Lecture 4 Single View Metrology

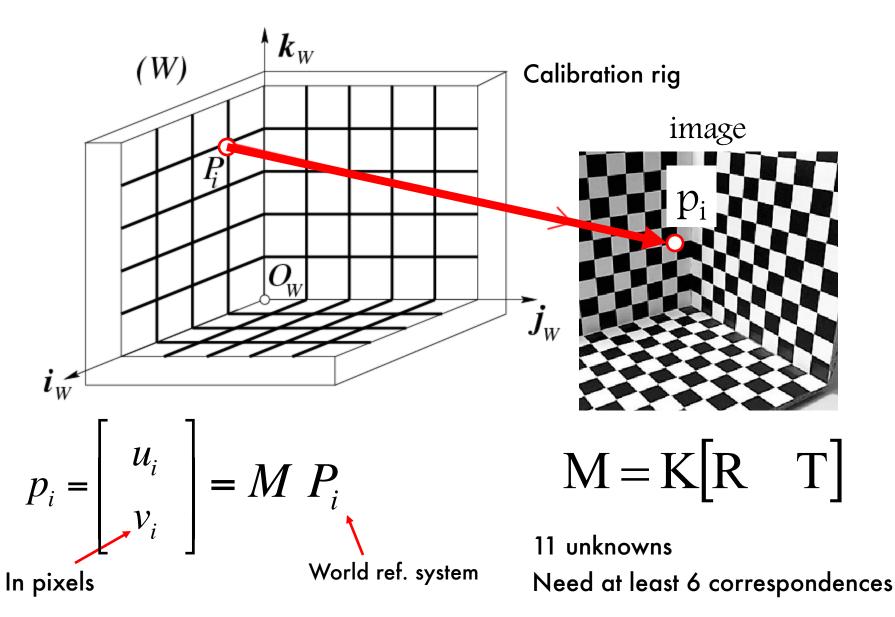
Professor Silvio Savarese

Computational Vision and Geometry Lab

Lecture 4 Single View Metrology

- Review calibration and 2D transformations
- Vanishing points and lines
- Estimating geometry from a single image
- Extensions

Reading:


[HZ] Chapter 2 "Projective Geometry and Transformation in 2D"

[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"

[HZ] Chapter 8 "More Single View Geometry"

[Hoeim & Savarese] Chapter 2

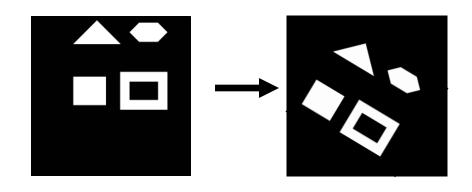
Calibration Problem

Once the camera is calibrated...

- -Internal parameters K are known
- -R, T are known but these can only relate C to the calibration rig
 - Can I estimate P from the measurement p from a single image?
 - No in general (a) (P can be anywhere along the line defined by C and p)

Recovering structure from a single view

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

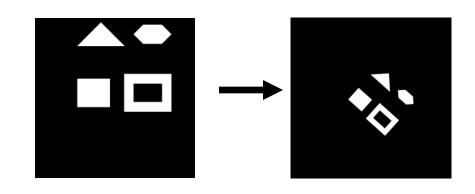

- -Isometries
- -Similarities
- -Affinity
- -Projective

Isometries:

[Euclideans]

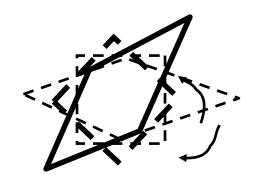
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_e \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 [Eq. 4]

- Preserve distance (areas)
- 3 DOF
- Regulate motion of rigid object



Similarities:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} SR & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

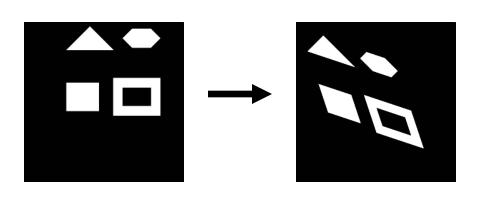
$$S = \left[\begin{array}{cc} s & 0 \\ 0 & s \end{array} \right]$$


[Eq. 5]

- Preserve
 - ratio of lengths
 - angles
- -4 DOF

Affinities:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_a \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 [Eq. 6]

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{bmatrix} = \mathbf{R}(\boldsymbol{\theta}) \cdot \mathbf{R}(-\boldsymbol{\phi}) \cdot \mathbf{D} \cdot \mathbf{R}(\boldsymbol{\phi}) \quad \mathbf{D} = \begin{bmatrix} \mathbf{s}_{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{y} \end{bmatrix}$$
[Eq. 7]

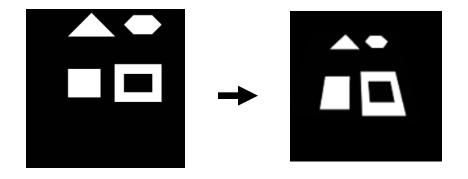


Affinities:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_a \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 [Eq. 6]

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = R(\boldsymbol{\theta}) \cdot R(-\boldsymbol{\phi}) \cdot D \cdot R(\boldsymbol{\phi}) \quad D = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$
[Eq. 7]

-Preserve:

- Parallel lines
- Ratio of areas
- Ratio of lengths on collinear lines
- others...
- 6 DOF


Affinities:
$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix} = H_a \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$
 [Eq. 6]

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{bmatrix} = \mathbf{R}(\boldsymbol{\theta}) \cdot \mathbf{R}(-\boldsymbol{\phi}) \cdot \mathbf{D} \cdot \mathbf{R}(\boldsymbol{\phi}) \quad \mathbf{D} = \begin{bmatrix} \mathbf{s}_{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{y} \end{bmatrix}$$
[Eq. 7]

$$A = UDV^{T} = UV^{T}VDV^{T} = (UV^{T})(V)(D)(V^{T})$$

Projective:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ v & b \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_p \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 [Eq. 8]

- 8 DOF
- Preserve:
 - collinearity
 - and a few others...

Lecture 4 Single View Metrology

- Review calibration and 2D transformations
- Vanishing points and lines
- Estimating geometry from a single image
- Extensions

Reading:

[HZ] Chapter 2 "Projective Geometry and Transformation in 2D"

[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"

[HZ] Chapter 8 "More Single View Geometry"

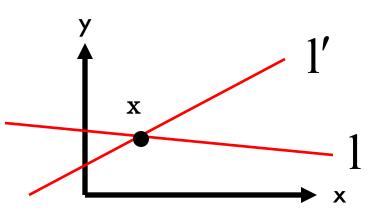
[Hoeim & Savarese] Chapter 2

Lines in a 2D plane

$$ax + by + c = 0$$

$$1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

If
$$x = [x_1, x_2]^T \in I$$


$$\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}^1 \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

[Eq. 10]

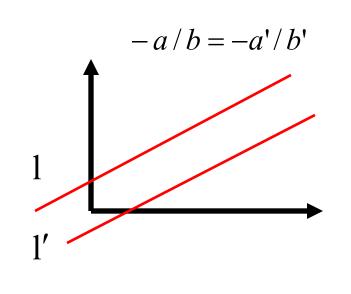
Lines in a 2D plane

Intersecting lines

$$x = 1 \times 1'$$
 [Eq. 11]

Proof

$$1 \times 1' \perp 1 \longrightarrow (1 \times 1') \cdot 1 = 0 \longrightarrow x \in l \quad \text{[Eq. 12]}$$


$$1 \times 1' \perp 1' \longrightarrow (1 \times 1') \cdot 1' = 0 \longrightarrow x \in l' \quad \text{[Eq. 13]}$$

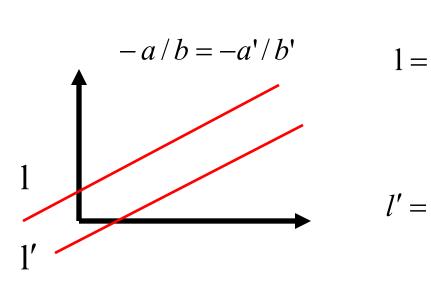
→ x is the intersection point

2D Points at infinity (ideal points)

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}, \mathbf{x}_3 \neq \mathbf{0}$$

$$x_{\infty} = \begin{bmatrix} x'_1 \\ x'_2 \\ 0 \end{bmatrix}$$

$$1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$


$$l' = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$

Let's intersect two parallel lines:

- In Euclidian coordinates this point is at infinity
- Agree with the general idea of two lines intersecting at infinity

2D Points at infinity (ideal points)

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}, \mathbf{x}_3 \neq \mathbf{0}$$

Note: the line $I = [a \ b \ c]^T$ pass trough the ideal point $\mathcal{X}_{\infty} = [b \ -a \ 0]^T$

$$1^{\mathrm{T}} x_{\infty} = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} b \\ -a \\ 0 \end{bmatrix} = 0 \quad [Eq. 15]$$

So does the line I' since ab' = a'b

Lines infinity 1_{∞}

Set of ideal points lies on a line called the line at infinity. How does it look like?

$$\mathbf{1}_{\infty} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$x'_{\infty} = \begin{bmatrix} b' \\ -a' \\ 0 \end{bmatrix}$$

$$x'_{\infty} = \begin{bmatrix} b'' \\ -a'' \\ 0 \end{bmatrix}$$

$$x'_{\infty} = \begin{bmatrix} b'' \\ -a'' \\ 0 \end{bmatrix}$$

$$\mathbf{1}_{\infty}$$

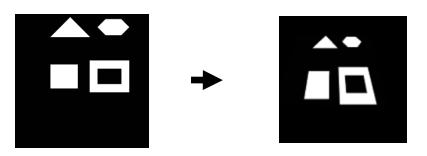
A line at infinity can be thought of the set of "directions" of lines in the plane

Projective transformation of a point at infinity

$$H = \begin{bmatrix} A & t \\ v & b \end{bmatrix}$$

$$p' = H p$$

is it a point at infinity?


$$H p_{\infty} = ? = \begin{bmatrix} A & t \\ v & b \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} p'_{x} \\ p'_{y} \\ p'_{z} \end{bmatrix} \dots no!$$
[Eq. 17]

$$H_{A} p_{\infty} = ? = \begin{bmatrix} A & t \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} p'_{x} \\ p'_{y} \\ 0 \end{bmatrix}$$
 An affine transformation of a point at infinity is still a point at infinity

An affine

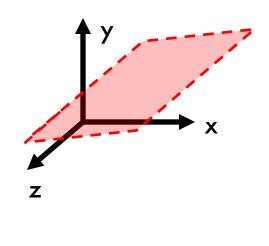
Projective transformation of a line (in 2D)

$$H = \begin{bmatrix} A & t \\ v & b \end{bmatrix}$$

$$1' = H^{-T} 1$$
[Eq. 19]

$$H^{-T} 1_{\infty} = ? = \begin{vmatrix} A \\ v \end{vmatrix}$$

is it a line at infinity?


[Eq. 19]
$$H^{-T} \mathbf{1}_{\infty} = ? = \begin{bmatrix} A & t \\ v & b \end{bmatrix}^{-T} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ b \end{bmatrix} \dots \text{nol}$$
[Eq. 20]

$$\mathbf{H}_{A}^{-T} \ \mathbf{1}_{\infty} = ? \qquad = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix}^{-T} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} A^{-T} & 0 \\ -t^{T}A^{-T} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
[Eq. 21]

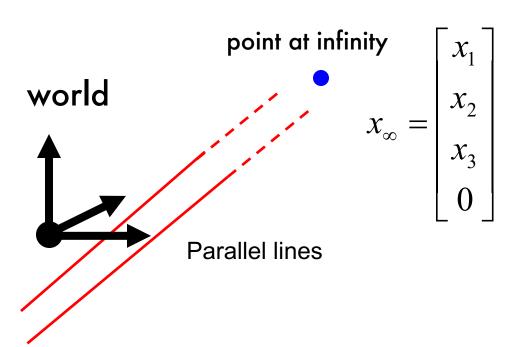
Points and planes in 3D

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ 1 \end{bmatrix}$$

$$\Pi = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

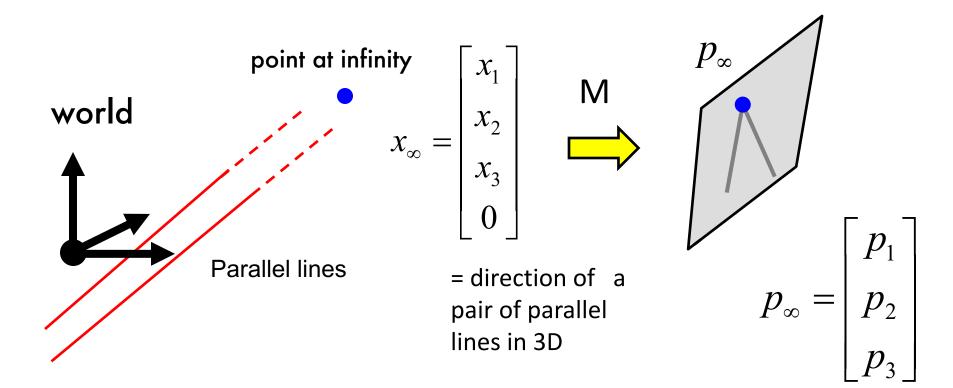
$$x \in \Pi \Leftrightarrow x^T \Pi = 0$$
[Eq. 22]

$$ax + by + cz + d = 0$$
[Eq. 23]

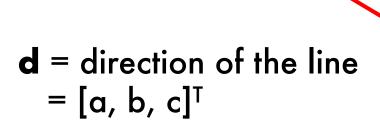

Lines in 3D

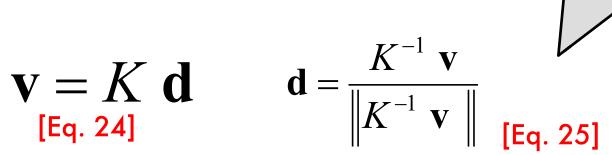
- Lines have 4 degrees of freedom hard to represent in 3D-space
- Can be defined as intersection of 2 planes

$$\mathbf{d}$$
 = direction of the line
= $[a, b, c]^T$

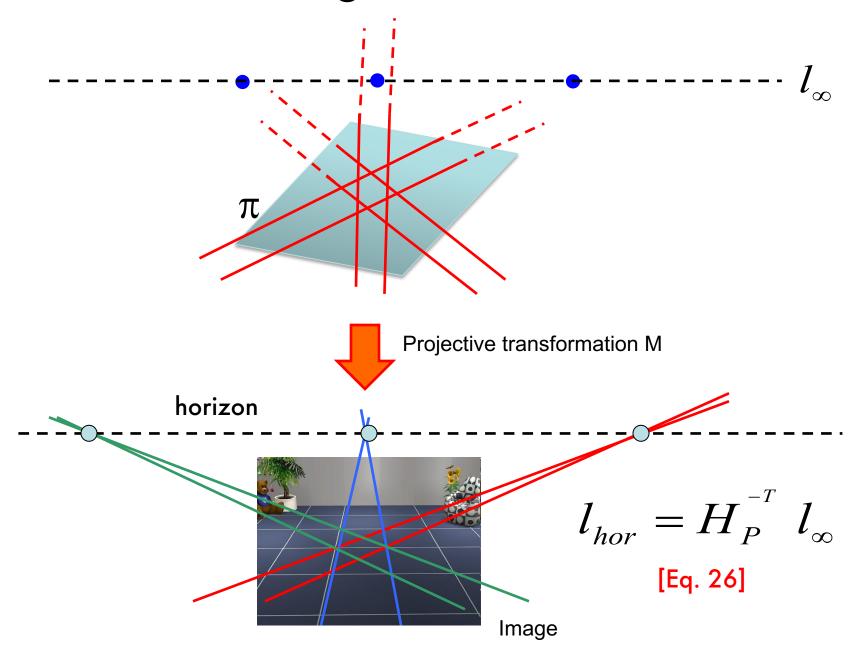

Points at infinity in 3D

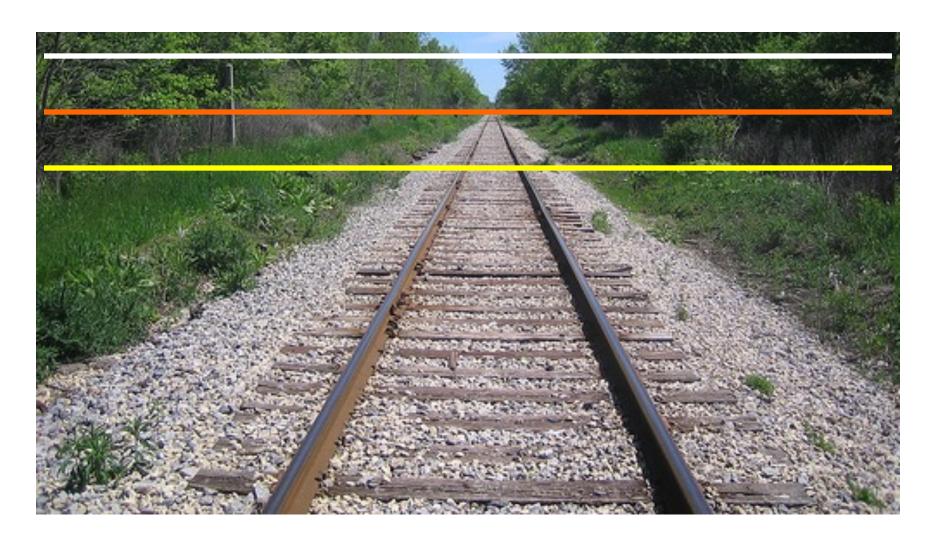
Points where parallel lines intersect in 3D




Vanishing points

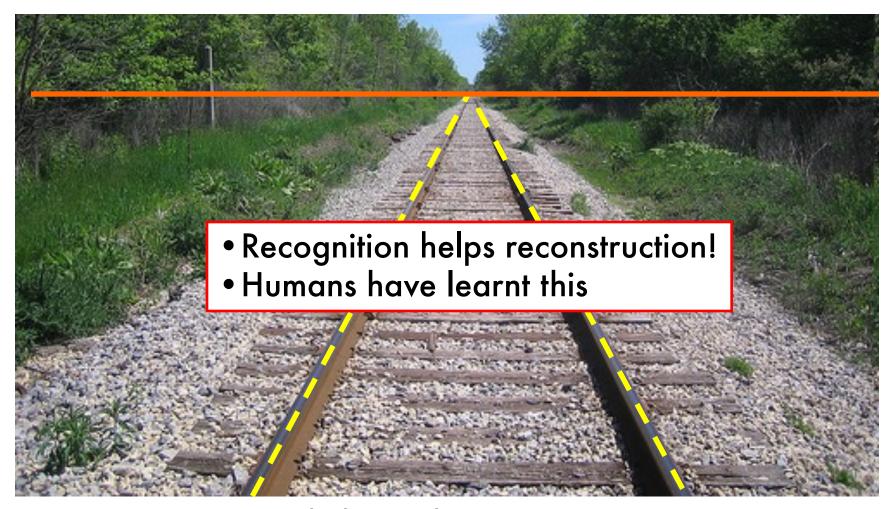
The projective projection of a point at infinity into the image plane defines a vanishing point.


Vanishing points and directions

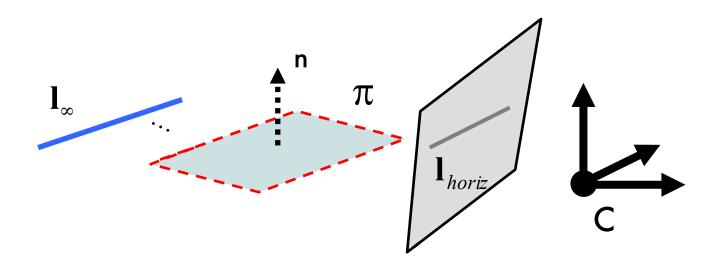


Proof:
$$X_{\infty} = \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix} \xrightarrow{\mathbf{M}} \mathbf{v} = \mathbf{M} \mathbf{X}_{\infty} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix} = \mathbf{K} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

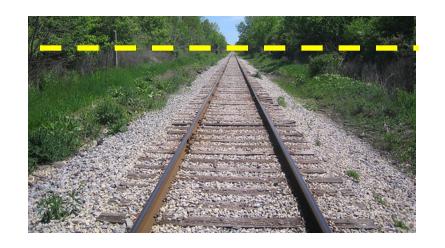
Vanishing (horizon) line



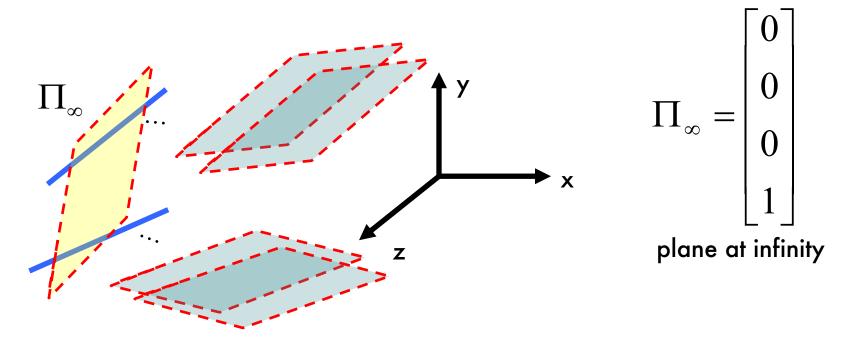
Example of horizon line


The orange line is the horizon!

Are these two lines parallel or not?

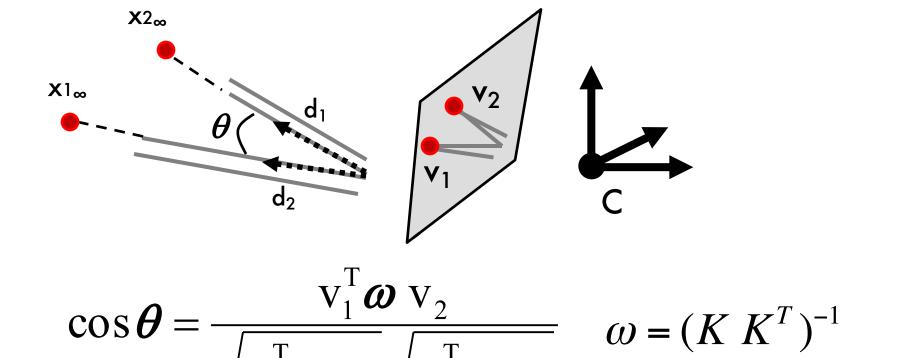

- Recognize the horizon line
- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are // in 3D

Vanishing points and planes



$$\mathbf{n} = \mathbf{K}^{\mathrm{T}} \mathbf{l}_{\mathrm{horiz}}$$
[Eq. 27]

See sec. 8.6.2 [HZ] for details



Planes at infinity

- Parallel planes intersect at infinity in a common line –
 the line at infinity
- A set of 2 or more lines at infinity defines the plane at infinity Π_{∞}

Angle between 2 vanishing points

If
$$\theta = 90 \rightarrow V_1^T \omega V_2 = 0$$
 [Eq. Scalar equation

[Eq. 30]

Properties of ω

$$\omega = (K K^T)^{-1} \qquad M = K \begin{bmatrix} R & T \end{bmatrix}$$
[Eq. 30]

$$M = K \begin{bmatrix} R & T \end{bmatrix}$$

1.
$$\omega = \begin{bmatrix} \omega_1 & \omega_2 & \omega_4 \\ \omega_2 & \omega_3 & \omega_5 \\ \omega_4 & \omega_5 & \omega_6 \end{bmatrix}$$
 symmetric and known up scale

2.
$$\omega_2 = 0$$
 zero-skew

2.
$$\omega_2 = 0$$
 zero-skew 3. $\omega_1 = 0$ square pixel

Summary

$$\mathbf{v} = K \mathbf{d}$$
[Eq. 24]

$$\mathbf{n} = \mathbf{K}^{\mathrm{T}} \mathbf{l}_{\mathrm{horiz}}$$
[Eq. 27]

 $\omega = (K K^T)^{-1}$ [Eq. 30]

$$\cos \boldsymbol{\theta} = \frac{\mathbf{v}_{1}^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_{2}}{\sqrt{\mathbf{v}_{1}^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_{1}} \sqrt{\mathbf{v}_{2}^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_{2}}} \xrightarrow{\boldsymbol{\theta} = 90} \mathbf{v}_{1}^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_{2} = \mathbf{0}$$
[Eq. 28] [Eq. 29]

Useful to:

- To calibrate the camera
- To estimate the geometry of the 3D world

Lecture 4 Single View Metrology

- Review calibration
- Vanishing points and line
- Estimating geometry from a single image
- Extensions

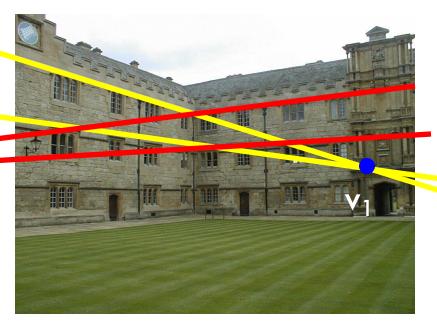
Reading:

[HZ] Chapter 2 "Projective Geometry and Transformation in 3D"

[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"

[HZ] Chapter 8 "More Single View Geometry"

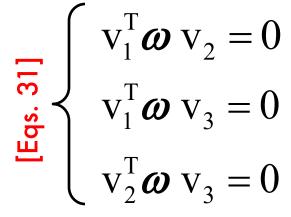
[Hoeim & Savarese] Chapter 2

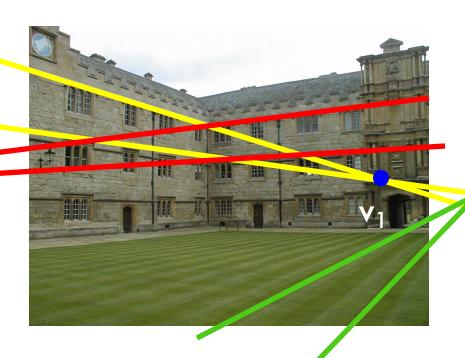

Single view calibration - example

$$\cos \boldsymbol{\theta} = \frac{\mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_2}{\sqrt{\mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_1} \sqrt{\mathbf{v}_2^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_2}}$$

 V_2

$$\theta = 90^{\circ}$$


$$\begin{cases} \mathbf{v}_{1}^{T}\boldsymbol{\omega} \ \mathbf{v}_{2} = 0 \\ \boldsymbol{\omega} = (K \ K^{T})^{-1} \end{cases}$$



Do we have enough constraints to estimate K? K has 5 degrees of freedom and Eq.29 is a scalar equation 🕾

Single view calibration - example

$$\cos \boldsymbol{\theta} = \frac{\mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_2}{\sqrt{\mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_1} \sqrt{\mathbf{v}_2^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_2}}$$

Single view calibration - example


$$oldsymbol{\omega} = egin{bmatrix} oldsymbol{\omega}_1 & oldsymbol{\omega}_2 & oldsymbol{\omega}_2 & oldsymbol{\omega}_3 & oldsymbol{\omega}_5 \ oldsymbol{\omega}_4 & oldsymbol{\omega}_5 & oldsymbol{\omega}_6 \end{bmatrix}^{rac{\Phi}{\Phi_0}}$$

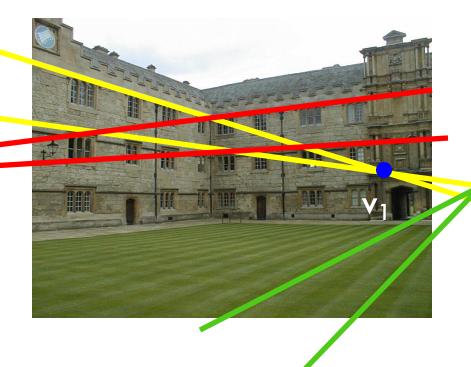
- Square pixels No skew $\boldsymbol{\omega}_{1} = \boldsymbol{\omega}_{2} = 0$ $\boldsymbol{\omega}_{1} = \boldsymbol{\omega}_{3}$

$$\omega_2 = 0$$

$$\omega_1 = \omega_3$$

$$\begin{cases} \mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \ \mathbf{v}_2 = 0 \\ \mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \ \mathbf{v}_3 = 0 \\ \mathbf{v}_2^{\mathrm{T}} \boldsymbol{\omega} \ \mathbf{v}_3 = 0 \end{cases}$$

Single view calibration - example


$$\omega = \begin{bmatrix} \omega_1 & 0 & \omega_4 \\ 0 & \omega_1 & \omega_5 \end{bmatrix} \begin{bmatrix} \omega_1 & \omega_2 \\ \omega_4 & \omega_5 & \omega_6 \end{bmatrix}$$

 V_2

Square pixels No skew
$$\boldsymbol{\omega}_2 = 0$$
 $\boldsymbol{\omega}_1 = \boldsymbol{\omega}_3$

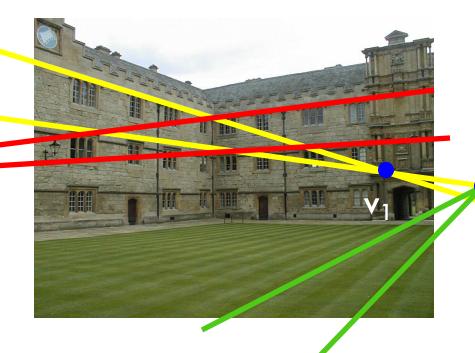
$$\omega_1 = \omega_3$$

$$\begin{cases} \mathbf{v}_{1}^{T}\boldsymbol{\omega} \ \mathbf{v}_{2} = 0 \\ \mathbf{v}_{1}^{T}\boldsymbol{\omega} \ \mathbf{v}_{3} = 0 \\ \mathbf{v}_{2}^{T}\boldsymbol{\omega} \ \mathbf{v}_{3} = 0 \end{cases}$$

 \rightarrow Compute ω !

Single view calibration - example

$$\omega = \begin{bmatrix} \omega_1 & 0 & \omega_4 \\ 0 & \omega_1 & \omega_5 \\ \omega_4 & \omega_5 & \omega_6 \end{bmatrix}$$

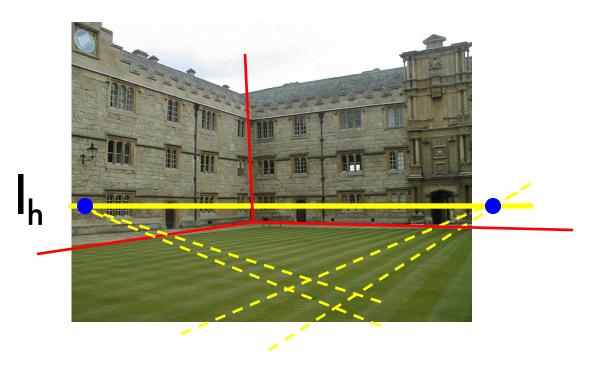

$$V_2$$

Square pixels No skew
$$\boldsymbol{\omega}_2 = 0$$
 $\boldsymbol{\omega}_1 = \boldsymbol{\omega}_3$

$$\omega_2 = 0$$

$$\omega_1 = \omega_3$$

$$\begin{cases} \mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \ \mathbf{v}_2 = 0 \\ \mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \ \mathbf{v}_3 = 0 \\ \mathbf{v}_2^{\mathrm{T}} \boldsymbol{\omega} \ \mathbf{v}_3 = 0 \end{cases}$$

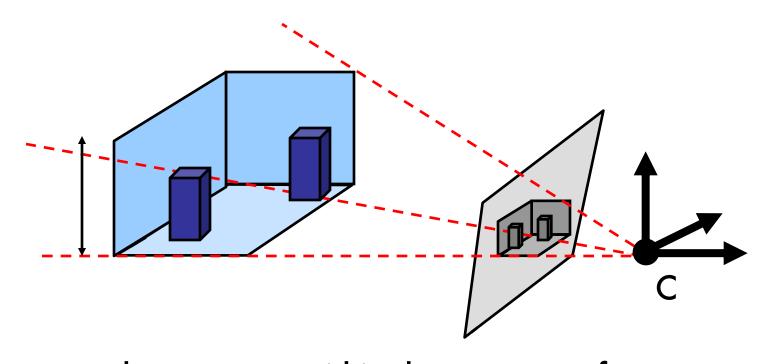


Once ω is calculated, we get K:

$$\omega = (K K^T)^{-1} \longrightarrow K$$

(Cholesky factorization; HZ pag 582)

Single view reconstruction - example


[Eq. 27]

K known
$$\rightarrow$$
 $\mathbf{n} = \mathbf{K}^T \mathbf{I}_{\text{horiz}}$ = Scene plane orientation in the camera reference system.

the camera reference system

Select orientation discontinuities

Single view reconstruction - example

Recover the structure within the camera reference system

Notice: the actual scale of the scene is NOT recovered

- Recognition helps reconstruction!Humans have learnt this

Lecture 4 Single View Metrology

- Review calibration
- Vanishing points and lines
- Estimating geometry from a single image
- Extensions

Reading:

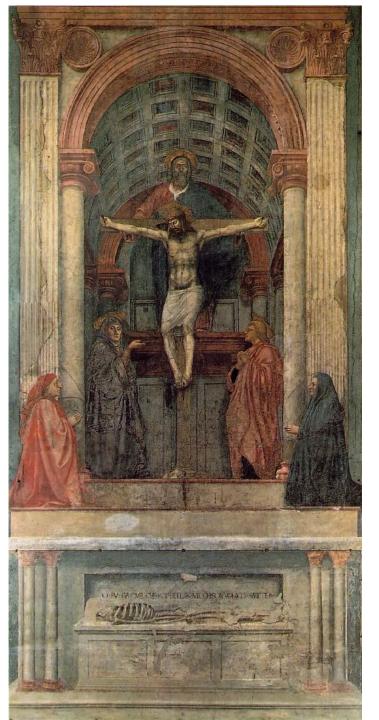
[HZ] Chapter 2 "Projective Geometry and Transformation in 3D"

[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"

[HZ] Chapter 8 "More Single View Geometry"

[Hoeim & Savarese] Chapter 2

Criminisi & Zisserman, 99

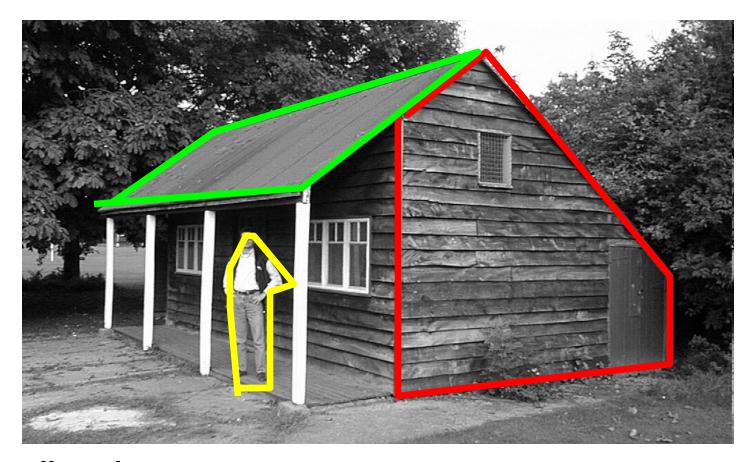


http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl

Criminisi & Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl

La Trinita' (1426)
Firenze, Santa Maria
Novella; by Masaccio
(1401-1428)



La Trinita' (1426)
Firenze, Santa Maria
Novella; by Masaccio
(1401~1428)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Single view reconstruction - drawbacks

Manually select:

- Vanishing points and lines;
- Planar surfaces;
- Occluding boundaries;
- Etc..

Automatic Photo Pop-up

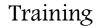
Hoiem et al, 05

Automatic Photo Pop-up

Hoiem et al, 05...

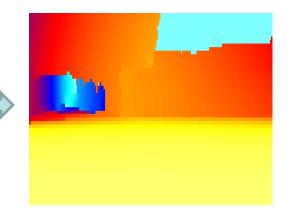
Automatic Photo Pop-up

Hoiem et al, 05...

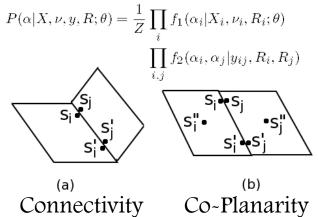


Software:

http://www.cs.uiuc.edu/homes/dhoiem/projects/software.html


Make3D

Saxena, Sun, Ng, 05...



Prediction

Plane Parameter MRF

<u>youtube</u>

Make3D

Saxena, Sun, Ng, 05...

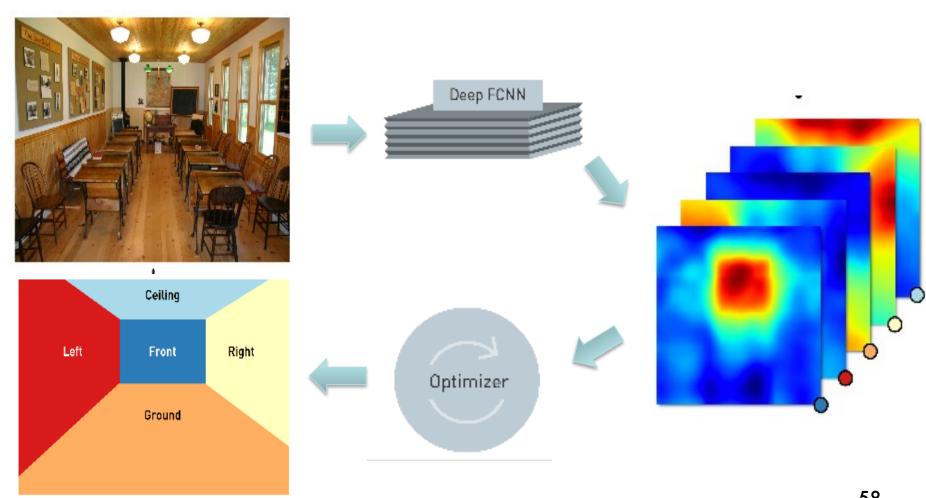
A software: Make3D

"Convert your image into 3d model"

http://make3d.stanford.edu/

http://make3d.cs.cornell.edu/

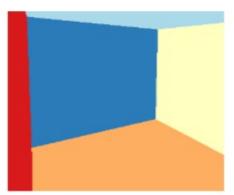
Depth map reconstruction using deep learning

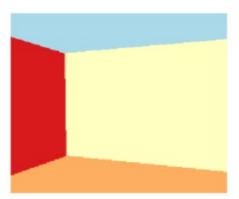

Eigen et al., 2014

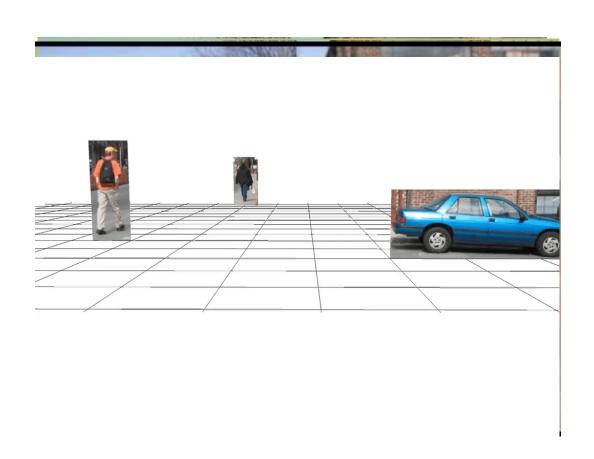
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, Eigen, D., Puhrsch, C. and Fergus, R. Proc. Neural Information Processing Systems 2014,

3D Layout estimation

Dasgupta, et al. CVPR 2016




3D Layout estimation



Coherent object detection and scene layout estimation from a single image

Bao, et al., CVPR 2010, BMVC 2010

Next lecture:

Multi-view geometry (epipolar geometry)

Appendix