CS231A
Computer Vision: From 3D Reconstruction to Recognition

Gaussian Splatting for Novel View Synthesis
The problem of novel view synthesis

Inputs: sparsely sampled images of scene

Outputs: new views of same scene
(rendered by our method)

Rendering (Graphics): Given 3D Scene + Camera parameters, yield images
Inverse Graphics: Given Images, Infer Camera Poses & 3D Scene!

Images → 3D Scene → Camera Poses

How to get camera poses?

Can assume we know the camera poses.
Differentiable Rendering

Scene Representation → Renderer → Rendered Images

Differentiable Rendering

Differentiable Rendering

Scene Representation \rightarrow Differentiable Renderer \rightarrow Optimization via SGD \rightarrow Rendered Images \rightarrow GT Images

Differentiable Rendering

Given an observable variable (pixel colors), we will build a differentiable forward model that we then use to estimate unobserved (latent) variables (geometry, appearance)!

Ways to Render

Surface rendering

Volume rendering
Volume rendering equation

\[I(D) = I_0 T(0) + \int_0^D c(s) \rho(s) T(s) \, ds \]

pixel color at coordinates D

radiance density

transparency

\[T(s) = \exp \left(- \int_s^D \rho(t) \, dt \right) \]

Silvio Savarese & Jeannette Bohg **Lecture 17**
Represent a scene as a continuous 5D function

\[(x, y, z, \theta, \phi) \rightarrow F_\Omega \rightarrow (r, g, b, \sigma)\]

- **Spatial location**
- **Viewing direction**
- **Output color**
- **Output density**

- Fully-connected neural network
 - 9 layers
 - 256 channels

No need to instantiate Volume representation
Generate views with traditional volume rendering

Generate views with traditional volume rendering

Rendering model for ray $r(t) = o + td$:

$$C \approx \sum_{i=1}^{N} T_i \alpha_i c_i$$

t = point along ray
C = Color of Pixel
c = color of point

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

Transparency

How much light is contributed by ray segment i:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Function of segment length δt_i and volume density σ

Optimize with gradient descent on rendering loss

$$\min_{\Omega} \sum_{i} \| \text{render}^{(i)}(F_{\Omega}) - I^{(i)}_{gt} \|^2$$

Training network to reproduce all input views of the scene

The problem of novel view synthesis

Inputs: sparsely sampled images of scene

Outputs: new views of same scene (rendered by our method)

Vision-Only Navigation

MPC controller

Real World or Simulator

Camera Images

Predicated Images

Estimator

NeRF

State

Trajectory Optimizer

Control Actions
Plenoxels: Radiance Fields …
[Yu et al. 2022]
Direct Voxel Grid Optimization
[Sun et al. 2021]

InstantNGP: Instant Neural …
[Müller et al. 2022]

PointNeRF: Point-based Neural …
[Xu et al. 2022]

Efficient Geometry-aware 3D…
[Chan et al. 2022]
TensorRF: Tensor Radiance Fields
[Chen & Xu et al. 2022]
Hybrid Multi-Scale Grid, HashMap, Neural Field

- Instant-NGP: 9.0
- MipNeRF360: 0.07

FPS

Slide adopted from 6.5980 – ML for Inverse Graphics – Vincent Sitzmann
3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL*, Inria, Université Côte d’Azur, France
GEORGIOS KOPANAS*, Inria, Université Côte d’Azur, France
THOMAS LEIMKÜHLER, Max-Planck-Institut für Informatik, Germany
GEORGE DRETTAKIS, Inria, Université Côte d’Azur, France

Fig. 1. Our method achieves real-time rendering of radiance fields with quality that equals the previous method with the best quality [Barron et al. 2022], while only requiring optimization times competitive with the fastest previous methods [Fridovich-Keil and Yu et al. 2022; Müller et al. 2022]. Key to this performance is a novel 3D Gaussian scene representation coupled with a real-time differentiable renderer, which offers significant speedup to both scene optimization and novel view synthesis. Note that for comparable training times to InstantNGP [Müller et al. 2022], we achieve similar quality to theirs; while this is the maximum quality they reach, by training for 51min we achieve state-of-the-art quality, even slightly better than Mip-NeRF360 [Barron et al. 2022].
Slide adopted from 6.5980 – ML for Inverse Graphics – Vincent Sitzmann
Neural Radiance Field: Parameterize Radiance Field densely, at every point in space

\[(x,y,z,\theta,\phi) \rightarrow \begin{array}{c} F \Theta \end{array} \rightarrow (RGB\sigma)\]
Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

3D Gaussian Blobs floating in Space

Mean

Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

3D Gaussian Blobs floating in Space

Slide adopted from 6.5980 – ML for Inverse Graphics – Vincent Sitzmann
Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

3D Gaussian Blobs floating in Space

\[\sigma = 0 \]
Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

3D Gaussian Blobs floating in Space

\[\sigma = 0 \]
\[\sigma = 0.5 \]
\[RGB = \]

Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

3D Gaussian Blobs floating in Space

$\sigma = 0$

$\sigma = 0.5$

$\sigma = 1$

$RGB =$

Slide adopted from 6.5980 – ML for Inverse Graphics – Vincent Sitzmann
Anisotropic Volumetric 3D Gaussians

Final Rendering

3D Gaussian Visualization
How to Render?

3D Gaussian Blobs floating in Space

$\sigma = 0$

$\sigma = 0.5$

$\sigma = 1$

$RGB = \star$

$RGB = \star$

$RGB = \star$

$RGB = \star$

Slide adopted from 6.8980 – ML for Inverse Graphics – Vincent Sitzmann
Same Volume Rendering Integral!

“Far Plane”

“Near Plane”

Camera

Slide adopted from 6.5980 – ML for Inverse Graphics – Vincent Sitzmann
Same Volume Rendering Integral!

Still sampling lots of empty space...

Slide adopted from 6.980 – ML for Inverse Graphics – Vincent Sitzmann
Same Volume Rendering Integral!

Stupid: we already know where the density will be nonzero!

Slide adopted from 6.980 – ML for Inverse Graphics – Vincent Sitzmann
Gaussians are closed under affine transforms, integration

\[g_v(x - p) = \frac{1}{2\pi|V|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-p)^T V^{-1}(x-p)} \]

3D Covariance!
Gaussians are closed under affine transforms, integration

\[G_V(x - p) = \frac{1}{2\pi|V|^{1/2}} e^{-\frac{1}{2} (x-p)^T V^{-1} (x-p)} \]

Affine mapping \(\Phi = Mx + p \) of coordinates (such as cam2world matrix!):

\[G_V(\Phi^{-1}(u) - p) = \frac{1}{|M^{-1}|} G_{MVMT}(u - \Phi(p)) \]
Gaussians are closed under affine transforms, integration

\[G_V(x - p) = \frac{1}{2\pi|V|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-p)^T V^{-1}(x-p)} \]

3D Covariance!

Affine mapping \(\Phi = Mx + p \) of coordinates (such as cam2world matrix!):

\[G_V(\Phi^{-1}(u) - p) = \frac{1}{|M^{-1}|} G_{MVM^T}(u - \Phi(p)) \]

Integrate along axis:

\[\int_{\mathbb{R}^3} G^3_V(x - p) \, dx_2 = G^2_V(\hat{x} - \hat{p}) \]

\[V = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \leftrightarrow \begin{pmatrix} a & b \\ b & d \end{pmatrix} = \hat{V} \]
Throwback: The Kalman Filter Algorithm

1: \textbf{Algorithm Kalman filter}($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
2: \hspace{1em} $\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t$
3: \hspace{1em} $\bar{\Sigma}_t = A_t \Sigma_{t-1} A^T_t + R_t$
4: \hspace{1em} $K_t = \bar{\Sigma}_t C^T_t (C_t \bar{\Sigma}_t C^T_t + Q_t)^{-1}$
5: \hspace{1em} $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$
6: \hspace{1em} $\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t$
7: \hspace{1em} return μ_t, Σ_t

1: \textbf{Algorithm Bayes filter}($\text{bel}(x_{t-1}), u_t, z_t$):
2: \hspace{1em} for all x_t do
3: \hspace{2em} $\text{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) \text{bel}(x_{t-1}) \, dx$ \textbf{Predict Step}
4: \hspace{2em} $\text{bel}(x_t) = \eta p(z_t | x_t) \text{bel}(x_t)$ \textbf{Update Step}
5: \hspace{1em} endfor
6: \hspace{1em} return $\text{bel}(x_t)$
Instead: Rasterization
Instead: Rasterization

"Pixel Frustum"
“Cull” Gaussians with less than 99% confidence relative to view frustum

Slide adopted from 6.980 – ML for Inverse Graphics – Vincent Sitzmann
Step 1: Transform Gaussians into Camera Coordinates

Cam2world is affine mapping $\phi(x) = Wx + p$:

$$G_{V_k'}(\varphi^{-1}(u) - t_k) = \frac{1}{|W^{-1}|} G_{V_k'}(u - u_k) = r'_k(u)$$
Step 1: Transform Gaussians into Camera Coordinates

Cam2world is affine mapping $\phi(x) = Wx + p$:

$$G_{V_k'}(\varphi^{-1}(u) - t_k) = \frac{1}{|W^{-1}|}G_{V_k'}(u - u_k) = r_k'(u)$$

Projection $m(u)$ is not an affine mapping :/

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = m(u) = \begin{pmatrix} u_0 / u_2 \\ u_1 / u_2 \\ \| (u_0, u_1, u_2)^T \| \end{pmatrix}$$

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = m^{-1}(x) = \begin{pmatrix} x_0 / l \cdot x_2 \\ x_1 / l \cdot x_2 \\ 1 / l \cdot x_2 \end{pmatrix}$$
Step 1: Transform Gaussians into Camera Coordinates

Cam2world is affine mapping \(\phi(x) = Wx + p \):

\[
G_{V_k'}(\phi^{-1}(u) - t_k) = \frac{1}{|W^{-1}|} G_{V_k'}(u - u_k) = r'_k(u)
\]

Projection \(m(u) \) is not an affine mapping :/

\[
\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2
\end{pmatrix} = m(u) = \begin{pmatrix}
 u_0 / u_2 \\
 u_1 / u_2 \\
 ||(u_0, u_1, u_2)^T||
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u_0 \\
 u_1 \\
 u_2
\end{pmatrix} = m^{-1}(x) = \begin{pmatrix}
 x_0 / l \cdot x_2 \\
 x_1 / l \cdot x_2 \\
 1 / l \cdot x_2
\end{pmatrix},
\]

But can approximate with first-order Taylor Expansion as:

\[
m_{u_k}(u) = x_k + J_{u_k} \cdot (u - u_k)
\]

\[
J_{u_k} = \frac{\partial m}{\partial u}(u_k)
\]

Slide adopted from 6.8980 – ML for Inverse Graphics – Vincent Sitzmann
Propagating a Gaussian through a Linear Model
Propagating a Gaussian through a Non-Linear Model
Linearizing the Non-Linear Model
Throwback: The Extended Kalman Filter Algorithm

Algorithm Extended Kalman filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

1. $\bar{\mu}_t = g(u_t, \mu_{t-1})$
2. $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
3. $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
4. $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
5. $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
6. return μ_t, Σ_t

<table>
<thead>
<tr>
<th>state prediction (Line 2)</th>
<th>Kalman filter</th>
<th>EKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_t \mu_{t-1} + B_t u_t$</td>
<td>$g(u_t, \mu_{t-1})$</td>
<td></td>
</tr>
<tr>
<td>$C_t \bar{\mu}_t$</td>
<td>$h(\bar{\mu}_t)$</td>
<td></td>
</tr>
</tbody>
</table>
Step 1: Transform Gaussians into Camera Coordinates

Cam2world is affine mapping $\phi(x) = \mathbf{W}x + \mathbf{p}$:

$$G_{V_k'}(\varphi^{-1}(\mathbf{u}) - t_k) = \frac{1}{|\mathbf{W}^{-1}|} G_{V_k'}(\mathbf{u} - \mathbf{u}_k) = r_k'(\mathbf{u})$$

Projection $m(\mathbf{u})$ is not an affine mapping :/

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = m(\mathbf{u}) = \begin{pmatrix} u_0 / u_2 \\ u_1 / u_2 \\ \|u_0, u_1, u_2\|^T \end{pmatrix}$$

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = m^{-1}(\mathbf{x}) = \begin{pmatrix} x_0 / l \cdot x_2 \\ x_1 / l \cdot x_2 \\ 1 / l \cdot x_2 \end{pmatrix},$$

But can approximate with first-order Taylor Expansion as:

$$m_{u_k}(\mathbf{u}) = x_k + \mathbf{J}_{u_k} \cdot (\mathbf{u} - \mathbf{u}_k) \quad \mathbf{J}_{u_k} = \frac{\partial m}{\partial \mathbf{u}}(\mathbf{u}_k)$$

Step 1: Transform Gaussians into Camera Coordinates

But can approximate with first-order Taylor Expansion as:

$$m_{u_k}(u) = x_k + J_{u_k} \cdot (u - u_k)$$

$$J_{u_k} = \frac{\partial m}{\partial u}(u_k)$$
Step 1: Transform Gaussians into Camera Coordinates

But can approximate with first-order Taylor Expansion as:

\[m_{uk}(u) = x_k + J_{uk} \cdot (u - u_k) \quad J_{uk} = \frac{\partial m}{\partial u}(u_k) \]

Projected, 2D Gaussians are then:

\[\frac{1}{|W^{-1}| |J^{-1}|} \mathcal{G}_{V_k}(x - x_k) \]

\[V_k \quad = \quad J V_k' J^T \]
\[= \quad J W V_k'' W^T J^T. \]
Step 1: Transform Gaussians into Camera Coordinates

But can approximate with first-order Taylor Expansion as:

\[m_{u_k}(u) = x_k + J_{u_k} \cdot (u - u_k) \quad J_{u_k} = \frac{\partial m}{\partial u}(u_k) \]

Projected, 2D Gaussians are then:

\[\frac{1}{|\mathbf{W}^{-1}||\mathbf{J}^{-1}|} \mathbf{G}_V \mathbf{k}(\mathbf{x} - \mathbf{x}_k) \]

\[\mathbf{V}_k = \mathbf{J} \mathbf{V}_k' \mathbf{J}^T \]
\[= \mathbf{J} \mathbf{W} \mathbf{V}_k'' \mathbf{W}^T \mathbf{J}^T. \]

Finally, can integrate along rays:

\[q_k(\hat{x}) = \int_{\mathbb{R}} \frac{1}{|\mathbf{J}^{-1}||\mathbf{W}^{-1}|} \mathbf{G}_V \mathbf{k}(\hat{x} - \hat{x}_k, x_2 - x_{k2}) \, dx_2 \]
\[= \frac{1}{|\mathbf{J}^{-1}||\mathbf{W}^{-1}|} \mathbf{G}_V \mathbf{k}(\hat{x} - \hat{x}_k). \]
Can compute volume rendering integral without ever sampling a single 3D point in space!

\[C = \sum_{i \in N} c_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j), \]

where \(c_i \) is the color of each point and \(\alpha_i \) is given by evaluating a 2D Gaussian with covariance \(\Sigma \) [Yifan et al. 2019] multiplied with a learned per-point opacity.
Projected 3D Gaussian makes 2D Gaussian!

Any problems for inverse graphics, though...?

\[C = \sum_{i \in \mathcal{N}} c_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j), \]

where \(c_i \) is the color of each point and \(\alpha_i \) is given by evaluating a 2D Gaussian with covariance \(\Sigma \) [Yifan et al. 2019] multiplied with a learned per-point opacity.
Problem: Local minima...
Fix 1: Start from SFM point cloud.
Fix 2: Heuristic *pruning* and *spawning* operations

Slide adopted from 6.980 – ML for Inverse Graphics – Vincent Sitzmann
Timelapse of the Optimization
(NeRF-Synthetic Dataset)
All interactive sessions are recorded at 1080p with an A6000
CS231A
Computer Vision: From 3D Reconstruction to Recognition

Next lecture:
Guest Lecture by Adam Harley on Visual Tracking