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e Review calibration and 2D transformations
e Vanishing points and lines

e Estimating geometry from a single image
e Extensions

Reading:
[HZ] Chapter 2 “Projective Geometry and Transformation in 2D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”

[HZ] Chapter 8 “More Single View Geometry”
[Hoeim & Savarese] Chapter 2
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Calibration Problem
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Once the camera is calibrated...
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-Internal parameters K are known
-R, T are known - but these can only relate C to the calibration rig

Can | estimate P from the measurement p from a single image?

No - in general ® (P can be anywhere along the line defined by C and p)



Recovering structure from a single view

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl



Transformation in 2D

-Isometries
-Similarities
-Affinity

-Projective



Transformation in 2D

X R ¢ X X
Isometries: y' :[o J y|=H_|y| [Eq.4]
[Euclideans] B 1 i | 1 _ u 1 _

- Preserve distance (areas)
-3 DOF
- Regulate motion

of rigid object
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Transformation in 2D

x SR ¢ o o
Similarities: y' o= o 1 =H|
1 1 1
g_| 0 |[Eq. 5]
O =
- Preserve
- ratio of lengths
- angles —
-4 DOF




Transformation in 2D

Affinities: y' =[A t} y|=H,|y
N B 1| k.6l
A — a1 Aypp s, O
“la, a,, =R(6)-R(—¢)-D-R(9) Dz{o . }
[Eq. 7] ’




Transformation in 2D

X A 1 X X
Affinities: y' =[ }y =H, |y
N B 1| k.6l
A — d;p A, s, O
= | =ROREHDR@) D:[o S}
[Eq. 7] ’
-Preserve:

- Parallel lines

- Ratio of areas

- Ratio of lengths on
collinear lines

- others...
-6 DOF

A




Transformation in 2D

Affinities: y' =[A t} y|=H,|y
N B 1| k.6l
A — a1 Aypp s, O
“la, a,, =R(6)-R(—¢)-D-R(9) Dz{o . }
[Eq. 7] ’

A=UDVT=UVTVDVT = (UVT) (V )(D) (VT)



Transformation in 2D

X A ¢ X X
jective: = —H [Eq. 3]
Projective: ? b} T 5 T q

- 8 DOF

- Preserve:

- collinearity

- and a few others...
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Reading:
[HZ] Chapter 2 “Projective Geometry and Transformation in 2D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”

[HZ] Chapter 8 “More Single View Geometry”
[Hoeim & Savarese] Chapter 2
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Lines in a 2D plane

ax +by+c=0

a

I=|b

C

If x=[x,%,]" €l

Y

~ [Eq. 10]



Lines in a 2D plane

Y

Intersecting lines I
X =1x1" [Eq. 11] E 1

Proof

Ix1'11 —>UAx1Y-1=0 —>xel [Eq.12]
IxI' L1 —=UAx1)1=0 —>xel" [Eq. 13]

X

— X is the intersection point



2D Points at infinity (ideal points)
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Let’s intersect two parallel lines: — [ x ["oc|l—qg | = X [Eq.13]
Q0
i 0 | = ideal point!

* In Euclidian coordinates this point is at infinity
 Agree with the general idea of two lines intersecting at infinity



2D Points at infinity (ideal points)

X1 —alb=—a'lb |-
X=X, |,X;#0

RN
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Note: the line | = [a b c]" pass trough the ideal point X_ =[b -a O]
-
"x, =la b ¢]|-a|=0 [Eq. 15]
0

So does the linel’ sinceab’=a’b




Lines infinity 1_

Set of ideal points lies on a line called the line at infinity.
How does it look like?
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Indeed: |x,| {0|=0 ) 0
0| [1 1

A line at infinity can be thought of the set of “directions” of lines in the plane



Projective transformation of a point at infinity

At
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p': H p is it a point at infinity?
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Projective transformation of a line (in 2D)
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Points and planes in 3D
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[Eq. 22] [Eq. 23]



Lines in 3D

* Lines have 4 degrees of freedom - hard to
represent in 3D-space

* Can be defined as intersection of 2 planes

d = direction of the line
=[a, b, c]"



Points at infinity in 3D

Points where parallel lines intersect in 3D
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Vanishing points

The projective projection of a point at infinity into the image
plane defines a vanishing point.

point at infinity

world .

Parallel lines
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Vanishing points and directions

d
d = direction of the IinX\
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[Eq. 24] HK M H [Eq. 25]
Proof: [ a ] ] )
|| M - a
X, = .| —— v=MX_=K[I 0]| ? |-K]| b
C
0 o] L°




Vanishing (horizon) line

Image



Example of horizon line
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The orange line is the horizon!



Are these two lines parallel or not?

. Recognlhon helps reconsiruction!

C Humans have learnt this
. 42\“ RS-/ R \;j;-:?hk'
REA ; IR

i %&w 12 -{"r‘sﬁ'ﬂ

AR N L
- Recognize the horizon line

- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are // in 3D



Vanishing points and planes

n=K'l

[Eq. 27]

horiz

See sec. 8.6.2 [HZ] for details




Planes at infinity

o O O

1

plane at infinity

* Parallel planes intersect at infinity in a common line -
the line at infinity

* A set of 2 or more lines at infinity defines the plane at
infinity IT



Angle between 2 vanishing points
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f =90 —

w=(KK")"
[Eq. 30]
! =0
VOV, = [Eq. 29]

Scalar equation



Properties of

w =(KK')" M=K[ R T ]
[Eq. 30]

l. o= 0, O, . symmetric and known up scale

@, =0

2. m,=0 zero-skew 3. o =0,

square pixel



Summary

V= K d n = KTlhoriz
[Eq. 24] [Eq. 27]
g v @V, 6=90 [~
COSO = T T —> Vl Q V2 — O
\/Vl DV, \/Vzw v,
[Eq. 28] [Eq. 29]
Useful to: w=(KK")"
Eq. 30
 To calibrate the camera [Eq. 30]

* To estimate the geometry of the 3D world
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e Estimating geometry from a single image

Reading:
[HZ] Chapter 2 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”

[HZ] Chapter 8 “More Single View Geometry”
[Hoeim & Savarese] Chapter 2
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Single view calibration - example

0 T
N cos@ = MEAP
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4 [Eq. 29]
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) = (K K ) K has 5 degrees of freedom and Eq.29
g is a scalar equation ®




[Eq. 28]

Single view calibration - example

T
vV, Vv,

cos@ =
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e Square pixels
* No skew

[Eqs. 31]

Single view calibration - example
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e Square pixels @, =0
* No skew @, = O,

[Eqs. 31]

Single view calibration - example

w, 0 o,

= 0 w w;s

known up to scale

w, s O
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Single view calibration - example

w, 0 o,

w= 0 w

w, s O

* Square pixels N @, =0
* No skew O, = o,
(
T —
| vyov,=0
™ T - :
g < V@V, = 0 Once wis calculc;ted_,lwe get K:
Vv, vy, =0

(Cholesky factorization; HZ pag 582)



Single view reconstruction - example

[Eq. 27]
K known S n= KTl = Scene plane orientation in

horiz the camera reference system

Select orientation discontinuities



Single view reconstruction - example

Recover the structure within the camera reference system

Notice: the actual scale of the scene is NOT recovered

 Recognition helps reconstruction!
* Humans have learnt this
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e Extensions

Reading:
[HZ] Chapter 2 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”

[HZ] Chapter 8 “More Single View Geometry”
[Hoeim & Savarese] Chapter 2

Lecture 4 -

Silvio Savarese & Jeanette Bohg



Criminisi & Zisserman, 99
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http://www.robots.ox.ac.uk/~vegg/projects/SingleView/models/merton/merton.wrl



Criminisi & Zisserman, 99

http://www.robots.ox.ac.uk/~vegg/projects/SingleView/models/merton/merton.wrl






La Trinita' (1426)
Firenze, Santa Maria
Novella; by Masaccio
(1401-1428)



http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl




Single view reconstruction - drawbacks
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Manually select:
* Vanishing points and lines;
* Planar surfaces;

* Occluding boundaries;

* Etc..



Automatic Photo Pop-up

Hoiem et al, 05




Automatic Photo Pop-up

Hoiem et al, 05...




Automatic Photo Pop-up

Hoiem et al, 05...

Software:

http://www.cs.uiuc.edu/homes/dhoiem/projects/software.html



Make3D

Saxena, Sun, Ng, 05...

Training Prediction

Plane Parameter MRF

Pla| X, vy . R 0) H frleg| X v, Ry 6)

va aoojlyig Ric Ry)

%

(a) (b)
youtube Connectivity  Co-Planarity



http://www.youtube.com/watch?v=33oHekQipTg

Make3D

Saxena, Sun, Ng, 05...

A software: Make3D
“Convert your image into 3d model”

http://make3d.stanford.edu/
http://make3d.cs.cornell.edu/



Depth map reconstruction using deep learning
Figen et al., 2014

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network,
Eigen, D., Puhrsch, C. and Fergus, R. Proc. Neural Information Processing Systems 2014,



3D Layout estimation

Dasgupta, et al. CVPR 2016
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3D Layout estimation
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Coherent object detection and scene

layout estimation from a single image
Bao, et al., CVPR 2010, BMVC 2010




Next lecture:

Multi-view geometry (epipolar geometry)



Appendix



