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Computer Vision:
From 3D Reconstruction 
to Recognition

Optimal Estimation Cont’



Lecture 14/15Silvio Savarese & Jeannette Bohg 

Graphical Model of System to Estimate

22-May-2415

State

Observation

Control Input

𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)

Generative Model

𝒛(𝒕) = 𝒉 𝒙(𝒕)
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Example Observation model for 3D object

22-May-2416

Changhyun Choi and Henrik I. Christensen. Rgb-d object tracking: A particle filter approach on gpu. In IROS, pages 1084–1091, 2013

Point Cloud

𝒙𝒕
6DoF Object Pose

Rendered Particles
Importance Sampling
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Tracking by Detection

22-May-2417

State

Observation

Control Input

𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)

Detections 𝒈(𝑰(𝒕 − 𝟏)) 𝒈(𝑰(𝒕)) 𝒈(𝑰(𝒕 + 𝟏))

Object Detector Input Sensory Data

𝒛 𝒕 = 𝒙(𝒕)
Observation Model
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Problem Statement: Input

● Object detections at each frame in a sequence
● Each detection bounding box is represented by:

○ center position (x, y, z), rotation angle along the z-axis (a), and the 
scale (l, w, h)

○ category label (car, pedestrian, ...), confidence score (c)

Probabilistic 3d multi-object tracking for autonomous driving. H Chiu, A Prioletti, J Li, J Bohg
arXiv preprint arXiv:2001.05673
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Problem Statement: Output

● Tracking object bounding boxes at each frame in a sequence
● Each tracking bounding box is represented by:

○ center position (x, y, z), rotation angle along the z-axis (a), and the 
scale (l, w, h)

○ category label (car, pedestrian, ...), confidence score (c)
○ tracking id: one unique tracking id for each object instance across 

frames 
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Why Tracking?

• Filter out the out-liners from the detection results
• Continue estimating object states even if occluded
• Forecast the future based on past trajectories and motion patterns
• Make autonomous driving decisions

Detection Tracking Ground-truth



Lecture 14/15Silvio Savarese & Jeannette Bohg 

Our Proposed Method
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Our Proposed Method
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Kalman Filter for Tracking

Define the object state using a vector of random variables including the 
position, the rotation, the scale, linear velocity, and the angular velocity. 

Define the Process Model for prediction based on the constant velocity 
motion:
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Our Proposed Method
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Data Association

Mahalanobis Distance 𝑚 = (𝑧! − 𝐶�̅�!)"𝑆!#$	(𝑧! − 𝐶�̅�!)	

Kalman Filter 
Predictions

Object Detections

𝑆 = Innovation Covariance
𝑧! − 𝐶𝜇! = innovation
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Kalman Filter

= 	𝑺𝒕"𝟏
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Data Association

Mahalanobis Distance 𝑚 = (𝑧! − 𝐶�̅�!)"𝑆!#$ (𝑧! − 𝐶�̅�!)

Measuring the distance between the observation and the distribution of the 
predicted state.

Providing distance measurement when there is no overlap between the 
prediction and detection.  

Taking the uncertainty information from the prediction into account.

If 𝒎 > 𝟑 ∗ 𝝈	then reject as outlier. 99.7% of values lie within 3*standard deviation. 
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Data Association - Greedy

DetectionsKalman Filter 
Predictions
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Our Proposed Method
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Kalman Filter
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Qualitative Results

Input 
detection

Result
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Qualitative Results

AB3DMOT 
baseline

Result
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Qualitative Results

w/o angular 
velocity

Result
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Qualitative Results

Ground-truth Result
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Priors and Hyperparameters
A lot of hardcoded knowledge!

• State Representation
• Models 

• Forward Model
• State to next state
• Action to next state

• Measurement Model

• Probabilistic Properties
• Process Noise
• Measurement Noise
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Differentiable filters
Can we learn models and hyperparameters from data?
Approach: Embed algorithmic structure of Bayesian Filtering into a recurrent neural 
network.
 - prevents overfitting through regularization
 - Avoids manual tuning and modeling
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Discriminative Deterministic State 
Estimators. Haarnoja et al. NeurIPS 
2016

- Differentiable version of the Kalman Filter
- Uses Images as observations; learns a sensors that outputs state directly

Track red 
disk position

𝒕 𝒕 + 𝟏

Example Sequence w/ few occlusions

Example Sequence w/ many occlusions

𝒈 𝑰𝒕 = 𝒛𝒕 ≈ 𝒙𝒕
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Tracking by Detection

22-May-2441

State

Observation

Control Input

𝒛(𝒕 − 𝟏) 𝒛(𝒕 + 𝟏)𝒛(𝒕)

Detections 𝒈(𝑰(𝒕 − 𝟏)) 𝒈(𝑰(𝒕)) 𝒈(𝑰(𝒕 + 𝟏))

Neural Network Input Sensory Data

𝒛 𝒕 = 𝒙(𝒕)
Observation Model
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Differentiable Kalman Filter - 
Structure

𝒈 𝑰𝒕 = 𝒛𝒕 ≈ 𝒙𝒕
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Differentiable Kalman Filter - 
Structure

𝑳$𝑳𝑻 = 𝑹

with weights 𝑤

𝛿𝐿𝑜𝑠𝑠
𝛿𝑤

R is high if red disk is 
occluded
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Differentiable Kalman Filter – Loss 
Function

L(l0...T , µ0...T ,⌃0...T ,w) =

�1

TX

t=0

1

2
((lt � µt)

T⌃�1
t (lt � µt) + log(|⌃t|)) + �2

TX

t=0

k (lt � µt) k2 +�3 k w k2

Ground truth state Network weights

Negative log likelihood of ground truth given current belief Mean-Squared Error Regularization

Belief



Lecture 14/15Silvio Savarese & Jeannette Bohg 

Differentiable Kalman Filter – 
Experiments and Baselines
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Differentiable Kalman Filter – 
Experiments and Baselines

• Kitti – Visual Odometry Datatset
• 22 stereo sequences with LIDAR

• 11 sequences with ground truth (GPS/IMU data)
• 11 sequences without ground truth (for evaluation)
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Differentiable Kalman Filter – 
Experiments and Baselines
Results reproduced by Claire Chen

Blue – Result of BackpropKF
Red – Ground truth 
Green – w/ Ground truth velocities 
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Differentiable Particle Filters: End-to-End Learning with 
Algorithmic Priors. Jonschkowski et al. RSS 2018.
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Differentiable Particle Filters: End-to-End Learning with 
Algorithmic Priors. Jonschkowski et al. RSS 2018.
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• Prediction Step

Differentiable Particle Filters: End-to-End Learning with 
Algorithmic Priors. Jonschkowski et al. RSS 2018.

𝒂𝒕
𝒔𝒕
𝒐𝒕

𝒘𝒕 weights

actions

states
observations

Action sampler
Dynamics model



Lecture 14/15Silvio Savarese & Jeannette Bohg 

Differentiable Particle Filters: End-to-End Learning with 
Algorithmic Priors. Jonschkowski et al. RSS 2018.

• Measurement Update

Observation Encoder

𝒂𝒕
𝒔𝒕
𝒐𝒕

𝒘𝒕 weights

actions

states
observations

𝒆𝒕 encoding

Particle Proposer

Observation likelihood estimator 
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Differentiable Particle Filter – Loss 
Function
• Supervised learning given data

Maximizing the belief at the true state 
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Differentiable Particle Filter – 
Experiments and Baselines
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Differentiable Particle Filter – 
Experiments and Baselines
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Differentiable Particle Filter – 
Experiments and Baselines
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Next lecture: 
Neural Radiance Fields for Novel View 
Synthesis

CS231A
Computer Vision:
From 3D Reconstruction 
to Recognition


