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CS231A
Computer Vision:
From 3D Reconstruction 
to Recognition

Optimal Estimation
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Perception as a Continuous Process
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Perception as a Multi-Modal 
Experience
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Perception as Inference
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Recursive State Estimation

Mathematical Formalism to:
○ continuously integrate measurements
○ from different sensor sources
○ to infer the state of a latent variable
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What is a state? What is a 
representation?
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State

Hidden Markov Model

Observation 𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)
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Image adapted from NuScenes by Motional. nuscenes.org

x: pose, size, type
z: Lidar, Stereo or RGB 

Representations for Autonomous 
Driving
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http://nuscenes.org/
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Manuel Wühtrich et al.  “Probabilistic Object Tracking using a Depth Camera”, IROS 2013

x: 6 DoF Object Pose, wether pixels are occluded
z: Dense Depth Images

Representations for Manipulation
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Why do we care about state 
estimation in Robotics?
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State

Partially Observable Markov Decision Process

Observation

Control Input

𝑧(𝑡 − 1) 𝑧(𝑡 + 1)𝑧(𝑡)

𝑢(𝑡 + 2)𝑢(𝑡 + 1)𝑢(𝑡)
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Today
● Intro: Why state estimation?
● Bayes Filter
● Kalman Filter
● Extended Kalman Filter

● For more depth: 
● AA 273: State Estimation and Filtering for Robotic Perception – 

Mac Schwager
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The Agent and the Environment

Perception

State

Decision 
Making
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𝒙𝒕

𝒖𝒕

𝒛𝒕"𝟏

(Environment) state 
constantly changes
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Notation

14-May-2415

State of dynamical system, dim n
Instantiation of system state at time t
Sensor Observation Vector, dim k
Specific Observation at time t
Robot action / control input, dim m
Robot action / control input at time t

Probability distribution

Markov Assumption
State is complete

𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)



Lecture 14Silvio Savarese & Jeannette Bohg 

Probabilistic Generative Laws

• Evolution of state and measurement governed 
by probabilistic laws 

• 𝑥! generated stochastically
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State Transition Model

• Probability distribution conditioned on all 
previous states, measurements and controls

• Assumption: State complete
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𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)
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Measurement Model

• Probability distribution conditioned on all 
previous states, measurements and controls

• Assumption: State complete
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𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)
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Belief Distribution

• Assigns probability to each possible 
hypothesis about what the true state may be

• Posterior distributions over state conditioned 
on all the data

• Before incorporating measurement       = 
prediction
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𝒛𝒕
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The Bayes Filter
• Recursive filter for estimating 𝑥! only from 
𝑥!#$, 𝑧!	and	𝑢! and not from the ever-growing 
history 𝑧$:! , 𝑢$:!	
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Transition/Dynamics model

Measurement Model

Predict Step
Update Step
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Simple example – Belief & 
Measurement Model
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Simple example – Transition Model
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The Bayes Filter - Derivation
• Bayes Rule

14-May-2430

𝒑 𝒂, 𝒃 = 𝒑 𝒂 𝒃 𝒑 𝒃 = 𝒑 𝒃 𝒂 𝒑 𝒂

𝒑 𝒂 𝒃 =
𝒑 𝒃 𝒂 𝒑(𝒂)

𝒑(𝒃)

Normalization
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The Bayes Filter - Derivation
• State is complete

• Simplify
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simplified

𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)
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The Bayes Filter - Derivation

14-May-2432

Measurement Model

Update Step

This still depends on 
entire history
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The Bayes Filter - Derivation

• Total probability

• State is complete
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𝒑 𝒂 = 	5𝒑 𝒂 𝒃 𝒑 𝒃 𝒅𝒃

Previous Belief over x
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The Bayes Filter - Derivation
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Transition/Dynamics model

Predict Step

simplified
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Limitations
1. 𝑝 𝑥 	is defined ∀𝑥 – intractable
– Discrete and small spaces
– Continuous and/or large spaces – Moments, 

Finite # of samples

2. The integral term -> costly to compute 
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The Bayes Filter
• Recursive filter for estimating 𝑥! only from 
𝑥!#$, 𝑧!	and	𝑢! and not from the ever-growing 
history 𝑧$:! , 𝑢$:!	
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Transition/Dynamics model

Measurement Model

Predict Step
Update Step
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Gaussian Filters - Kalman Filter

14-May-2442

𝐱~𝑵(𝝁, 𝚺)
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Kalman Filter
• Gaussian Belief
• Linear Transition Model

• Linear Measurement Model
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Process Noise 𝜺	~	𝑵(𝟎, 𝑹)

Measurement Noise 𝜹	~	𝑵(𝟎, 𝑸)

𝑧(𝑡 − 1) 𝑧(𝑡 + 1)𝑧(𝑡)
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Kalman Filter

• Initial Belief

• Distribution over next state

• Likelihood of Measurement
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𝐱𝟎~𝑵(𝝁𝟎, 𝚺𝟎)

Transition Model

Process Noise

Measurement Noise

Measurement Model
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The Kalman Filter Algorithm
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Predict Step
Update Step

K = Kalman Gain 𝐾	 ≈
𝑅
𝑄

Uncertainty increases

Uncertainty decreases

If R large, then K is large.
Update dominated by 
innovation.

If Q large, then K is small.
Update dominated by 
prediction.
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Example
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𝒑(𝒙𝟎) Measurement

After Update After Prediction

Measurement After Update

𝒃𝒆𝒍(𝒙𝟎)

𝒑(𝒛𝟎|𝒙𝟎)

𝒃𝒆𝒍	(𝒙𝟏)

𝒑(𝒛𝟏|𝒙𝟏) 𝒃𝒆𝒍(𝒙𝟏)
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Propagating a Gaussian through a 
Linear Model
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Propagating a Gaussian through a 
Non-Linear Model
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Linearizing the Non-Linear Model
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Manuel Wühtrich et al.  “Probabilistic Object Tracking using a Depth Camera”, IROS 2013

x: 6 DoF Object Pose, wether pixels are occluded
z: Dense Depth Images

Representations for Manipulation
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Extended Kalman filter - 
Process Model

14-May-2460

First order Taylor Expansion – linear approximation around value and slope 

Process Model

Measurement Model

Gradient of Nonlinear function 
around 𝒙𝒕%𝟏	

Taylor Expansion

Jacobian
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Extended Kalman filter - 
Process Model

Written as Gaussian:

Same equations as in previous slide
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Extended Kalman Filter – 
Measurement Model
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First order Taylor Expansion – linear approximation around value and slope 

Written as Gaussian:

Process Model

Measurement Model

Jacobian
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The Extended Kalman Filter Algorithm
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Predict

Update
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Next lecture: 
Optimal Estimation cont’

CS231
Introduction to 
Computer Vision


