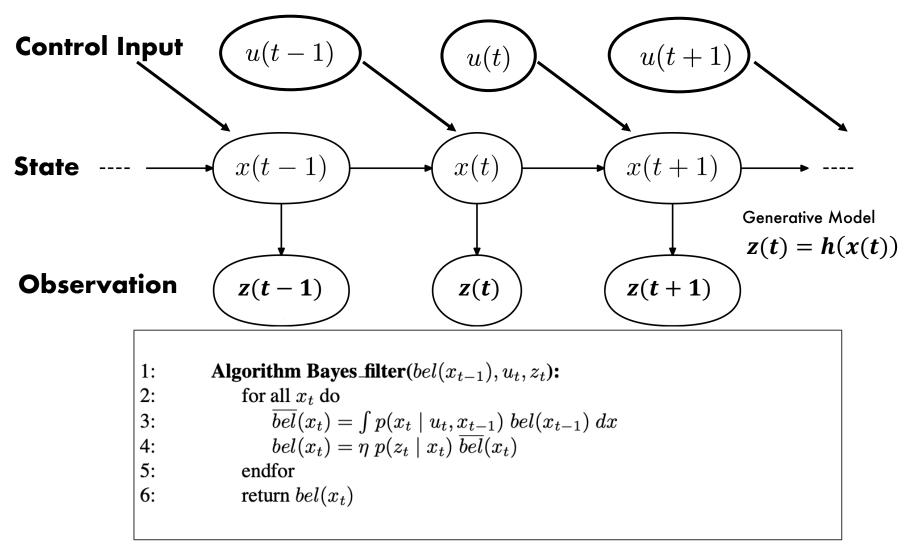
CS231A Computer Vision: From 3D Reconstruction to Recognition

Optimal Estimation Cont'

Silvio Savarese & Jeannette Bohg

Graphical Model of System to Estimate



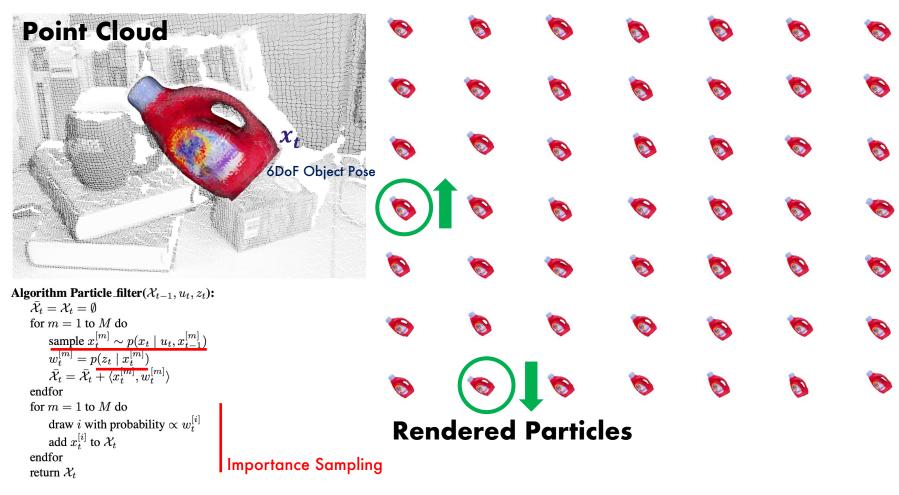
Silvio Savarese & Jeannette Bohg

Lecture 14/15

22-May-24

15

Example Observation model for 3D object



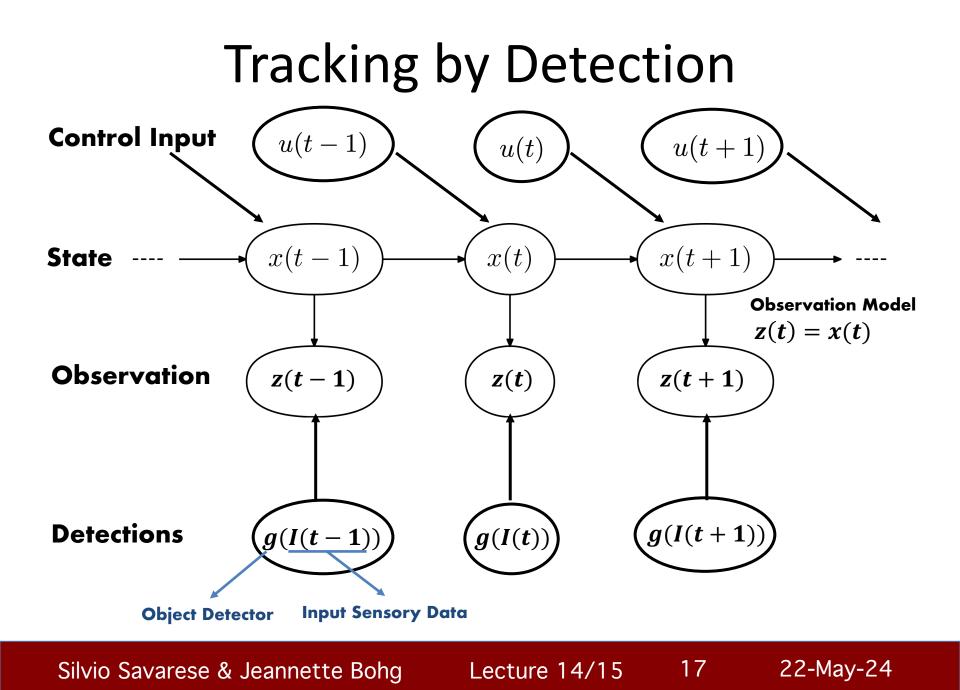
Changhyun Choi and Henrik I. Christensen. Rgb-d object tracking: A particle filter approach on gpu. In IROS, pages 1084–1091, 2013

Silvio Savarese & Jeannette Bohg

Lecture 14/15

22-May-24

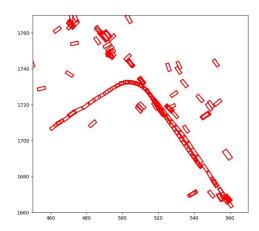
16



Problem Statement: Input

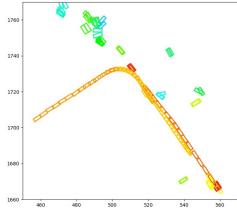
Probabilistic 3d multi-object tracking for autonomous driving. H Chiu, A Prioletti, J Li, J Bohg arXiv preprint arXiv:2001.05673

- Object detections at each frame in a sequence
- Each detection bounding box is represented by:
 - center position (x, y, z), rotation angle along the z-axis (a), and the scale (l, w, h)
 - category label (car, pedestrian, ...), confidence score (c)



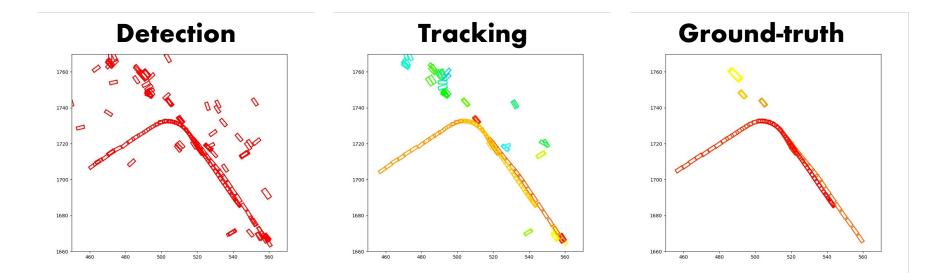
Problem Statement: Output

- Tracking object bounding boxes at each frame in a sequence
- Each tracking bounding box is represented by:
 - center position (x, y, z), rotation angle along the z-axis (a), and the scale (l, w, h)
 - category label (car, pedestrian, ...), confidence score (c)
 - tracking id: one unique tracking id for each object instance across frames

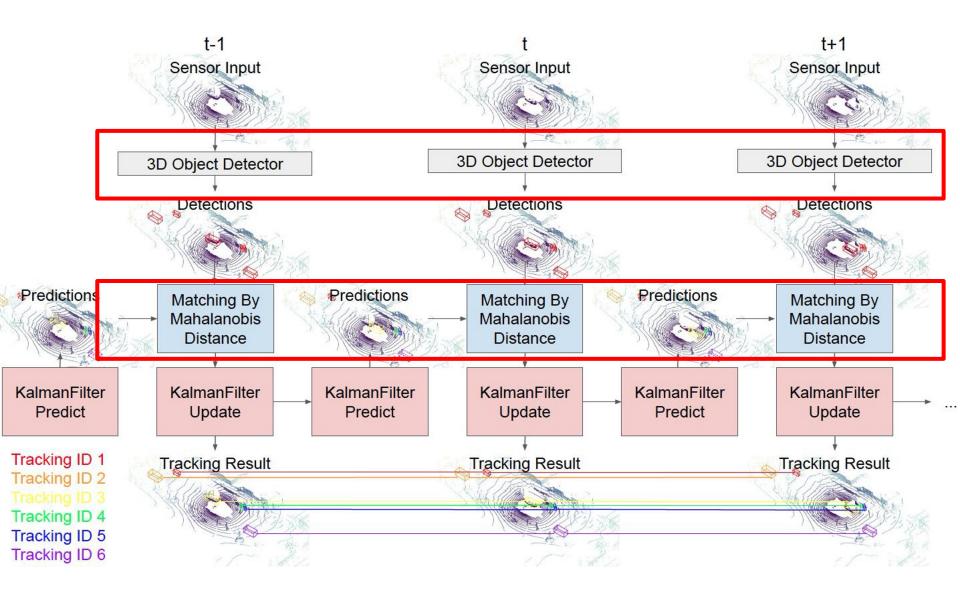


Why Tracking?

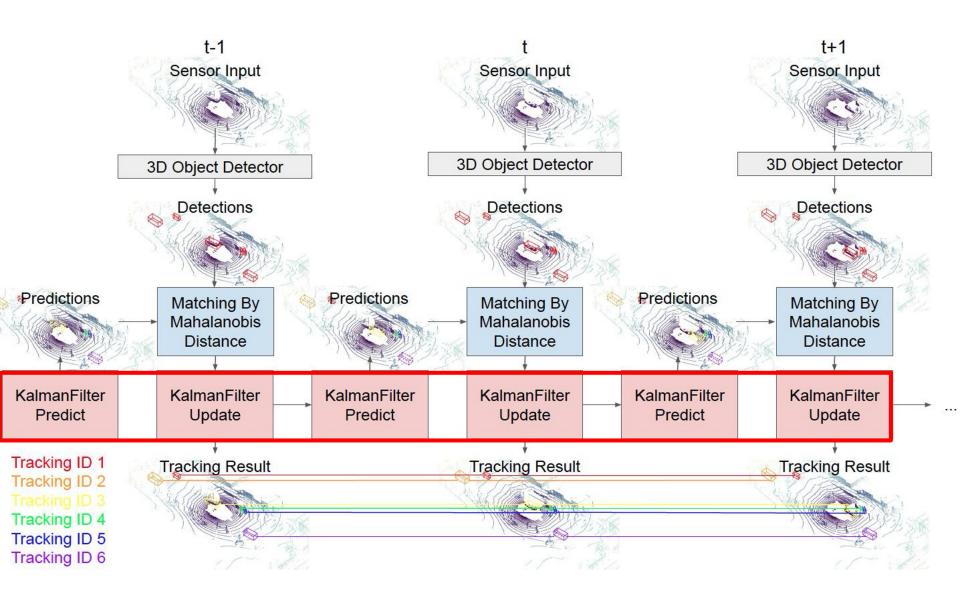
- Filter out the out-liners from the detection results
- Continue estimating object states even if occluded
- Forecast the future based on past trajectories and motion patterns
- Make autonomous driving decisions



Silvio Savarese & Jeannette Bohg



Silvio Savarese & Jeannette Bohg



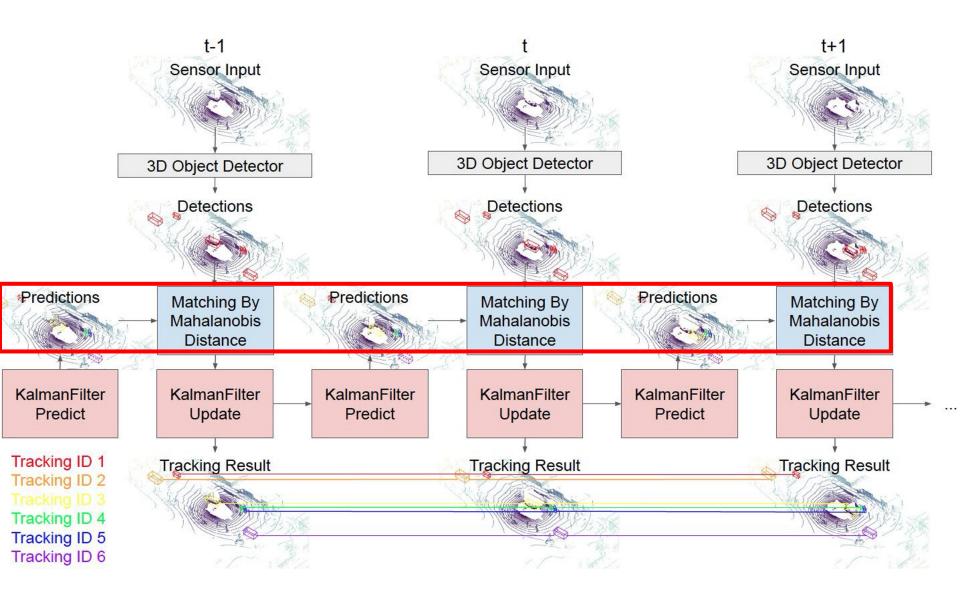
Silvio Savarese & Jeannette Bohg

Kalman Filter for Tracking

Define the object **state** using a vector of random variables including the position, the rotation, the scale, linear velocity, and the angular velocity. $\mathbf{s}_t = (x, y, z, a, l, w, h, d_x, d_y, d_z, d_a)^T$

Define the **Process Model** for prediction based on the constant velocity motion:

$$\begin{aligned} \hat{x}_{t+1} &= x_t + d_{x_t} + q_{x_t}, & \hat{d}_{x_{t+1}} = d_{x_t} + q_{d_{x_t}} \\ \hat{y}_{t+1} &= y_t + d_{y_t} + q_{y_t}, & \hat{d}_{y_{t+1}} = d_{y_t} + q_{d_{y_t}} \\ \hat{z}_{t+1} &= z_t + d_{z_t} + q_{z_t}, & \hat{d}_{z_{t+1}} = d_{z_t} + q_{d_{z_t}} \\ \hat{a}_{t+1} &= a_t + d_{a_t} + q_{a_t}, & \hat{d}_{a_{t+1}} = d_{a_t} + q_{d_{a_t}} \end{aligned}$$



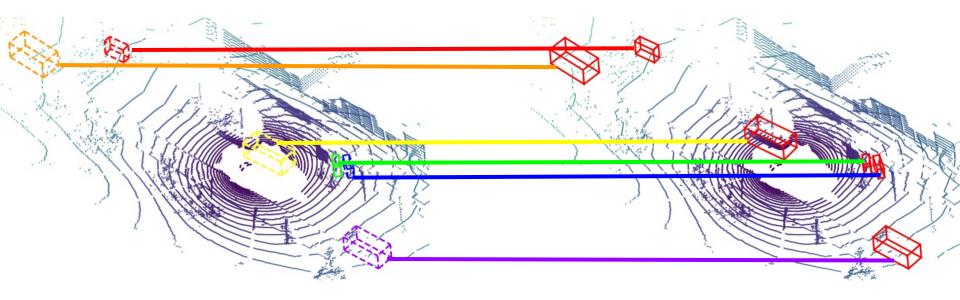
Silvio Savarese & Jeannette Bohg

Data Association

Mahalanobis Distance m =

$$\sqrt{(z_t - C\bar{\mu}_t)^T S_t^{-1} (z_t - C\bar{\mu}_t)}$$

S = Innovation Covariance $z_t - C\mu_t =$ innovation



Kalman Filter Predictions

Object Detections

Kalman Filter

1: Algorithm Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = A_t \ \mu_{t-1} + B_t \ u_t$
3: $\bar{\Sigma}_t = A_t \ \Sigma_{t-1} \ A_t^T + R_t$
4: $K_t = \bar{\Sigma}_t \ C_t^T \ C_t \ \bar{\Sigma}_t \ C_t^T + Q_t$)⁻¹ = S_t^{-1}
5: $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \ \bar{\mu}_t)$
6: $\Sigma_t = (I - K_t \ C_t) \ \bar{\Sigma}_t$
7: return μ_t, Σ_t

Data Association

Mahalanobis Distance $m = \sqrt{(z_t - C\bar{\mu}_t)^T S_t^{-1} (z_t - C\bar{\mu}_t)}$

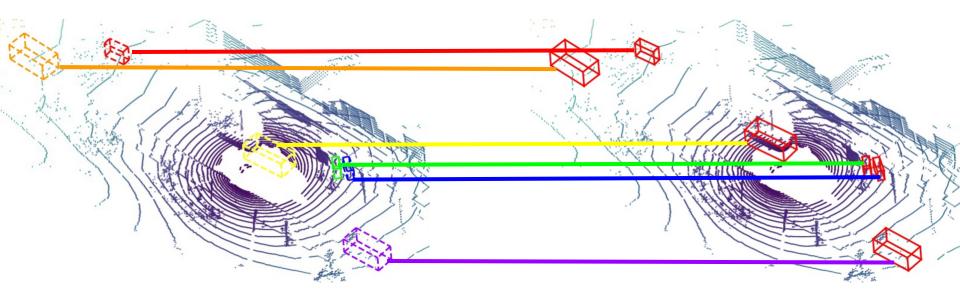
If $m > 3 * \sigma$ then reject as outlier. 99.7% of values lie within 3*standard deviation.

Measuring the distance between the observation and the distribution of the predicted state.

Providing distance measurement when there is no overlap between the prediction and detection.

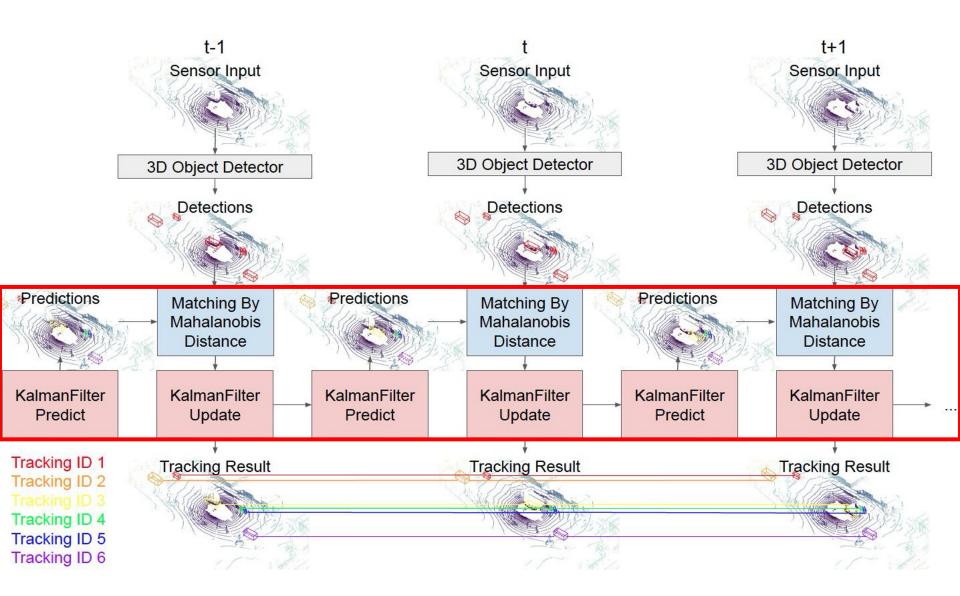
Taking the uncertainty information from the prediction into account.

Data Association - Greedy



Kalman Filter Predictions

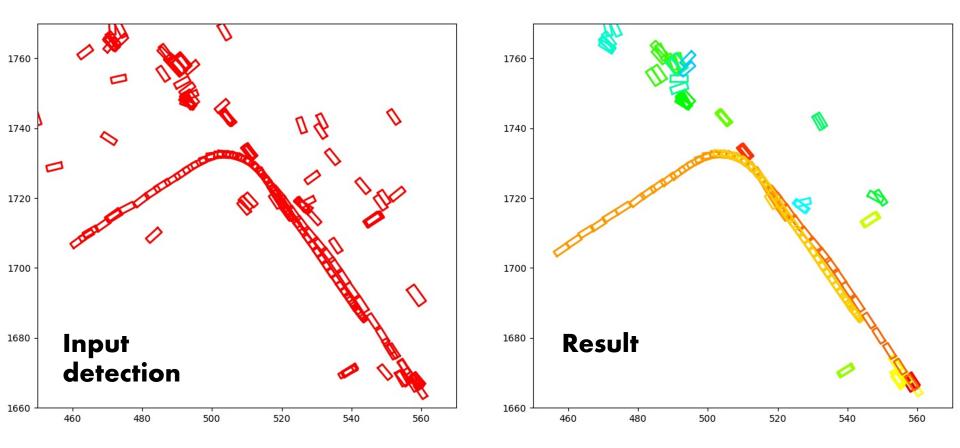
Detections

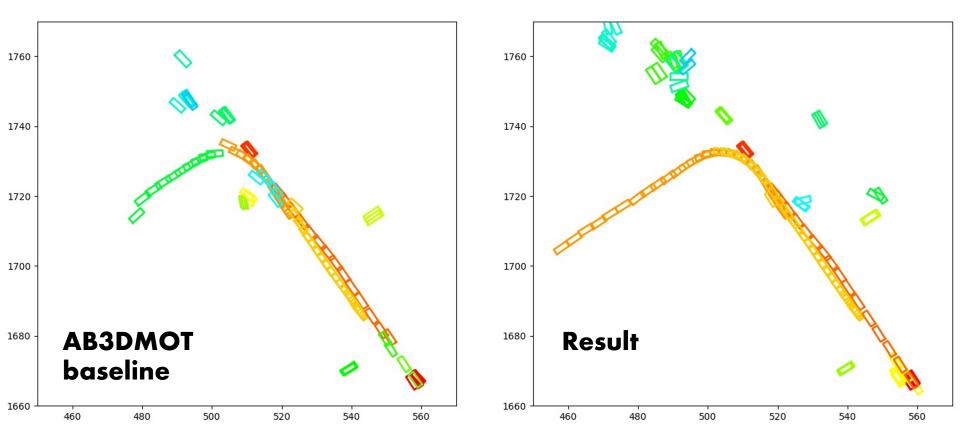


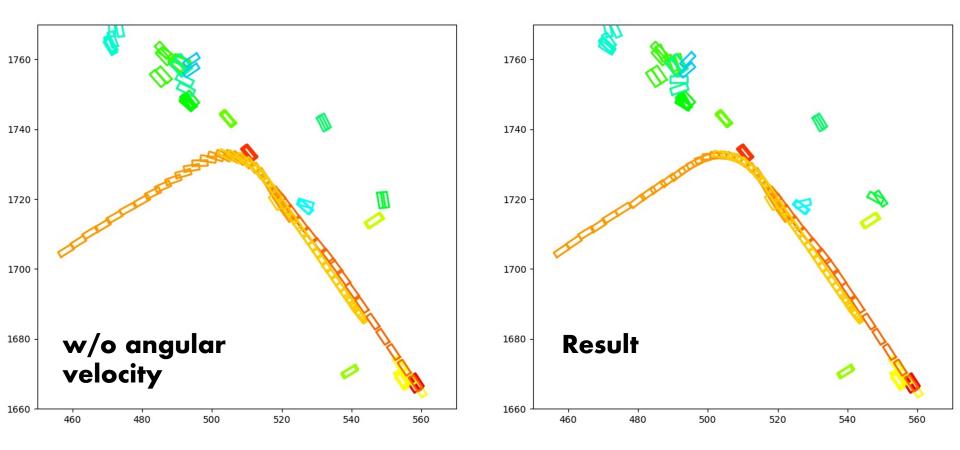
Silvio Savarese & Jeannette Bohg

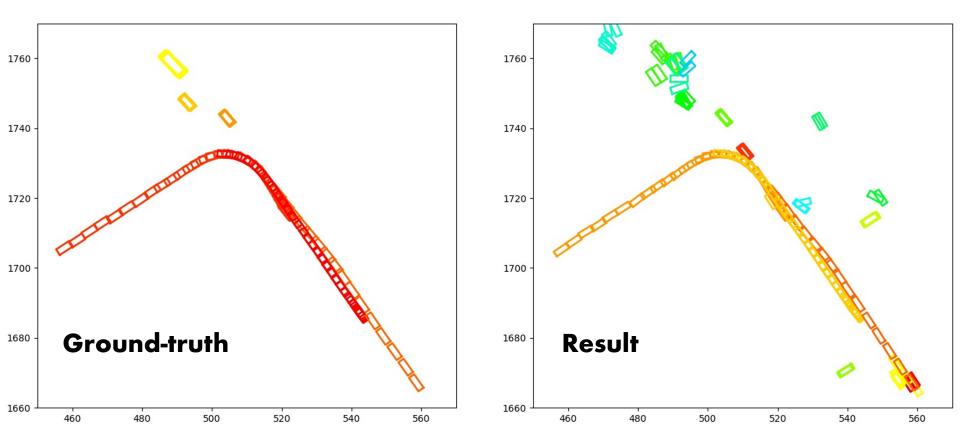
Kalman Filter

1: Algorithm Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = A_t \ \mu_{t-1} + B_t \ u_t$
3: $\bar{\Sigma}_t = A_t \ \Sigma_{t-1} \ A_t^T + R_t$
4: $K_t = \bar{\Sigma}_t \ C_t^T (C_t \ \bar{\Sigma}_t \ C_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \ \bar{\mu}_t)$
6: $\Sigma_t = (I - K_t \ C_t) \ \bar{\Sigma}_t$
7: return μ_t, Σ_t









Priors and Hyperparameters

A lot of hardcoded knowledge!

- State Representation
- Models
 - Forward Model
 - State to next state
 - Action to next state
 - Measurement Model

• Probabilistic Properties

- Process Noise
- Measurement Noise

Differentiable filters

Can we learn models and hyperparameters from data?

Approach: Embed algorithmic structure of Bayesian Filtering into a recurrent neural network.

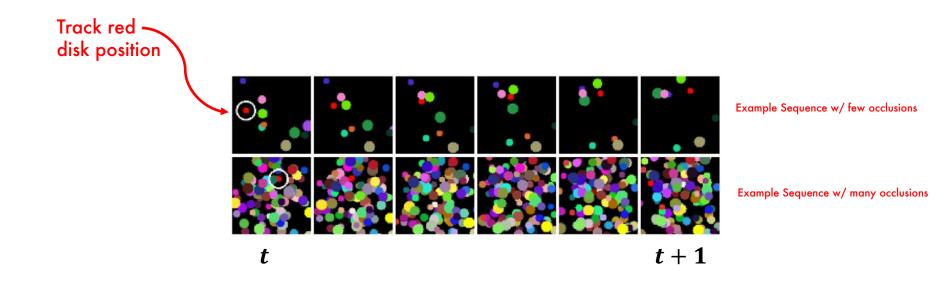
- prevents overfitting through regularization
- Avoids manual tuning and modeling

Estimators. Haarnoja et al. NeurIPS 2016

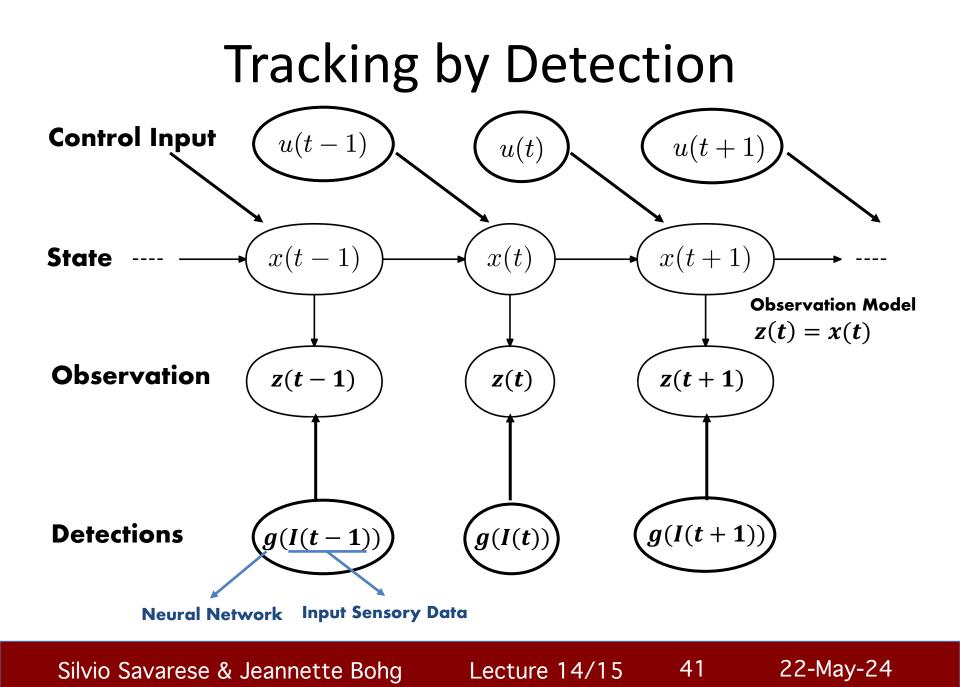
- Differentiable version of the Kalman Filter

- Uses Images as observations; learns a sensors that outputs state directly

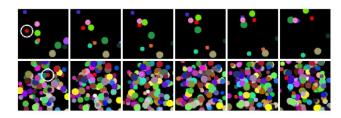
$$g(I_t) = z_t \approx x_t$$



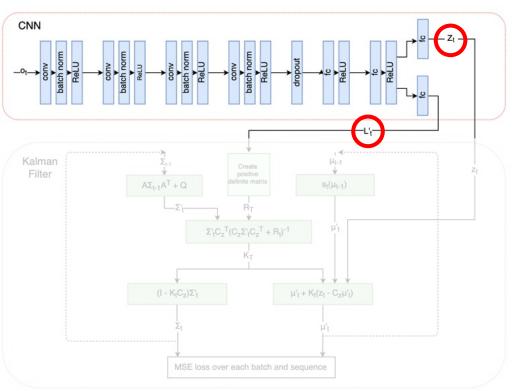
Silvio Savarese & Jeannette Bohg Le



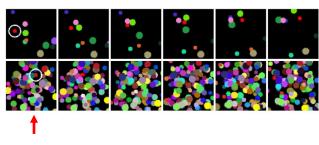
Differentiable Kalman Filter -Structure



 $g(I_t) = z_t \approx x_t$

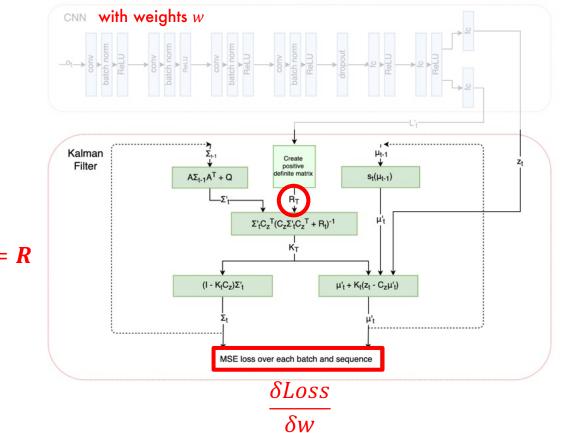


Differentiable Kalman Filter -Structure



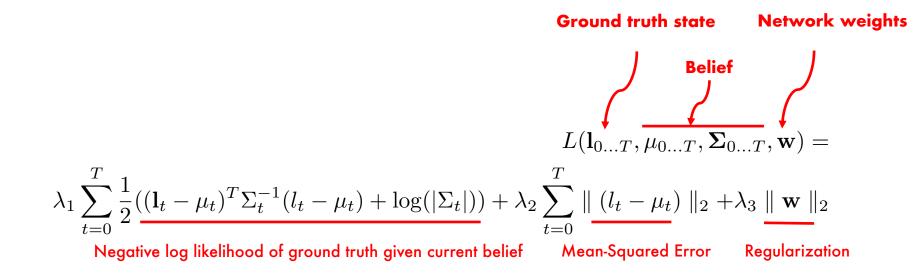
R is high if red disk is occluded

 $L'L^T = R$



Silvio Savarese & Jeannette Bohg

Differentiable Kalman Filter – Loss Function



Differentiable Kalman Filter – Experiments and Baselines

Table 1: Benchmark Results

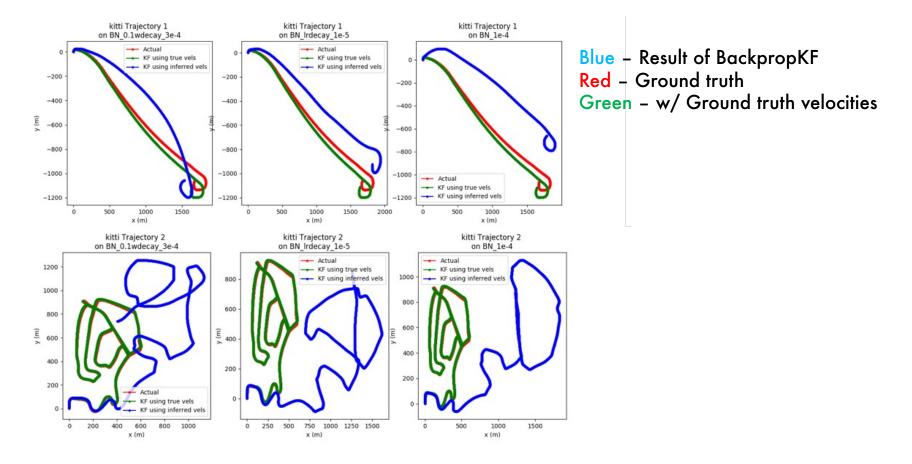
State Estimation Model	# Parameters	RMS test error $\pm \sigma$
feedforward model	7394	0.2322 ± 0.1316
piecewise KF	7397	0.1160 ± 0.0330
LSTM model (64 units)	33506	0.1407 ± 0.1154
LSTM model (128 units)	92450	0.1423 ± 0.1352
BKF (ours)	7493	$\textbf{0.0537} \pm \textbf{0.1235}$

Differentiable Kalman Filter – Experiments and Baselines

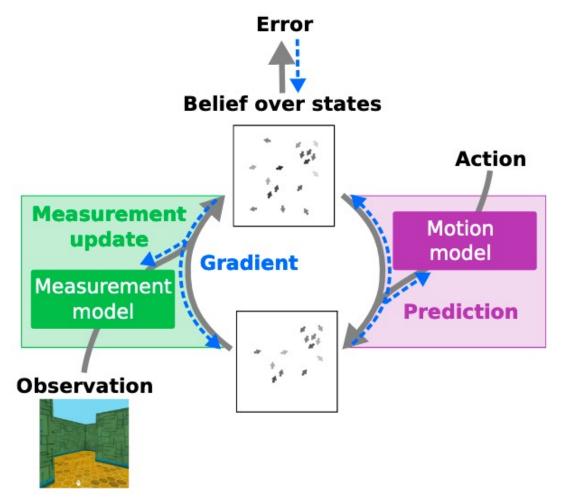
- Kitti Visual Odometry Datatset
- 22 stereo sequences with LIDAR
 - 11 sequences with ground truth (GPS/IMU data)
 - 11 sequences without ground truth (for evaluation)

Differentiable Kalman Filter – Experiments and Baselines

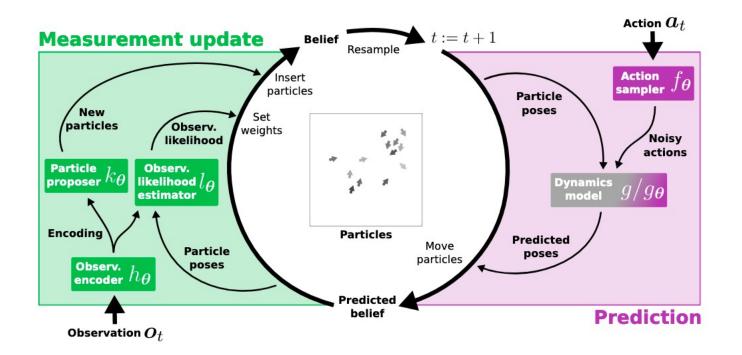
Results reproduced by Claire Chen



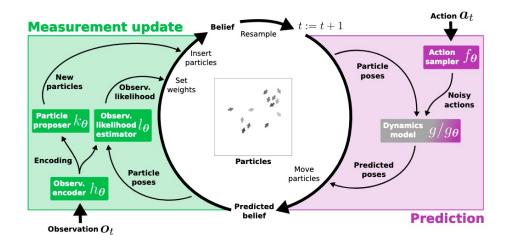
Silvio Savarese & Jeannette Bohg



Silvio Savarese & Jeannette Bohg L



Prediction Step



E • 7

- w_t weights
- a_t actions
- s_t states
- o_t observations

$$\operatorname{bel}(\boldsymbol{s}_t) = (S_t, \boldsymbol{w}_t)$$

$$egin{aligned} \hat{m{a}}_t^{[i]} &= m{a}_t + f_{m{ heta}}(m{a}_t,m{\epsilon}^{[i]} \sim \mathcal{N}), \ m{s}_t^{[i]} &= m{s}_{t-1}^{[i]} + g(m{s}_{t-1}^{[i]}, \hat{m{a}}_t^{[i]}), \end{aligned}$$

Action sampler Dynamics model

- Measurement Update
 - w_t weights
 - a_t actions
 - s_t states
 - o_t observations
 - e_t encoding

$$egin{aligned} oldsymbol{e}_t &= h_{oldsymbol{ heta}}(oldsymbol{o}_t), \ oldsymbol{s}_t^{[i]} &= k_{oldsymbol{ heta}}(oldsymbol{e}_t,oldsymbol{\delta}^{[i]} \sim B), \ w_t^{[i]} &= l_{oldsymbol{ heta}}(oldsymbol{e}_t,oldsymbol{s}_t^{[i]}), \end{aligned}$$

Observation Encoder

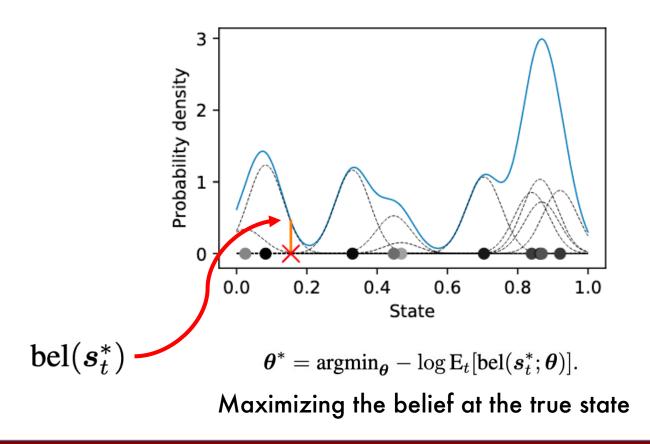
Particle Proposer

Observation likelihood estimator

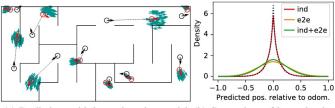
Silvio Savarese & Jeannette Bohg

Differentiable Particle Filter – Loss Function

• Supervised learning given data $o_{1:T}, a_{1:T}, s_{1:T}^*$



Differentiable Particle Filter – Experiments and Baselines



(a) Predictions with learned motion model (b) Comparison of learned noise

Fig. 5: Learned motion model. (a) shows predictions (cyan) of the state (red) from the previous state (black). (b) compares prediction uncertainty in x to true odometry noise (dotted line).

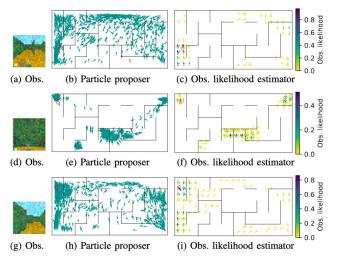


Fig. 6: **Learned measurement model**. Observations, corresponding model output, and true state (red). To remove clutter, the observation likelihood only shows above average states.

Differentiable Particle Filter – Experiments and Baselines

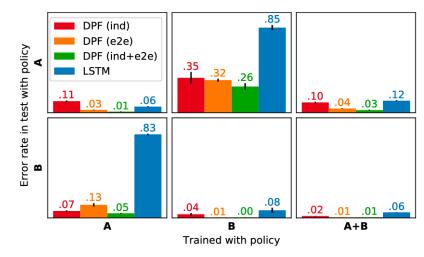


Fig. 9: Generalization between policies in maze 2. A: heuristic exploration policy, B: shortest path policy. Methods were trained using 1000 trajectories from A, B, or an equal mix of A and B, and then tested with policy A or B.

Differentiable Particle Filter – Experiments and Baselines

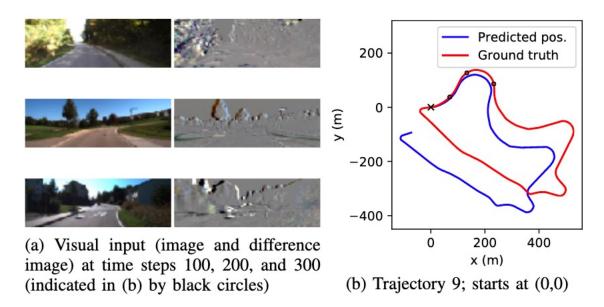


Fig. 10: Visual odometry with DPFs. Example test trajectory

CS231A Computer Vision: From 3D Reconstruction to Recognition

Next lecture: Neural Radiance Fields for Novel View Synthesis

Silvio Savarese & Jeannette Bohg Lecture

