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1 Review and Overview

In the last session we introduced an interesting phenomenon that occures during the training
of a two-layer feed-forward neural network and attempted to explain it using Rademacher
complexity. Empirically, we observe that increasing the number of neurons in the hidden
layer of such networks (i.e. increasing the over-parametrization) reduces the generalization
error. We also proved a bound for Rademacher complexity of two-layer neural netwroks
that grew with m (number of hidden neurons).

In this session we will prove a stronger bound that will not scale with m. We also apply
this bound and discuss how this bound can be useful.1

2 Stronger bound for Rademacher complexity

First, let us set up a few notations. Let Θ = (w,U) denote the parameters of the neural
network where U ∈ Rm×d and w ∈ Rm are the first and second layer weights. xi ∈ Rd and
yi ∈ {−1,+1} for i ∈ [n] are the input data and labels. In this section we only consider the
binary classification problem.

The activation function is defined as

φ (x) = ReLU (x) = max{x, 0}

Given parameters Θ, the neural network computes the function

fΘ (x) =
m∑
j=1

wjφ
(
uTj x

)
where uTj is the jth row of matrix U .

Define
H′ , {fΘ : ‖w‖2 ≤ B

′
2, ‖uj‖2 ≤ B2 ∀j = 1, . . . ,m}

In the last lecture we proved that if ‖xi‖2 ≤ C, then:

RS(H′) =
2B2B

′
2C
√
m√

n
(1)

Theorem 1. Define B(w,U) ,
m∑
j=1
|wj | ‖uj‖2 and H , {fΘ : B(w,U) ≤ B1}. If ‖xi‖2 ≤ C

then

RS(H) ≤ 2B1C√
n

(2)

1For more details and additional proofs see [1].



Note that this expression might still implicitly depend on m since B1 can increase with
m. We will address this issue later by showing that dividing by γ cancels out the effect of
m.

When using bound 2 in practice, we calculateB(w,U) after the neural network is trained,
and plug in B1 = B(w,U) to get the upper bound. Similarly, for bound 1 we plug in B2

and B′2. In this sense, for every fixed, trained neural network, bound 2 is at least as strong
as bound 1. The following inequalities justify this statement:

B1 = B (w,U) =
m∑
j=1

|wj | ‖uj‖2

≤

√√√√( m∑
i=1

w2
j

)(
m∑
i=1

‖uj‖22

)
Cauchy–Schwarz inequality

≤ ‖w‖2
√
m max

j
‖uj‖2

≤ B′2B2

√
m

Therefore
2B1C√

n
≤ 2B2B

′
2C
√
m√

n
.

Using Theorem 1, we can prove a generalization bound with the following form:

Lγ(h) . L̂γ(h) +
RS(H)

γ
+

√
log(2

δ )

n

Theorem 2. Fix B1 and γ > 0 and define HB1 , {fΘ : B(w,U) ≤ B1}. Then with
probability ≥ 1− δ:

∀h ∈ HB1 : Lγ(h) . L̂γ(h) +
B1C

γ
√
n

+

√
log
(

2
δ

)
n

We can think of γ
B1

as the normalized margin.

We now prove Theorem 1:
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Proof. Define ûj ,
uj
‖uj‖2

as the length-normalized uj .

RS(H) =
1

n
E
σi

[
sup
fΘ∈H

n∑
i=1

σifΘ (xi)

]
definition of RS(H)

=
1

n
E
σi

 sup
fΘ∈H

n∑
i=1

σi

m∑
j=1

wjφ
(
uTj xi

) definition of fΘ

=
1

n
E
σi

 sup
fΘ∈H

n∑
i=1

σi

m∑
j=1

wj ‖uj‖2 φ
(
ûTj xi

) because φ(ax) = aφ(x)

=
1

n
E
σi

 sup
fΘ∈H

m∑
j=1

wj ‖uj‖2
n∑
i=1

σiφ
(
ûTj xi

)
≤ 1

n
E
σi

 sup
fΘ∈H

m∑
j=1

|wj | ‖uj‖2

( max
1≤j≤m

∣∣∣∣∣
n∑
i=1

σiφ
(
ûTj xi

)∣∣∣∣∣
)

=
1

n
B1E

σi

[
max

1≤j≤m

∣∣∣∣∣
n∑
i=1

σiφ
(
ûTj xi

)∣∣∣∣∣
]

≤ 1

n
B1E

σi

[
sup
‖û‖2=1

∣∣∣∣∣
n∑
i=1

σiφ
(
ûTj xi

)∣∣∣∣∣
]

We know that

E
σi

[
sup
‖û‖2=1

∣∣∣∣∣
n∑
i=1

σiφ
(
ûTj xi

)∣∣∣∣∣
]
≤ 2nRn(

{
x 7→ φ(uTx) : ‖u‖2 ≤ 1

}
)

≤ 2nRn(
{
x 7→ uTx : ‖u‖2 ≤ 1

}
)

≤ 2n
C√
n

= 2
√
nC

The first inequality is Lemma 1 from scribe note 5 (the two sides are multiplied by n),
the second inequality uses Talagrand’s lemma and the fact that φ is a 1-Lipschitz function.
We proved the third inequality in the previous lecture. So

RS(H) ≤ 1

n
B1E

σi

[∣∣∣∣∣ sup
‖û‖2=1

n∑
i=1

σiφ(ûTxi)

∣∣∣∣∣
]
≤ 2B1C√

n

3 Margin-based generalization error

Intuitively, we want to show that if we optimize loss plus a small regularization factor,
normalized margin will be large, hence the generalization error will be small. In this section
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we prove the theorem for exponential loss instead of logistic loss since it is easier, but the
results hold for logistic loss as well.

First, let us define a few notations. Define the λ-regularized exponential loss as

Lλ(Θ) =
1

n

n∑
i=1

exp (−yifΘ(xi)) + λ ‖w‖22 + λ ‖U‖2F

where ‖w‖22 + ‖U‖2F = ‖Θ‖22.
Let Θλ,m be the global optimizer of Lλ,m (in a neural network with m hidden neurons).
Margin of a parameter is defined to be the following:

γ(Θ) = min
1≤i≤n

yifΘ(xi)

Note that if a neural network misclassifies some inputs, the margin can be negative.
Margin of the global optimizer is defined as

γλ,m = γ

(
Θλ,m

‖Θλ,m‖2

)
Maximum possible margin for a network with m hidden neurons is

γ∗,m , max
‖Θ‖2≤1

γ(Θ)

and Θ∗,m , arg max
‖Θ‖2≤1

γ(Θ) is the parameter that achieves that maximum.

Lemma 1 (homogeneity of feed-forward neural networks). fαΘ(x) = α2fΘ(x) ∀α ∈ R.

Proof.

fαΘ(x) =
m∑
j=1

αwjφ
(
αuTj x

)
=

m∑
j=1

α2wjφ
(
uTj x

)
= α2fΘ(x)

Theorem 3. Assume γ∗,m > 0. Then as λ→ 0, γλ,m → γ∗,m and Θλ,m → Θ∗,m.

Remark 1. γ∗,1 ≤ γ∗,2 ≤ . . . i.e. γ∗,m is non-decreasing in the hidden layer size.

This is due to the fact that a network with m+1 neurons in its hidden layer can simulate
a network with m neurons in the hidden layer by setting all additional parameters to zero.

Remark 2. As we increase m (over-parametrization), the upper bound on the generalization
error gets smaller (better).

B1(w∗,m, U∗,m) =

m∑
j=1

∣∣∣w∗,mj ∣∣∣ ∥∥∥u∗,mj ∥∥∥
2

≤
m∑
j=1

1

2

(∣∣∣w∗,mj ∣∣∣2 +
∥∥∥u∗,mj ∥∥∥2

2

)
=

1

2

(
‖w∗,m‖22 + ‖U∗,m‖2F

)
=

1

2
‖Θ∗,m‖22

≤ 1

2
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So we have

Lγ∗,m(fΘ∗,m) ≤ L̂γ∗,m(fΘ∗,m) +
C

2γ∗,m
√
n

+

√
log(2

δ )

n

From the above statement and the previous remark, we conclude this remark.
We now prove Theorem 3:

Proof.

Lλ(Θλ) ≤ Lλ(‖Θλ‖2 Θ∗)

=
1

n

n∑
i=1

exp
(
−yif‖Θλ‖2Θ∗ (xi)

)
+ λ ‖Θλ‖22 ‖Θ

∗‖22

≤ 1

n

n∑
i=1

exp(−yi ‖Θλ‖22 fΘ∗(xi)) + λ ‖Θλ‖22

∀i : yi ‖Θλ‖22 fΘ∗(xi) ≥ ‖Θλ‖22 γ∗ by definition of γ∗ = min
1≤i≤n

yifΘ∗(xi).

Therefore
L(‖Θλ‖2 Θ∗) ≤ exp(−‖Θλ‖22 γ

∗) + λ ‖Θλ‖22

We will continue this proof in the next lecture.
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