Lecture 7
Multi-view geometry

• The SFM problem
• Affine SFM
• Perspective SFM
• Self-calibration
• Applications

Reading:
[HZ] Chapter 10 “3D reconstruction of cameras and structure”
Chapter 18 “N-view computational methods”
Chapter 19 “Auto-calibration”

[FP] Chapter 13 “projective structure from motion”
[Szelisky] Chapter 7 “Structure from motion”
Affine structure from motion
(simpler problem)

From the $m \times n$ observations x_{ij}, estimate:
• m projection matrices M_i (affine cameras)
• n 3D points X_j
Affine structure from motion
(simpler problem)

For the affine case (in Euclidean space)

\[x_{ij} = A_i X_j + b_i \]
[Eq. 4]

Image 1

World point \(X_i \)

Image i

2x1 2x3 3x1 2x1
The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method
A factorization method – Tomasi & Kanade algorithm

- Data centering
- Factorization
A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 5] \[\bar{x}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]

[Eq. 6] \[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]
A factorization method - Centering the data

Centering: subtract the centroid of the image points

$$\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} A_i X_k - \frac{1}{n} \sum_{k=1}^{n} b_i$$ \[Eq. 6\]

$$x_{ik} = A_i X_k + b_i$$ \[Eq. 4\]

$$\bar{x}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik}$$ \[Eq. 5\]
A factorization method - Centering the data

Centering: subtract the centroid of the image points

\[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} A_i X_k - \frac{1}{n} \sum_{k=1}^{n} b_i \]

\[x_{ik} = A_i X_k + b_i \]

\[\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \] [Eq. 7]

Centroid of 3D points
A factorization method - Centering the data

Thus, after centering, each normalized observed point is related to the 3D point by

$$\hat{X}_{ij} = A_i \hat{X}_j \quad [\text{Eq. 8}]$$

$$\bar{X}_i = \frac{1}{n} \sum_{k=1}^{n} X_{ik}$$

Centroid of 3D points

$$\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \quad [\text{Eq. 7}]$$
A factorization method - Centering the data

If the centroid of points in 3D = center of the world reference system

\[\hat{X}_{ij} = A_i \hat{X}_j = A_i X_j \]

[Eq. 9]

\[\bar{X}_i = \frac{1}{n} \sum_{k=1}^{n} X_{ik} \]

Centroid of 3D points

\[\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \]

[Eq. 7]
A factorization method - factorization

Let’s create a \(2m \times n\) data (measurement) matrix:

\[
\mathbf{D} = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix}
\]

Each \(\hat{x}_{ij}\) entry is a 2x1 vector!
A factorization method - factorization

Let’s create a $2m \times n$ data (measurement) matrix:

$$D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}$$

(points $3 \times n$)

cameras

(2 $m \times 3$)

Each \hat{X}_{ij} entry is a 2x1 vector!

A_i is 2x3 and X_i is 3x1

The measurement matrix $D = M S$ has rank 3

(it’s a product of a 2mx3 matrix and 3xn matrix)
Factorizing the Measurement Matrix

How to factorize D?

$$D = MS$$
Factorizing the Measurement Matrix

- By computing the Singular value decomposition of D!

\[D = U \times W \times V^T \]
Since rank \((D) = 3\), there are only 3 non-zero singular values \(\sigma_1\), \(\sigma_2\) and \(\sigma_3\).

Factorizing the Measurement Matrix

Where

\[
W_3 = \begin{bmatrix}
\sigma_1 & 0 & 0 \\
0 & \sigma_2 & 0 \\
0 & 0 & \sigma_3
\end{bmatrix}
\]

[Eq. 11]
Factorizing the Measurement Matrix

\[D = U_3 \times W_3 \times V_3^T \]
Factorizing the Measurement Matrix

\[D = U_3 \begin{pmatrix} W_3 & V_3^T \end{pmatrix} = U_3 \begin{pmatrix} W_3 & V_3^T \end{pmatrix} = M S \quad [\text{Eq. 12}] \]
Factorizing the Measurement Matrix

\[D = U_3 \, W_3 \, V_3^T = U_3 \, (W_3 \, V_3^T) = M \, S \] [Eq. 12]

What is the issue here? \(D \) has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When \(D \) has a rank greater than 3, \(U_3 \, W_3 \, V_3^T \) is the best possible rank-3 approximation of \(D \) in the sense of the Frobenius norm.

\[
\begin{align*}
D &= U_3 \, W_3 \, V_3^T \\
&= \begin{cases}
M \approx U_3 \\
S \approx W_3 \, V_3^T
\end{cases}
\end{align*}
\]

\[
\|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2}
\]
Reconstruction results

Affine Ambiguity

\[D = M S \]
Affine Ambiguity

- The decomposition is not unique. We get the same \(D \) by applying the transformations:

\[
\begin{align*}
M^* &= M H \\
S^* &= H^{-1} S
\end{align*}
\]

where \(H \) is an arbitrary 3x3 matrix describing an affine transformation.

- Additional constraints must be enforced to resolve this ambiguity.
Affine Ambiguity

Affine

\[S^* = H^{-1}S \]

\[A^* = AH \]

\[A'^* = A'H \]
The Affine Structure-from-Motion Problem

Given m images of n fixed points X_j we can write

$$x_{ij} = A_i X_j + b_i$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$

N. of cameras N. of points

Problem: estimate m matrices A_i, m matrices b_i

and the n positions X_j from the $m \times n$ observations x_{ij}.

How many equations and how many unknown?

$2m \times n$ equations in $8m + 3n - 8$ unknowns
Similarity Ambiguity

• The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)

• This is called **metric reconstruction**

• The ambiguity exists even for (intrinsically) calibrated cameras
• For calibrated cameras, the similarity ambiguity is the **only** ambiguity

[Longuet-Higgins ’81]
Similarity Ambiguity

- It is impossible, based on the images alone, to estimate the absolute scale of the scene
Resolving the similarity ambiguity

While calibrating a camera, we make assumptions about the geometry of the world.
Lecture 7
Multi-view geometry

• The SFM problem
• Affine SFM
• Perspective SFM
• Self-calibration
• Applications
Structure from motion problem

From the \(m \times n \) observations \(x_{ij} \), estimate:

- \(m \) projection matrices \(M_i \)
- \(n \) 3D points \(X_j \)

\(\text{motion} \)

\(\text{structure} \)
Structure from motion problem

m cameras $M_1...M_m$

$$M_i = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & 1 \end{bmatrix}$$
Structure from Motion Ambiguities

In the general case (nothing is known) the ambiguity is expressed by an arbitrary 4X4 projective transformation.

\[x_j = M_i X_j \]

\[M_i = K_i [R_i \quad T_i] \]

\[H X_j \]

\[M_j H^{-1} \]

\[x_j = M_i X_j = \left(M_i H^{-1} \right) \left(H X_j \right) \]
The Structure-from-Motion Problem

Given m images of n fixed points X_j we can write

$$x_{ij} = M_i X_j$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Problem: estimate m 3×4 matrices M_i and n positions X_j from $m \times n$ observations x_{ij}.

- If the cameras are not calibrated, cameras and points can only be recovered up to a 4×4 projective (where the 4×4 projective is defined up to scale)
- Given two cameras, how many points are needed?
- How many equations and how many unknowns?

$2m \times n$ equations in $11m + 3n - 15$ unknowns
Projective Ambiguity

$S =$
Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called **self-calibration**
Structure-from-Motion methods

1. Recovering structure and motion up to perspective ambiguity
 - Algebraic approach (by fundamental matrix)
 - Factorization method (by SVD)
 - Bundle adjustment

2. Resolving the perspective ambiguity
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Algebraic approach (2-view case)

From at least 8 point correspondences, compute F associated to camera 1 and 2.

For $j = 1, \ldots, n$

\[x_{1j} = M_1 X_j \]
\[x_{2j} = M_2 X_j \]
1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Algebraic approach (2-view case)

Because of the projective ambiguity, we can always apply a projective transformation H such that:

$$M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix}$$ \hspace{2cm} [Eq. 3]

Canonical perspective camera

$$M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix}$$ \hspace{2cm} [Eq. 4]

$$x_{1j} = M_1 X_j$$

$$x_{2j} = M_2 X_j$$

For $j = 1, \ldots, n$

N. of points
Algebraic approach (2-view case)

- Call X a generic 3D point x_{ij}
- Call x and x' the corresponding observations to camera 1 and respectively

\[
\begin{align*}
\tilde{M}_1 &= M_1 H^{-1} = \begin{bmatrix} 1 & 0 \\ \end{bmatrix} \quad \text{x} = M_1 X = M_1 H^{-1} H X = [I|0]\tilde{X} \quad \text{[Eq. 6]} \\
\tilde{M}_2 &= M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} \quad \text{x'} = M_2 X = M_2 H^{-1} H X = [A|b]\tilde{X} \\
\tilde{X} &= H X \\
x' = [A|b]\tilde{X} = [A|b] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \end{bmatrix} = A[I|0] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \end{bmatrix} + b = A[I|0] \tilde{X} + b = A x + b \quad \text{[Eq. 7]} \\
x' \times b = (A x + b) \times b = A x \times b \quad \text{[Eq. 8]} \\
x'^T \cdot (x' \times b) = x'^T \cdot (A x \times b) = 0 \quad \text{[Eq. 9]} \\
x'^T (b \times A x) = 0 \quad \text{[Eq. 10]}
\end{align*}
\]

\[\text{[Eqs. 5]}\]
Cross product as matrix multiplication

\[\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a} \times] \mathbf{b} \]
Algebraic approach (2-view case)

\[
\begin{align*}
\tilde{M}_1 &= M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} \\
\tilde{M}_2 &= M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} \\
\tilde{X} &= H X
\end{align*}
\]

\[x = M_1 H^{-1} H X = [I | 0] \tilde{X} \quad \text{[Eq. 6]}\]

\[x' = M_2 H^{-1} H X = [A | b] \tilde{X} \]

\[\begin{align*}
x'^T (b \times A x) &= 0 \quad \text{[Eq. 10]} \\
x'^T \begin{bmatrix} b \times \end{bmatrix} A x &= 0 \quad \text{is this familiar?} \\
F &= [b \times] A
\end{align*}\]

\[x'^TFx = 0 \quad \text{fundamental matrix!}\]
Compute cameras

\[x'^T F x = 0 \quad F = [b_x] A = b \times A \quad \text{[Eq. 11]} \]

Compute \(b \):

• Let’s consider the product \(F b \)

\[F \cdot b = [b_x] A \cdot b = b \times A \cdot b = 0 \quad \text{[Eq. 12]} \]

• Since \(F \) is singular, we can compute \(b \) as least sq. solution of \(F b = 0 \), with \(|b| = 1\) using SVD

• Using a similar derivation, we have that \(b^T F = 0 \) \(\text{[Eq. 12-bis]} \)
Compute cameras

\[x'^T F x = 0 \quad F = [b_x] A \]

\[\begin{cases} F b = 0 \quad [\text{Eq. 12}] \\ b^T F = 0 \quad [\text{Eq. 12-bis}] \end{cases} \]

Compute \(A \):

- Define: \(A' = -[b_x] F \)

- Let’s verify that \([b_x] A' \) is equal to \(F \):

Indeed:

\[[b_x] A' = -[b_x] [b_x] F = -(b b^T - |b|^2 I) F = -b b^T F + |b|^2 F = 0 + 1 \cdot F = F \]

- Thus, \(A = A' = -[b_x] F \)

\[\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad \tilde{M}_2 = \begin{bmatrix} - & [b_x] F & b \end{bmatrix} \]

[Eq. 13]
Interpretation of \mathbf{b}

\[\mathbf{x}'^T \mathbf{F} \mathbf{x} = 0 \quad \mathbf{F} = [\mathbf{b} \times] \mathbf{A} \]

[Eq. 11]

\[\begin{cases} \mathbf{F} \mathbf{b} = 0 \quad [\text{Eq. 12}] \\ \mathbf{b}^T \mathbf{F} = 0 \quad [\text{Eq. 12-bis}] \end{cases} \]

What's \mathbf{b}??
F x₂ is the epipolar line associated with x₂ (l₁ = F x₂)
Fᵀ x₁ is the epipolar line associated with x₁ (l₂ = Fᵀ x₁)
F is singular (rank two)
\[F e₂ = 0 \quad \text{and} \quad Fᵀ e₁ = 0 \]
F is 3x3 matrix; 7 DOF
Interpretation of \mathbf{b}

\[\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0 \quad \mathbf{F} = [\mathbf{b}_x] \mathbf{A} \]

\[\begin{cases} \mathbf{F} \mathbf{b} = 0 \\ \mathbf{b}^T \mathbf{F} = 0 \end{cases} \]

[Eq. 11]

\[\mathbf{b} \text{ is an epipole!} \]

\[\tilde{\mathbf{M}}_1 = \begin{bmatrix} \mathbf{I} & 0 \end{bmatrix} \quad \tilde{\mathbf{M}}_2 = \begin{bmatrix} - [\mathbf{b}_x] \mathbf{F} & \mathbf{b} \end{bmatrix} \]

\[\tilde{\mathbf{M}}_1 = \begin{bmatrix} \mathbf{I} & 0 \end{bmatrix} \quad \tilde{\mathbf{M}}_2 = \begin{bmatrix} - [\mathbf{e}_x] \mathbf{F} & \mathbf{e} \end{bmatrix} \]

[Eq. 15]

[Eq. 16]
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (e.g., 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Triangulation

For \(j = 1, \ldots, n \)

\[
X_j^1 = \tilde{M}_2 \tilde{X}_j
\]

\[
X_j^2 = \tilde{M}_1 \tilde{X}_j
\]

\[
\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix}
\]

\[
\tilde{M}_2 = \begin{bmatrix} -[e_x]F & e \end{bmatrix}
\]

3D points can be computed from camera matrices via SVD (see page 312 of HZ for details)
Algebraic approach: the N-views case

- From I_k and $I_h \rightarrow \tilde{M}_k, \tilde{M}_h, \tilde{X}_{[k,h]}$

- Pairwise solutions may be combined together using bundle adjustment

3D points associated to point correspondences available between I_k and I_h
Structure-from-Motion Algorithms

• Algebraic approach (by fundamental matrix)
• Factorization method (by SVD)
• Bundle adjustment
Limitations of the approaches so far

• Factorization methods assume all points are visible. This not true if:
 • occlusions occur
 • failure in establishing correspondences

• Algebraic methods work with 2 views
Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizes re-projection error

\[
E(M, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2
\]

Reconstructed \(X_j \)

ground truth \(X_j \)
General Calibration Problem

\[E(M, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2 \]

- **Newton Method**
- **Levenberg-Marquardt Algorithm**
 - Iterative, starts from initial solution
 - May be slow if initial solution far from real solution
 - Estimated solution may be function of the initial solution
 - Newton requires the computation of J, H
 - Levenberg-Marquardt doesn't require the computation of H
Bundle adjustment

• **Advantages**
 • Handle large number of views
 • Handle missing data

• **Limitations**
 • Large minimization problem (parameters grow with number of views)
 • Requires good initial condition

• Used as the final step of SFM (i.e., after the factorization or algebraic approach)
• Factorization or algebraic approaches provide a initial solution for optimization problem
Lecture 7
Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
Self-calibration

- **Self-calibration** is the problem of recovering the metric reconstruction from the perspective (or affine) reconstruction
- We can self-calibrate the camera by making some assumptions about the cameras
Self-calibration

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

[HZ] Chapters 19 “Auto-calibration”
Inject information about the camera during the bundle adjustment optimization

For calibrated cameras, the similarity ambiguity is the only ambiguity [Longuet-Higgins '81]
Lecture 7

Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
Structure from motion problem

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99
Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown & Lowe, 04
Schindler et al., 04
Lourakis & Argyros, 04
Colombo et al. 05
Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC , 2010
Pandey et al. ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10
Reconstruction and texture mapping

M. Pollefeys et al 98–
Incremental reconstruction of construction sites

Initial pair – 2168 & Complete Set 62,323 points, 160 images

Golparvar-Fard, Pena-Mora, Savarese 2008
The registration of images (08.27.08) within the reconstructed scene + Site photos of the Student Dining and Residence Hall project in Champaign, IL. Images courtesy of Turner Construction.
Reconstructed scene + Site photos
Results and applications

Next lecture

• Fitting and Matching
Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations
Projections of conics across views

\[X^T C_w X = 0 \quad \text{[Eq. 1]} \]

\[X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{bmatrix} \]

\[[e']_x C'^{-1} [e']_x = F C^{-1} F^T \quad \text{[Eq. 2]} \]
Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1

\[[e']_x \omega^{-1} [e']_x = F \omega^{-1} F^T \]

[Eq. 3]

\[\omega = (K K^T)^{-1} \]

[Eq. 4]

\[\omega' = (K' K'^T)^{-1} \]

[Eq. 5]
Kruppa equations

\[
\begin{pmatrix}
 u_2^T K' K'^T u_2 \\
 -u_1^T K' K'^T u_2 \\
 u_1^T K' K'^T u_1
\end{pmatrix}
\times
\begin{pmatrix}
 \sigma_1^2 v_1^T K K^T v_1 \\
 \sigma_1 \sigma_2 v_1^T K K^T v_2 \\
 \sigma_2^2 v_2^T K K^T v_2
\end{pmatrix} = 0
\]

[Eq. 6]

where \(u_i, v_i \) and \(\sigma_i \) are the columns and singular values of SVD of \(F \)

These give us two independent constraints in the elements of \(K \) and \(K' \)
Kruppa equations

Let's make the following assumption:

\[
\begin{pmatrix}
u_2^T K' K'^T u_2 \\
-u_1^T K' K'^T u_2 \\
u_1^T K' K'^T u_1
\end{pmatrix}
\times
\begin{pmatrix}
\sigma_1^2 v_1^T K K^T v_1 \\
\sigma_1 \sigma_2 v_1^T K K^T v_2 \\
\sigma_2^2 v_2^T K K^T v_2
\end{pmatrix} = 0
\]

\[
\frac{u_2^T K K^T u_2}{\sigma_1^2 v_1^T K K^T v_1} = \frac{-u_1^T K K^T u_2}{\sigma_1 \sigma_2 v_1^T K K^T v_2} = \frac{u_1^T K K^T u_1}{\sigma_2^2 v_2^T K K^T v_2}
\]

[Eq. 7]

Let’s make the following assumption: \(K' = K = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

[Eq. 8]

[Eq. 9] \(\alpha f^2 + \beta f + \gamma = 0 \quad \Rightarrow \quad f \)
Kruppa equations

[Faugeras et al. 92]

- Powerful if we want to self-calibrate 2 cameras with unknown focal length

- Limitations:
 - Work on a camera pair
 - Don’t work if $R=0$

\[
\begin{align*}
\text{[Eq. 10]} \quad [e']_\times \omega^{-1} [e']_\times &= F \omega^{-1} F^T \quad \text{becomes trivial} \\
\text{Since: } \quad F &= [e']_\times
\end{align*}
\]
Self-calibration

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach
Suppose we have a projective reconstruction \(\{ \tilde{M}_i, \tilde{X}_j \} \)

Let \(H \) be a homography such that:

\[
\begin{cases}
\text{First perspective camera is canonical: } & \tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad [\text{Eq. 11}] \\
\text{i}^{th} \text{ perspective reconstruction of the camera (known): } & \tilde{M}_i = \begin{bmatrix} A_i & b_i \end{bmatrix} \quad [\text{Eq. 12}]
\end{cases}
\]

\[
[A_i - b_i p^T] K_1 K_1^T (A_i - b_i p^T)^T = K_i K_i^T \quad i=2...m
\quad [\text{Eq. 13}]
\]

\[
H = \begin{bmatrix}
K_1 & 0 \\
-p^T K_1 & 1
\end{bmatrix}
\quad p \text{ is an unknown 3x1 vector}
\]

\[
K_1...K_m \text{ are unknown}
\]
Algebraic approach \hspace{1cm} Multi-view approach

Suppose we have a projective reconstruction

Let \mathbf{H} be a homography such that:

\[
\left\{ \begin{array}{l}
\text{First perspective camera is canonical: } \mathbf{\tilde{M}}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \quad \text{[Eq. 11]} \\
\text{i}^{\text{th}} \text{ perspective reconstruction of the camera (known): } \mathbf{\tilde{M}}_i = \begin{bmatrix} \mathbf{A}_i & \mathbf{b}_i \end{bmatrix} \\
\end{array} \right.
\]

\text{[Eq. 12]}

\[
\begin{align*}
\left(\mathbf{A}_i - \mathbf{b}_i \mathbf{p}^T \right) \mathbf{K}_1 \mathbf{K}_1^T \left(\mathbf{A}_i - \mathbf{b}_i \mathbf{p}^T \right)^T &= \mathbf{K}_i \mathbf{K}_i^T \\
\end{align*}
\]

\text{[Eq. 13]}

How many unknowns?
- 3 from \mathbf{p}
- 5 m from $\mathbf{K}_1...\mathbf{K}_m$

How many equations? 5 independent equations [per view]
Suppose we have a projective reconstruction

Let H be a homography such that:

\[
\begin{aligned}
 \text{First perspective camera is canonical: } & \quad \begin{bmatrix} \tilde{M}_1 \\ \end{bmatrix} = \begin{bmatrix} I & 0 \\ \end{bmatrix} \quad \text{[Eq. 11]} \\
 \text{i^{th} perspective reconstruction of the camera (known): } & \quad \begin{bmatrix} \tilde{M}_i \\ \end{bmatrix} = \begin{bmatrix} A_i & b_i \\ \end{bmatrix} \quad \text{[Eq. 12]}
\end{aligned}
\]

Assume all camera matrices are identical: $K_1 = K_2 \ldots = K_m$

\[
\begin{aligned}
 & \quad \text{[Eq. 15]} \quad \left(A_i - b_i p^T \right) K K^T \left(A_i - b_i p^T \right)^T = K K^T \\
 \text{How many unknowns?} & \quad \text{3 from } p \\
 & \quad \text{5 from } K \\
 \text{How many equations?} & \quad 5 \text{ independent equations [per view]}
\end{aligned}
\]

We need at least 3 views to solve the self-calibration problem
Algebraic approach

Art of self-calibration:
Use assumptions on Ks to generate enough equations on the unknowns

<table>
<thead>
<tr>
<th>Condition</th>
<th>$N. \text{ Views}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Constant internal parameters</td>
<td>3</td>
</tr>
<tr>
<td>• Aspect ratio and skew known</td>
<td>4</td>
</tr>
<tr>
<td>• Focal length and offset vary</td>
<td></td>
</tr>
<tr>
<td>• Skew =0, all other parameters vary</td>
<td>8</td>
</tr>
</tbody>
</table>

Issue: the larger is the number of view, the harder is the correspondence problem

Bundle adjustment helps!
SFM problem - summary

1. Estimate structure and motion up perspective transformation
 1. Algebraic
 2. factorization method
 3. bundle adjustment

2. Convert from perspective to metric (self-calibration)

3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints