CS 231A PS1 Review

CS231A

Computer Vision: From 3D Reconstruction to Recognition
Winter 2018
Problem Outline

- Q1: Projective Geometry
- Q2: Affine Camera Calibration
- Q3: Single View Geometry
Problem Outline

• Q1: Projective Geometry

• Q2: Affine Camera Calibration

• Q3: Single View Geometry
P1: Reference Frames

Source: http://ycpcs.github.io/cs470-fall2014/
P1: Cross Products

- Lines k and l are parallel
 - k_1 and k_2 are any two points on k
 - l_1 and l_2 are any two points on l
 - by definition of parallel lines:
 \[
 (k_1 - k_2) \times (l_1 - l_2) = 0
 \]

- Given a square $pqrs$,
 - Area = \[\| (q - p) \times (s - p) \| \]

Courtesy of last year’s slides
Problem Outline

• Q1: Projective Geometry

• Q2: Affine Camera Calibration

• Q3: Single View Geometry
P2: Setup

(a) Image formation in an affine camera. Points are projected via parallel rays onto the image plane.

(b) Image of calibration grid at Z=0

(c) Image of calibration grid at Z=150
P2: Perspective Camera Model

\[
\begin{bmatrix}
x \\
y \\
w
\end{bmatrix} =
\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
u_i \\
v_i
\end{bmatrix} =
\begin{bmatrix}
m_1 P_i \\
m_3 P_i \\
m_2 P_i \\
m_3 P_i
\end{bmatrix}
\]
P2: Affine Camera Model

\[
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 p_{11} & p_{12} & p_{13} & p_{14} \\
 p_{21} & p_{22} & p_{23} & p_{24} \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

- Linear
- 8 Unknowns
P2: Solve for P

$$Ax = b$$

$$x = (A^T A)^{-1} A^T b$$

Hint: `numpy.linalg.pinv` / `numpy.linalg.lstsq`
Problem Outline

• Q1: Projective Geometry

• Q2: Affine Camera Calibration

• Q3: Single View Metrology
Vanishing Points

Courtesy of last year’s slides
Vanishing Points

- In 3D space, points at infinity are defined as the intersection of parallel lines, which have direction d.
- In the image plane, parallel lines meet at the vanishing point v.
- With camera intrinsic matrix as K, we have

\[v = Kd \]
Vanishing Points

Image Plane

Vanishing Point

Ground Plane

Parallel Lines
Calculating Vanishing Point

(a) Image 1 (1.jpg) with marked pixels

*Courtesy of last year’s slides
Calculating Vanishing Point

• Points in L_1: $(x_1, y_1), (x_2, y_2) \rightarrow m_1 = (y_2 - y_1)/(x_2 - x_1)$
• Points in L_2: $(x_3, y_3), (x_4, y_4) \rightarrow m_2 = (y_4 - y_3)/(x_4 - x_3)$
• Intersection of L_1 and L_2: Vanishing Point

Courtesy of last year’s slides
Vanishing Points to Compute K

• Course notes “Single View Metrology”
• HZ (2nd edition) Page 223-226
Vanishing Points to Compute K
Vanishing Points to Compute K

- Define vanishing line d_1 and d_2, vanishing points v_1 and v_2. We have:

\[
\cos \theta = \frac{d_1 \cdot d_2}{\|d_1\| \|d_2\|} = \frac{v_1^T \omega v_2}{\sqrt{v_1^T \omega v_1} \sqrt{v_2^T \omega v_2}}
\]

, where $\omega = (KK^T)^{-1}$
Vanishing Points to Compute K

(a) Image 1 (1.jpg) with marked pixels
Vanishing Points to Compute K

- Define vanishing line d_1 and d_2, vanishing points v_1 and v_2. We have:

\[
\cos \theta = \frac{d_1 \cdot d_2}{\|d_1\|\|d_2\|} = \frac{v_1^T \omega v_2}{\sqrt{v_1^T \omega v_1} \sqrt{v_2^T \omega v_2}}
\]

, where \(\omega = (KK^T)^{-1} \)

If d_1 and d_2 are orthogonal, $v_1^T \omega v_2 = 0$
Vanishing Points to Compute K

• $\omega = (K K^T)^{-1}$

 – Matrix ω is the projective transformation in the image plane of an absolute conic in 3D

$$
\omega = \begin{bmatrix}
\omega_1 & \omega_2 & \omega_4 \\
\omega_2 & \omega_3 & \omega_5 \\
\omega_4 & \omega_5 & \omega_6
\end{bmatrix}
$$

Courtesy of last year’s slides
Vanishing Points to Compute K

bullet We assume the camera has zero skew and square pixels
 - Zero skew: $\omega_2 = 0$
 - Square pixels: $\omega_1 = \omega_3$

$$w = \begin{bmatrix} \omega_1 & 0 & \omega_4 \\ 0 & \omega_1 & \omega_5 \\ \omega_4 & \omega_5 & \omega_6 \end{bmatrix}$$

Courtesy of last year’s slides
Compute Angle Between Planes

- Vanishing lines L_1 and L_2
- $L_1 = v_1 \times v_2$; $L_2 = v_3 \times v_4$
 - $v_1 \text{ and } v_2$ = vanishing points corresponding to one plane
 - $v_3 \text{ and } v_4$ for the other plane

\[
\cos \theta = \frac{l_1^T \omega^* l_2}{\sqrt{l_1^T \omega^* l_1} \sqrt{l_2^T \omega^* l_2}}
\]

, where $\omega^* = \omega^{-1} = KK^T$

Courtesy of last year’s slides
Rotation Matrix using Vanishing Points

• Find corresponding vanishing points from both images \((v_1, v_2, v_3)\) and \((v_1', v_2', v_3')\)

• Calculate directions of vanishing points:

\[v = K d \rightarrow \quad d = \frac{K^{-1} v}{\|K^{-1} v\|} \]

• \(d_i' = R d_i\), where

 – \(d_i'\) = direction of the \(i^{th}\) vanishing point in second image

 – \(d_i\) = direction of the \(i^{th}\) vanishing point in first image

Courtesy of last year’s slides