJ ′ ] =

{
R2|J | if J = J ′

0 otherwise.
(668)

This stems from the fact that each wj ∼ C(R) means wj = eit where t ∼
Uniform([0, 2π]); and Et∼Uniform([0,2π])[e

iateibt] = I[a = b].

• Theorem 44 (neural networks approximate bounded-degree polynomials)

– Choose w1, . . . , wm i.i.d. from C(1/
√
d)d.

– For any polynomial f ∗ of degree q and norm ‖f ∗‖ = 1, exists α1:m with ‖α1:m‖2 =∑m
i=1 |αi|2 = O(d2q/m) such that∥∥∥∥∥

m∑
i=1

αiφ
wi − f ∗

∥∥∥∥∥
p∗

= Op

(√
d2q

m

)
. (669)

• Proof of Theorem 44:

– Let the target function be:

f ∗(x) =
∑
J

bJx
J . (670)

– Construct an unbiased estimate of f ∗:

∗ For any x ∈ Cd and J ∈ Nd,

Ew∼C(R)d [φ
w(x)wJ ] = aJR

2|J |xJ , (671)

which follows from applying (668) to the expansion (666) and noting that all
random coefficients except wJ drop out.

∗ Define the coefficients

T (w) =
∑
J

bJwJ

aJR2|J | . (672)

∗ Then by construction, we have an unbiased estimate of the target polynomial:

Ew∼C(R)d [T (w)φw(x)] = f ∗(x). (673)
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– Now we would like to control the variance of the estimator.

∗ First, define the error:

η(x)
def
=

1

m

m∑
i=1

T (wi)φ
wi(x)− f ∗(x). (674)

∗ We can show that the variance falls as 1/m due to independence of w1, . . . , wm:

Ew1,...,wm∼C(R)d [‖η‖2
p∗ ] ≤

1

m
Ew∼C(R)d [|T (w)|2‖φw‖2

p∗ ]. (675)

∗ To bound the coefficients:

· Let a(q) = min|J |≤q |aJ | (property of the non-linear activation function)

· Let ‖f ∗‖1 =
∑

J |bJ | (property of the target function)

· Let q = deg(f ∗).

· Assume R ≤ 1.

· Then

|T (w)| ≤
∑
J

∣∣∣∣∣ bJwJaJR2|J |

∣∣∣∣∣ (676)

≤
∑
J

∣∣∣∣ bJ
aJR|J |

∣∣∣∣ [since |wJ | ≤ R|J |] (677)

≤
∑

J |bJ |
a(q)Rq

[since |J | ≤ q, a(q) ≤ |aJ |] (678)

=
‖f ∗‖1

a(q)Rq
. (679)

∗ Define the following bounds on the variance of the basis functions φw and the
1-norm of the target function f ∗, respectively:

β(q, R)
def
= Ew∼C(R)d

[‖φw‖2
p∗

R2q

]
, (680)

γ(q)
def
= max
‖f∗‖p∗=1

‖f ∗‖1. (681)

Then we have the following result (by plugging quantities in and applying
concavity of

√
·):

Ew1,...,wm∼C(R)d [‖η‖p∗ ] ≤

√
γ(q)2β(q, R)

a(q)2m
. (682)

– Finally, we specialize to σ(z) = ez and p∗ = C(1)d.

202



∗ Claim: a(q) ≥ 1/q!

· We have aj = 1/j! and aJ is just aj times a positive integer stemming from
the multiplicities in J (for example, if J = (2, 0, 3), then aJ = 2!3!aj ≥ aj.

∗ Claim: β(q, R) = O(dq) if R = O(1/
√
d).

· We have that

Ew∼C(R)d,x∼C(1)d [φ
w(x)φw(x)] =

∑
J

a2
JR

2|J | (683)

= O(e2
√
dR). (684)

· Finally, β(q, R) = O(e2
√
dR/R2q) = O(dq) by definition of R. Note that

we need R to be small to fight the explosion stemming from e2
√
d.

∗ Claim: γ(q) = O(
√
dq)

∗ Claim: the coefficients are bounded:

m∑
i=1

|αi|2 =
1

m2

m∑
i=1

|T (wi)|2 ≤
‖f ∗‖2

1

ma(q)2R2q
= O(d2q/m). (685)

See the paper for more details.
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[begin lecture 18] (18)

7 Conclusions and outlook

7.1 Review (Lecture 18)

• The goal of this course is to provide a theoretical understanding of why machine learn-
ing algorithms work. To undertake this endeavor, we have developed many powerful
tools (e.g., convex optimization, uniform convergence) and applied them to the classic
machine learning setting: learning a predictor given a training set and applying to
unseen test examples.

• To obtain more clarity, it is useful to decompose the error into approximation, estima-
tion, and optimization error:

oracle

H

h∗
ĥERM

approximation estimation optimization
ĥALG

Figure 11: Cartoon showing error decomposition into approximation, estimation, and opti-
mization errors.

– Approximation error has to do with how much potential the hypothesis class has
(e.g., Gaussian kernel versus linear kernel, large norm versus smaller norm)

– Estimation error has to do with how well you’re able to learn, which depends on
the complexity of the hypothesis and the amount of data you have.

– Optimization error is how well your algorithm is able to approximate the perfect
optimizer (empirical risk minimizer).

Sometimes approximation and optimization error are hard to distinguish. For exam-
ple, in kernel methods, random Fourier features can be viewed as defining a smaller
hypothesis space or doing an approximate job optimizing the original kernel-based ob-
jective. An algorithm implicity defines a class of hypotheses which are accessible by
the algorithm.

• In the batch setting, we wish to study the generalization ability of learning algorithms.
The key quantity was excess risk

L(ĥ)− L(h∗). (686)
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– We could use uniform convergence, which studies

sup
h∈H
|L(h)− L̂(h)|. (687)

∗ FIGURE: [empirical and expected risk, convergence]

∗ Key ideas:

· Concentration: moment generating function of sub-Gaussian random vari-
ables

· Measures of complexity of hypothesis class: Rademacher complexity, cov-
ering numbers, VC dimension

– We could also use asymptotic statistics to get

L(θ̂) = L(θ∗) + (θ̂ − θ∗)>∇L2(θ∗)(θ̂ − θ∗) + · · · (688)

θ̂ − θ∗ = −∇2L̂(θ∗)∇L̂(θ∗) + · · · , (689)

which vastly simplifies the calculations needed.

• In online learning, nature adversarily chooses convex loss functions f1, . . . , fT . The
online mirror descent learner produces

wt = arg min
w∈S

{
ψ(w) +

t−1∑
i=1

w · zi

}
, (690)

We analyze the regret:

Regret(u) =
T∑
t=1

[ft(wt)− ft(u)]. (691)

The decomposition into approximation, estimation, and optimization errors is not per-
fect here.

– Key ideas:

∗ Convexity allows us to linearize losses to produce an upper bound on regret

∗ Strongly convex regularizer: tradeoff stability with fitting the data

∗ ψ allows us to adapt to the geometry of the problem and arrive at algorithsm
such as EG

• Results

– Our results for estimation error depend on both the hypothesis class H and the
number of examples. The exact dependence depends on the structure of the
problem, which we summarize here (there are analogues both in the online and
the batch settings):
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∗ Classic parametric rate: 1/
√
n

∗ If we have realizability or strong convexity: 1/n

∗ Default dependence on dimension: d

∗ If we assume sparsity (k nonzeros): k log d

∗ In infinite dimensions (RKHS), we depend on the norm of the weight vector:
‖w‖2

• But machine learning isn’t all about prediction where training and test examples are
drawn i.i.d. from the same distribution. In the following, we will point out a few other
directions.

7.2 Changes at test time (Lecture 18)

• Suppose we train a predictor, and deploy it in real-life. Theory says that as long as the
test distribution doesn’t deviate from training, we have guarantees on the predictor’s
behavior. But we do not live in a stationary world.

• Example: Google Flu Trends

– Trained on 2003–2008 data, predict flu based on (50M) common queries, got 97%
accuracy.

– In 2009, vastly underestimated (due to swine flu, people searched differently).

– In 2011–2013, overpredicted.

• Online learning doesn’t solve this problem

– One might think that online learning doesn’t place distribution over the data, so
it’s robust.

– But the analyses are with respect to an expert which is static, and if the world is
changing under you, being static is a pretty lame thing to do. So the bounds do
hold, but the statements are quite weak.

• Covariate shift

– Training distribution: x ∼ p∗

– Test distribution: x ∼ q∗

∗ Example: object recognition in different lighting conditions / camera

– Assume p∗(y | x) is fixed across both training and test

– Assume lots of unlabeled examples drawn from both p∗ and q∗ which can be used
to estimate the marginal distributions.

– Instance weighting (simplest approach)

∗ Idea: upweight examples that are underrepresented at training time.
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∗ Estimator:

θ̂ = arg min
θ
L̂(θ), L̂(θ) =

1

n

n∑
i=1

ŵ(x)`((x, y); θ). (692)

∗ If we had infinite unlabeled data, we could use the weights ŵ(x) = p∗(x)/q∗(x),
from which it’s easy to check that θ̂ is an unbiased estimator of the expected
risk at test time.

∗ There are two problems with this:

· First, in practice, we don’t have infinite unlabeled data, so we would need
to estimate ŵ(x).

· Second, we need to assume that q∗ is absolutely continuous with respect
to p∗ (must see all test examples at training time). Otherwise, we have
no hope of doing well.

∗ There are several procedures that address these problems as well as analyses.
For example, one can use asymptotic statistics:

· Shimodaira: Improving predictive inference under covariate shift by weight-
ing the log-likelihood function

• Domain adaptation / multi-task learning

– In domain adaptation, even p∗(y | x) might be different between train and test.

∗ Example: my email and your email

– Techniques

∗ The general idea is to solve joint ERM problem where assume that weight
vectors are close. Let W = [w1, . . . , wT ] ∈ Rd×T be the matrix of weights for
T tasks.

∗ We can think about performing joint learning where we regularize W using
one of the following:

· Assume weight vectors are similar in Euclidean distance:
∑

i 6=j ‖wi−wj‖2

· Assume weight vectors lie in the same low-dimensional subspace: use
trace norm ‖W‖∗
· Assume there exists a sparse set of features that is shared by all tasks:

use block norm ‖W‖2,1, which is the sum of the L2 norms of the rows.

∗ Neural networks provide a natural and compelling solution: just have all the
tasks share the same hidden layer.

– As far as theoretical analyses, the key intuition is that the regularizer reduces the
effective hypothesis space from T independent weight vectors to T highly-related
weight vectors.

∗ Maurer, 2006: Bounds for Linear Multi-Task Learning
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• Example: deep neural networks are non-robust

– Szegedy/Zaremba/Sutskever/Bruna/Erhan/Goodfellow/Fergus, 2014: Intriguing
properties of neural networks

– This paper shows that one can take a high-accuracy neural network for object
recognition, perturb the input by a very small adversarial amount to make the
predictor incorrect. The perturbation is inperceptible to the naked eye and is
obtained via an optimization problem like this:

min
r∈Rd

(f(x+ r)− ywrong)2 + λ‖r‖2, (693)

where r is the perturbation, f is the trained neural network, and x is the input.

– Note that if we had a classifier based on a Gaussian kernel, we couldn’t do this,
because the Gaussian kernel is smooth.

• Robustness at test time

– At test time, suppose that up to K features can be zeroed out adversarily.

– We can optimize for this using robust optimization. The following paper shows
that for classification, the robust optimization version results in a quadratic pro-
gram.

– Globerson/Roweis, 2006: Nightmare at Test Time: Robust Learning by Feature
Deletion

7.3 Alternative forms of supervision (Lecture 18)

• Active learning (learner chooses examples non i.i.d.)

– Example: learning binary classifiers in 1D

∗ Suppose data is generated according to y = I[x ≥ θ] for some unknown θ.

∗ If we sample i.i.d. from some distribution over x, our expected risk falls as
O(1/n).

∗ However, if we actively choose points (using binary search), our expected risk
falls as O(e−cn), which is exponentially faster.

– Intuition: query examples that we are most uncertain about. In reality, we have
noise, and sampling random i.i.d. is not terrible in the beginning.

– Dasgupta, 2006: Coarse sample complexity bounds for active learning

– Bach, 2007: Active learning for misspecified generalized linear models

• Semi-supervised learning

– Motivation: labeled data is expensive, unlabeled data is cheap
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– But how does knowing p∗(x) (from unlabeled data) help you with p∗(y | x) (pre-
diction problem). There is no free lunch, so we need to make some assumptions
about the relationship between p∗(x) and p∗(y | x). For example, in classification,
we can assume that the decision boundary defined by [p∗(y | x) ≥ 1

2
] doesn’t cut

through high-density regions of p∗.

– Theory

∗ p∗(x) + assumptions about relationship defines a compatibility function χ(h)

∗ Reduced hypothesis class H to ones which are compatible {h ∈ H : χ(h) = 1}
∗ Unlabeled data helps because we’re reducing the hypothesis class

– Balcan/Blum, 2009: A Discriminative Model for Semi-Supervised Learning

7.4 Interaction between computation and statistics (Lecture 18)

• This class is mostly about the statistical properties of learning algorithms, for which
there is by now quite solid theory for. One of the most interesting avenues for future
research is how computation plays a role in this story. The situation is rather complex.

• Favorable relationship: large optimization error results in smaller effective hypothesis
space and actually controls estimation error.

– Early stopping: relate to L2 regularization

– Low-rank kernel approximations

• Unfavorable relationship: good estimators are hard to compute

– Graphical models (partition function): pseudolikelihood

∗ Suppose x ∈ {0, 1}d.
∗ pθ(x) = Wθ(x)/Z(θ)

∗ The partition function Z(θ) =
∑

xWθ(x) is computationally expensive, tak-
ing in the worst case O(2d) time.

∗ However, we can maximize the pseudolikelihood
∏d

i=1 pθ(xi | x−i), which takes
O(d) time.

∗ Pseudolikelihood is computationally more efficient, but statistically less effi-
cient.

– Learning latent variable models (e.g., Gaussian mixture models):

∗ Maximum likelihood is non-convex and hard to compute.

∗ The method of moments estimator (which works under some assumptions) is
easy to compute but statistically less efficient.

– Other constraints on learning: communication, memory, privacy

• Neural networks
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– Here, the story is a bit more complex.

– On one hand, neural networks are difficult to train. People often talk about the
vanishing gradient problem in the context of gradient-based optimization, where
we are nowhere near a good solution, and yet the gradient is near zero. This
happens when the weights wj are too large, which saturates the sigmoid. To
avoid this, careful initialization and step size selection are important.

– On the other hand, if we fully optimized existing neural network models, there is
some chance they would just overfit, and the fact that we’re not fully optimizing
is actually central to their ability to generalize.
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A Appendix

A.1 Notation

In general, we will not be religious about using uppercase letters to denote random variables
or bold letters to denote vectors or matrices. The type of the variable should hopefully be
clear from context.

• Basic definitions

– [n] = {1, . . . , n}
– For a sequence v1, . . . , vn:

∗ Let vi:j = (vi, vi+1, . . . , vj−1, vj) be the subsequence from i to j inclusive.

∗ Let v<i = v1:i−1.

– ∇f : gradient of a differentiable function f

– ∂f(v): set of subgradients of a convex function f

– Indicator (one-zero) function:

I[condition]
def
=

{
1 if condition is true

0 otherwise.
(694)

– Probability simplex:

∆d
def
=

{
w ∈ Rd : w � 0 and

d∑
i=1

wi = 1

}
. (695)

– Euclidean projection:

ΠS(w)
def
= arg min

u∈S
‖u− w‖2 (696)

is the closest point (measured using Euclidean distance) to w that’s in S.

• We will try to stick with the following conventions:

– x: input

– y: output

– z: input-output pair

– d: dimensionality

– n: number of examples

– t: iteration number
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– T : total number of iterations

– f : (convex) function

– w: weight vector

– θ: parameters

– L: Lipschitz constant

– λ: amount of regularization

– η: step size

– p∗(x, y): true distribution of data

– In general:

∗ v∗ denotes the optimal value of some variable v.

∗ v̂ denotes an empirical estimate of some variable v based on training data.

A.2 Linear algebra

• Inner (dot) product: given two vectors u, v ∈ Rn, the dot product is u>v = u · v =
〈u, v〉 =

∑n
i=1 uivi.

• Outer product: for a vector v ∈ Rn, let v⊗ = vv>

• Positive semidefinite (PSD) matrix: a symmetric square matrix A ∈ Rn×n is PSD iff
v>Av ≥ 0 for all vectors v ∈ Rn. Note: in this class, whenever we say a matrix is PSD,
we implicitly assume that the matrix is symmetric.

• Eigenvalues: for a PSD matrix A ∈ Rn×n, let λ1(A), . . . , λn(A) be the eigenvalues of
A, sorted in non-increasing order.

• tr(A): for a square matrix A ∈ Rn×n, tr(A) denotes the trace of A, the sum of the
diagonal entries (tr(A) =

∑n
i=1Aii).

– tr(ABC) = tr(BCA), but tr(ABC) 6= tr(BAC) in general

– tr(A) =
∑n

i=1 λi(A)

• diag(v): for a vector v ∈ Rd, a matrix whose diagonal entries are the components of v
and off-diagonal entries are zero.

• Hölder’s inequality

– For any real vectors u, v ∈ Rd,

|u · v| ≤ ‖u‖p‖v‖q, (697)

for 1/p+ 1/q = 1, where ‖u‖p = (
∑d

j=1 |uj|p)1/p is the p-norm.
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– For p = q = 2, this is the Cauchy-Schwartz inequality.

– Another important case is p = 1 and q =∞.

– Note that this result holds in greater generality (for Lp spaces).

A.3 Probability

• In general, we define a background space over which all the random variables are
defined and use P[·] and E[·] to reference that space.

• Conditional expectation: If we have two random variables X and Y , we will write
E[F (X, Y ) | Y ] to denote the random variable (that is a function of Y ), rather than
EX [F (X, Y )] to denote that the expectation is taken over X. In general, we condition
on the variables that we’re not taking an expectation over rather than using subscripts
to denote the variables that we are taking an expectation over.

• In the following, assume the following:

– Let X1, . . . , Xn be real vectors drawn i.i.d. from some distribution with mean µ
and covariance matrix Σ.

– Let µ̂ = 1
n

∑n
i=1Xi.

• Convergence in probability

– We say that a sequence of random variables (Yn) converges in probability to a

random variable Y (written Yn
P−→ Y ) if for all ε > 0, we have limn→∞ P[|Yn−Y | ≥

ε] = 0.

– Example: µ̂
P−→ µ (weak law of large numbers)

• Convergence in distribution

– We say that a sequence of distributions (Pn) converges in distribution (weak

convergence) to a distribution P (written Pn
d−→ P ) if for all bounded continuous

functions f , limn→∞
∫
f(x)Pn(dx) =

∫
f(x)P (dx).

– When we write Yn
d−→ P for a sequence of random variables (Yn), we mean that

the sequence of distribution of those random variables converges in distribution.

– Example:
√
n(µ̂− µ)

d−→ N (0,Σ) (central limit theorem)

• Continuous mapping theorem

– This theorem allows us to transfer convergence in probability and convergence in
distribution results through continuous transformations.

– If f : Rd → Rk is continuous and Yn
P−→ Y , then f(Yn)

P−→ f(Y ).
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– If f : Rd → Rk is continuous and Yn
d−→ Y , then f(Yn)

d−→ f(Y ).

– Example: ‖µ̂‖2
P−→ ‖µ‖2

• Delta method

– This theorem allows us to transfer asymptotic normality results through smooth
transformations.

– If ∇f : Rd → (Rd × Rk) is continuous and
√
n(µ̂− µ)

d−→ N (0,Σ), then

√
n(f(µ̂)− f(µ))

d−→ N (0,∇f(µ)>Σ∇f(µ)). (698)

– The key intuition here is a Taylor approximation (valid because µ̂ is converging
to µ):

f(µ̂) = f(µ) +∇f(µ)>(µ̂− µ) + · · · . (699)

Then apply the continuous mapping theorem.

• Slutsky’s theorem

– This result allows us to compose convergence results.

– If Yn
P−→ c and Zn

d−→ Z then YnZn
d−→ cZ.

– Example:
√
nµ̂ · (µ̂− µ)

d−→ N (0, µ>Σµ).

• Notation: Xn = Op(f(n)) if Xn/f(n) is bounded in probability, that is, for every ε > 0,
there exists Mε such that for all n, P[|Xn/f(n)| > Mε] < ε.

– Example: N (0,Σ) = Op(1)

– Example: µ̂− µ = Op

(
1√
n

)
• These results turn complicated things on the LHS into simple things on the RHS. Use

your intuitions from real analysis.

• Jensen’s inequality

– For any convex function f : Rd → R and random variable X ∈ Rd,

f(E[X]) ≤ E[f(X)]. (700)
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A.4 Functional analysis

• Definition 30 (Cauchy sequence)

A Cauchy sequence in a metric space (X, ρ) is (xi)i≥1 such that for any ε > 0, there
exists an integer n such that all i, j > n, ρ(xi, xj) < ε.

• Definition 31 (complete metric space)

A complete metric space (X, ρ) is one where every Cauchy sequence (xi)i≥1 converges to
a limit point x∗ ∈ X. Intuition: if the elements of the sequence are getting arbitrarily
close to each other, they are getting close to some particular point in the space.

• Lp(X ) is the space of all measurable functions f with finite p-norm:

‖f‖p
def
=

(∫
|f(x)|pdx

)1/p

<∞. (701)

• Example: if X = R, f(x) = 1 is not in Lp for any p <∞.

• L2(X ) is the set of all square integrable functions.

• L∞(X ) is the set of all bounded functions.
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