Logistics

- **Time:**
 - 03/19/2018, 12:30 pm - 2:30 pm

- **Place:**
 - Room 1: Oshman 125, [Sign up sheet](#)
 - Room 2: 450 Serra Mall, 300-300, [Sign up sheet](#)

- **Format:**
 - 3.5 minutes (3 minutes talk + 0.5 minute QA)

- **Submission:**
 - The deadline to change your slides or send your taped videos for SCPD students is 03/18/2018 at 5:00 pm.
 - The deadline of the final report is 03/22/2018 at 11:59pm.
Grading

Project Proposal: 1%
Project Milestone: 5%
Final Project Report: 25%
Final Project Presentation: 7%
Caveats

- Please submit your slides on time. We will disable the editing by the deadline.
- Please do not change the order of or modify the slides of any other group.
- Only SCPD students are allowed to tape the video unless explicitly approved by the head TA.
Presentation Contents

● Problem Definition and Motivation
 ○ What is the problem you are trying to solve? How is it related to the course material? What is your goal? What is the challenges in this problem?

● Previous Works (Optional)
 ○ How do previous people solve this problem? What are their limitations?

● Technical Details
 ○ Highlight your main technical contributions. 3 minutes is too little for detailed math.

● Experiments
 ○ Experimental setup. Quantitative results. Qualitative results. Other expected results.

● Conclusion (Optional)
Tips for the Presentation
1. Make a Storyline.
2. Highlight Your Contributions and Efforts.

Your presentation is an advertisement of your project.

People will read your report later for details.
3. A picture is worth a thousand words.

After all, we are doing a computer vision course…

Animated figure is even better.
4. Less is More.

If you are not talk about a figure/text, remove it from your slides.

Only make 3~6 slides.
5. Practice.

Rehearse in front of your partners/friends.

Measure your time.

Record your voice.
Recurrent Autoregressive Networks for Online Multi-Object Tracking

Kuan Fang, Yu Xiang, Xiaocheng Li, Silvio Savarese

Stanford University
Online Multi-Object Tracking

Goal: Reliably associate object trajectories with detections in each video frame based on their tracking history.
Challenges

- Handle occlusions and false alarms.
- Train a neural network model using only limited amount of labeled videos.
Internal Memory and External Memory
Quantitative Results on MOT Benchmarks

Tracking performance on MOT2015 benchmark.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mode</th>
<th>MOTA(↑)</th>
<th>MOTP(↑)</th>
<th>IDS(↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN/TCN</td>
<td>Batch</td>
<td>29.6</td>
<td>71.8</td>
<td>712</td>
</tr>
<tr>
<td>MHT_DAM</td>
<td>Batch</td>
<td>32.4</td>
<td>71.8</td>
<td>435</td>
</tr>
<tr>
<td>NOMT</td>
<td>Batch</td>
<td>33.7</td>
<td>71.9</td>
<td>442</td>
</tr>
<tr>
<td>SCEA</td>
<td>Online</td>
<td>29.1</td>
<td>71.1</td>
<td>604</td>
</tr>
<tr>
<td>MDP</td>
<td>Online</td>
<td>30.3</td>
<td>71.3</td>
<td>680</td>
</tr>
<tr>
<td>AMIR15</td>
<td>Online</td>
<td>37.6</td>
<td>71.7</td>
<td>1.026</td>
</tr>
<tr>
<td>Our Model (RAN)</td>
<td>Online</td>
<td>35.1</td>
<td>70.9</td>
<td>381</td>
</tr>
</tbody>
</table>

Tracking performance on MOT2016 benchmark.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mode</th>
<th>MOTA(↑)</th>
<th>MOTP(↑)</th>
<th>IDS(↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMC</td>
<td>Batch</td>
<td>46.3</td>
<td>75.7</td>
<td>657</td>
</tr>
<tr>
<td>NOMT</td>
<td>Batch</td>
<td>46.4</td>
<td>76.6</td>
<td>359</td>
</tr>
<tr>
<td>NLLMPa</td>
<td>Batch</td>
<td>47.6</td>
<td>78.5</td>
<td>629</td>
</tr>
<tr>
<td>EAMTT</td>
<td>Online</td>
<td>38.8</td>
<td>75.1</td>
<td>965</td>
</tr>
<tr>
<td>olCF</td>
<td>Online</td>
<td>43.2</td>
<td>74.3</td>
<td>381</td>
</tr>
<tr>
<td>Our Model (RAN)</td>
<td>Online</td>
<td>45.9</td>
<td>74.8</td>
<td>648</td>
</tr>
</tbody>
</table>
Adaptive Autoregressive Weights Estimated by RAN

The estimated parameters of object 8
Conclusions

- A data efficient network architecture using internal and external memories.
- Outperforms previous methods on the MOT benchmarks.