Lecture 7

Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

Reading:

[HZ] Chapter 10 “3D reconstruction of cameras and structure”
Chapter 18 “N-view computational methods”
Chapter 19 “Auto-calibration”

[FP] Chapter 13 “projective structure from motion”
[Szelisky] Chapter 7 “Structure from motion”
Given m images of n fixed 3D points

\[\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]
From the $m \times n$ observations x_{ij}, estimate:

- m projection matrices M_i
- n 3D points X_j
Affine structure from motion
(simpler problem)

From the $m \times n$ observations x_{ij}, estimate:

- m projection matrices M_i (affine cameras)
- n 3D points X_j
Perspective

\[
x = M \mathbf{X} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} m_1 X \\ m_2 X \\ m_3 X \end{bmatrix}
\]

\[
x^E = (\frac{m_1 X}{m_3 X}, \frac{m_2 X}{m_3 X})^T
\]

Affine

\[
x = M \mathbf{X} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} m_1 X \\ m_2 X \\ 1 \end{bmatrix}
\]

\[
M = \begin{bmatrix} A & b \\ v & 1 \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}
\]

\[
x^E = (m_1 X, m_2 X)^T = \begin{bmatrix} A_{2x3} & b_{2x1} \end{bmatrix} \mathbf{X} = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = A X^E + b
\]

\[
X^E = \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]
Affine cameras

For the affine case (in Euclidean space)

\[x_{ij} = A_i X_j + b_i \]

[Eq. 4]
The Affine Structure-from-Motion Problem

Given \(m \) images of \(n \) fixed points \(\mathbf{X}_i \) we can write

\[
\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i \quad \text{for } i = 1, \ldots, m \text{ and } j = 1, \ldots, n
\]

\[
\begin{array}{c c}
\text{N. of cameras} & \text{N. of points} \\
\end{array}
\]

Problem: estimate \(m \) matrices \(\mathbf{A}_i \), \(m \) matrices \(\mathbf{b}_i \) and the \(n \) positions \(\mathbf{X}_i \) from the \(m \times n \) observations \(\mathbf{x}_{ij} \).

How many equations and how many unknown?

\(2m \times n \) equations in \(8m + 3n - 8 \) unknowns
The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method
The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method
A factorization method –
Tomasi & Kanade algorithm

• Data centering
• Factorization
A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 5] \(\bar{x}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \)

[Eq. 6] \(\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} \bar{x}_i \)
A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 6] \[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} A_i X_k - \frac{1}{n} \sum_{k=1}^{n} b_i \]

[Eq. 4] \[x_{ik} = A_i X_k + b_i \]

[Eq. 5] \[\bar{x}_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \]
A factorization method - Centering the data

Centering: subtract the centroid of the image points

\[\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} A_i X_k - \frac{1}{n} \sum_{k=1}^{n} b_i \]

\[x_{ik} = A_i X_k + b_i \]

\[\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \]

Centroid of 3D points
A factorization method - Centering the data

Thus, after centering, each normalized observed point is related to the 3D point by

\[
\hat{X}_{ij} = A_i \hat{X}_j \quad \text{[Eq. 8]}
\]

\[
\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \quad \text{[Eq. 7]}
\]

Centroid of 3D points
A factorization method - Centering the data

If the centroid of points in 3D = center of the world reference system

\[\hat{X}_{ij} = A_i \hat{X}_j = A_i X_j \]

[Eq. 9]

\[\bar{X}_i = \frac{1}{n} \sum_{k=1}^{n} X_{ik} \]

Centroid of 3D points

\[\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \]

[Eq. 7]
A factorization method - factorization

Let’s create a $2m \times n$ data (measurement) matrix:

$$D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix}$$

Each \hat{X}_{ij} entry is a 2×1 vector!
A factorization method - factorization

Let’s create a \(2m \times n\) data (measurement) matrix:

\[
\mathbf{D} = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix} \begin{bmatrix}
\mathbf{X}_1 \\
\mathbf{X}_2 \\
\vdots \\
\mathbf{X}_n
\end{bmatrix}
\]

[Eq. 10]

Each \(\hat{x}_{ij}\) entry is a 2x1 vector!

\(A_i\) is 2x3 and \(\mathbf{X}_i\) is 3x1

The measurement matrix \(\mathbf{D} = \mathbf{M} \mathbf{S}\) has rank 3

(it’s a product of a 2mx3 matrix and 3xn matrix)
Factorizing the Measurement Matrix

How to factorize D?

$D = MS$
Factorizing the Measurement Matrix

- By computing the Singular value decomposition of D!
Factorizing the Measurement Matrix

Since rank (D) = 3, there are only 3 non-zero singular values σ_1, σ_2 and σ_3.

$$W_3 = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$
[Eq. 11]
Factorizing the Measurement Matrix

\[\begin{align*}
 D & = U_3 \times W_3 \times V_3^T
\end{align*} \]
Factorizing the Measurement Matrix

\[D = U_3 \, W_3 \, V_3^T = U_3 \, (W_3 \, V_3^T) = M \, S \] \[\text{Eq. 12}\]
Factorizing the Measurement Matrix

\[D = U_3 W_3 V_3^T = U_3 (W_3 V_3^T) = M S \quad [\text{Eq. 12}] \]

What is the issue here? \(D \) has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When \(D \) has a rank greater than 3, \(U_3 W_3 V_3^T \) is the best possible rank-3 approximation of \(D \) in the sense of the Frobenius norm.

\[
\begin{align*}
D &= U_3 W_3 V_3^T \\
M &\approx U_3 \\
S &\approx W_3 V_3^T
\end{align*}
\]

\[
\|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2}
\]
Reconstruction results

Affine Ambiguity

\[D = M S \]
Affine Ambiguity

- The decomposition is not unique. We get the same D by applying the transformations:

$$M^* = M H$$

$$S^* = H^{-1} S$$

where H is an arbitrary 3x3 matrix describing an affine transformation

- Additional constraints must be enforced to resolve this ambiguity
Affine Ambiguity

$S^* = H^{-1}S$

$A^* = AH$

$A'^* = A'H$

Affine
The Affine Structure-from-Motion Problem

Given m images of n fixed points X_i we can write

$$x_{ij} = A_i X_j + b_i$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$

Problem: estimate m matrices A_i, m matrices b_i and the n positions X_i from the $m \times n$ observations x_{ij}.

How many equations and how many unknown?

$2m \times n$ equations in $8m + 3n - 8$ unknowns
Similarity Ambiguity

• The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)

• This is called metric reconstruction

• The ambiguity exists even for (intrinsically) calibrated cameras
• For calibrated cameras, the similarity ambiguity is the only ambiguity

[Longuet-Higgins ‘81]
Similarity Ambiguity

- It is impossible, based on the images alone, to estimate the absolute scale of the scene.
Lecture 7
Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
From the $m \times n$ observations x_{ij}, estimate:

- m projection matrices $M_i = \text{motion}$
- n 3D points $X_j = \text{structure}$
Structure from motion problem

m cameras M_1, \ldots, M_m

\[
M_i = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & b_1 \\
a_{21} & a_{22} & a_{23} & b_2 \\
a_{31} & a_{32} & a_{33} & 1
\end{bmatrix}
\]
In the general case (nothing is known) the ambiguity is expressed by an arbitrary 4x4 projective transformation:

\[
\begin{pmatrix}
 i & i \\
 i & i \\
 i & i \\
 i & i \\
\end{pmatrix}
\]

\[
x_j = M_i X_j = \left(M_i H^{-1} \right) \left(H X_j \right)
\]

\[
M_i = K_i \begin{bmatrix} R_i & T_i \end{bmatrix}
\]

\[
x_j = M_i X_j
\]
The Structure-from-Motion Problem

Given m images of n fixed points X_j we can write

$$x_{ij} = M_i X_j$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Problem: estimate m 3×4 matrices M_i and n positions X_j from $m \times n$ observations x_{ij}.

- If the cameras are not calibrated, cameras and points can only be recovered up to a 4×4 projective (where the 4×4 projective is defined up to scale)
- How many equations and how many unknowns?

$$2m \times n \text{ equations in } 11m + 3n - 15 \text{ unknowns}$$
Projective Ambiguity

S =

Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called **self-calibration**
Structure-from-Motion methods

1. Recovering structure and motion up to perspective ambiguity
 - Algebraic approach (by fundamental matrix)
 - Factorization method (by SVD)
 - Bundle adjustment

2. Resolving the perspective ambiguity
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Algebraic approach (2-view case)

From at least 8 point correspondences, compute F associated to camera 1 and 2.

For $j = 1, \ldots, n$,

\[
x_{1j} = M_1 X_j
\]
\[
x_{2j} = M_2 X_j
\]
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Because of the projective ambiguity, we can always apply a projective transformation H such that:

$$M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix}$$ \hspace{1cm} [Eq. 3] \hspace{1cm} \text{Canonical perspective camera}

$$M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix}$$ \hspace{1cm} [Eq. 4]

For $j = 1, \ldots, n$
Algebraic approach (2-view case)

- Call X a generic 3D point x_{ij}
- Call x and x' the corresponding observations to camera 1 and respectively

\[
\begin{align*}
\tilde{M}_1 &= M_1 H^{-1} = \begin{bmatrix} 1 & 0 \\ \end{bmatrix} \\
\tilde{M}_2 &= M_2 H^{-1} = \begin{bmatrix} A & b \\ \end{bmatrix} \\
\tilde{X} &= H X \\
x' &= [A | b] \tilde{X} = [A | b] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \\ \end{bmatrix} = A[I | 0] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \\ \end{bmatrix} + b = A[I | 0] \tilde{X} + b = Ax + b \\
\end{align*}
\]

\[x' \times b = (Ax + b) \times b = Ax \times b \quad [\text{Eq. 8}]\]

\[x'^T \cdot (x' \times b) = x'^T \cdot (Ax \times b) = 0 \quad [\text{Eq. 9}]\]

\[x'^T (b \times Ax) = 0 \quad [\text{Eq. 10}]\]
Cross product as matrix multiplication

\[
\mathbf{a} \times \mathbf{b} = \begin{bmatrix}
0 & -a_z & a_y \\
 a_z & 0 & -a_x \\
- a_y & a_x & 0
\end{bmatrix} \begin{bmatrix}
b_x \\
 b_y \\
 b_z
\end{bmatrix} = [\mathbf{a}_x] \mathbf{b}
\]
Algebraic approach (2-view case)

\[\begin{align*}
\tilde{M}_1 &= M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} \\
\tilde{M}_2 &= M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} \\
\tilde{X} &= H X
\end{align*} \]

\[\begin{align*}
x &= M_1 H^{-1} H X = [I | 0] \tilde{X} \\
x' &= M_2 H^{-1} H X = [A | b] \tilde{X}
\end{align*} \] [Eq. 6]

\[\begin{align*}
x'^T (b \times Ax) &= 0 \quad \text{[Eq. 10]} \\
x'^T [b \times] A x &= 0 \quad \text{is this familiar?}
\end{align*} \]

\[F = [b \times] A \]

\[x'^T F x = 0 \]

fundamental matrix!
Compute cameras

\[x'^T F x = 0 \quad F = [b_x]A = b \times A \quad [\text{Eq. 11}] \]

Compute \(b \):

- Let’s consider the product \(F b \)

\[F \cdot b = [b_x]A \cdot b = 0 \quad [\text{Eq. 12}] \]

- Since \(F \) is singular, we can compute \(b \) as least sq. solution of \(F b = 0 \), with \(|b| = 1 \) using SVD

- Using a similar derivation, we have that \(b^T F = 0 \) [Eq. 12-bis]
Compute cameras

\[
x'F = 0 \quad F = [b_x]A
\]

[Eq. 11]

Compute \(A \):

- Define: \(A' = -[b_x] F \)

- Let's verify that \([b_x]A'\) is equal to \(F \):

Indeed:
\[
[b_x]A' = -(b b^T - |b|^2 I) F = -b b^T F + |b|^2 F = 0 + 1 \cdot F = F
\]

[Eq. 12]

[Eq. 12-bis]

- Thus, \(A = A' = -[b_x] F \)

\[
\begin{align*}
\tilde{M}_1 &= \begin{bmatrix} I & 0 \end{bmatrix} & \tilde{M}_2 &= \begin{bmatrix} -[b_x] F & b \end{bmatrix}
\end{align*}
\]

[Eqs. 14]
Interpretation of b

\[x'^T F x = 0 \quad F = [b \times] A \]

\[[\text{Eq. 11}] \]

\[\begin{align*}
F b &= 0 \quad [\text{Eq. 12}] \\
b^T F &= 0 \quad [\text{Eq. 12-bis}]
\end{align*} \]

What’s b??
F \mathbf{x}_2 \text{ is the epipolar line associated with } \mathbf{x}_2 \ (l_1 = F \mathbf{x}_2)

F^T \mathbf{x}_1 \text{ is the epipolar line associated with } \mathbf{x}_1 \ (l_2 = F^T \mathbf{x}_1)

F \text{ is singular (rank two)}

\[F \mathbf{e}_2 = 0 \text{ and } F^T \mathbf{e}_1 = 0 \]

F \text{ is 3x3 matrix; 7 DOF}
Interpretation of b

\[x'^T F x = 0 \quad F = [b_x] A \]

\[F b = 0 \quad b^T F = 0 \]

\[\text{[Eq. 11]} \]

b is an epipole!

\[\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \]
\[\tilde{M}_2 = \begin{bmatrix} -[b_x] F & b \end{bmatrix} \]

\[\text{[Eq. 15]} \]

\[\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \]
\[\tilde{M}_2 = \begin{bmatrix} -[e_x] F & e \end{bmatrix} \]

\[\text{[Eq. 16]} \]
Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (e.g., 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D
Triangulation

For \(j = 1, \ldots, n \)

\[
x_{1j} = \tilde{M}_2 \tilde{X}_j
\]

\[
x_{2j} = \tilde{M}_1 \tilde{X}_j
\]

\[
\tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix}
\]

\[
\tilde{M}_2 = \begin{bmatrix} -[e_x]F & e \end{bmatrix}
\]

3D points can be computed from camera matrices via SVD (see page 312 of HZ for details)
Algebraic approach: the N-views case

- From I_k and I_h \(\rightarrow \tilde{M}_k, \tilde{M}_h, \tilde{X}_{[k,h]} \)

- Pairwise solutions may be combined together using bundle adjustment

3D points associated to point correspondences available between I_k and I_h
Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment
Limitations of the approaches so far

- **Factorization methods** assume all points are visible. This not true if:
 - occlusions occur
 - failure in establishing correspondences

- **Algebraic methods** work with 2 views

The bundle adjustment approach addresses some of these limitations
Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment
Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizes re-projection error

\[E(M, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2 \]
General Calibration Problem

\[E(M, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2 \]

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm

- Iterative, starts from initial solution
- May be slow if initial solution far from real solution
- Estimated solution may be function of the initial solution
- Newton requires the computation of J, H
- Levenberg-Marquardt doesn’t require the computation of H
Bundle adjustment

• **Advantages**
 • Handle large number of views
 • Handle missing data

• **Limitations**
 • Large minimization problem (parameters grow with number of views)
 • Requires good initial condition

• Used as the final step of SFM (i.e., after the factorization or algebraic approach)
• Factorization or algebraic approaches provide a initial solution for optimization problem
Lecture 7
Multi-view geometry

• The SFM problem
• Affine SFM
• Perspective SFM
• Self-calibration
• Applications
Self-calibration

- **Self-calibration** is the problem of recovering the metric reconstruction from the perspective (or affine) reconstruction.
- We can self-calibrate the camera by making some assumptions about the cameras.
Self-calibration

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach
Inject information about the camera during the bundle adjustment optimization.

For calibrated cameras, the similarity ambiguity is the only ambiguity [Longuet-Higgins ‘81].
Lecture 7
Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications
Structure from motion problem

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99
Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown & Lowe, 04
Schindler et al., 04
Lourakis & Argyros, 04
Colombo et al., 05
Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC, 2010
Pandey et al. ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10
Reconstruction and texture mapping

M. Pollefeys et al 98–
Incremental reconstruction of construction sites
Initial pair – 2168 & Complete Set 62,323 points, 160 images

Golparvar-Fard. Pena-Mora, Savarese 2008
The registration of images (08.27.08) within the reconstructed scene of the Student Dining and Residence Hall project in Champaign, IL. Images courtesy of Turner Construction.
Reconstructed scene + Site photos
Results and applications

Next lecture

• Active Stereo & Volumetric Stereo
Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations
Projections of conics across views

\[X^T C_w X = 0 \quad \text{[Eq. 1]} \]

\[X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{bmatrix} \]

\[[e']_x C'^{-1} [e']_x = F C^{-1} F^T \quad \text{[Eq. 2]} \]
Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1

\[\begin{aligned} [e']_x \omega'^{-1} [e']_x &= F \omega^{-1} F^T \\ \omega &= (K K^T)^{-1} \\ \omega' &= (K' K'^T)^{-1} \end{aligned} \]

[Eq. 3] [Eq. 4] [Eq. 5]
Kruppa equations

\[
\begin{pmatrix}
 u_2^T K' K'^T u_2 \\
 -u_1^T K' K'^T u_2 \\
 u_1^T K' K'^T u_1
\end{pmatrix}
\times
\begin{pmatrix}
 \sigma_1^2 v_1^T K K^T v_1 \\
 \sigma_1 \sigma_2 v_1^T K K^T v_2 \\
 \sigma_2^2 v_2^T K K^T v_2
\end{pmatrix} = 0 \quad \text{[Eq. 6]}
\]

where \(u_i, v_i\) and \(\sigma_i\) are the columns and singular values of SVD of F

These give us two independent constraints in the elements of K and K'
Kruppa equations

\[\begin{pmatrix} u_2^T K' K'^T u_2 \\ -u_1^T K' K'^T u_2 \\ u_1^T K' K'^T u_1 \end{pmatrix} \times \begin{pmatrix} \sigma_1^2 v_1^T K K^T v_1 \\ \sigma_1 \sigma_2 v_1^T K K^T v_2 \\ \sigma_2^2 v_2^T K K^T v_2 \end{pmatrix} = 0 \]

\[
\frac{u_2^T K K^T u_2}{\sigma_1^2 v_1^T K K^T v_1} = \frac{-u_1^T K K^T u_2}{\sigma_1 \sigma_2 v_1^T K K^T v_2} = \frac{u_1^T K K^T u_1}{\sigma_2^2 v_2^T K K^T v_2} \tag{Eq. 7}
\]

- Let’s make the following assumption: \(K' = K = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \) \tag{Eq. 8}

\[\alpha f^2 + \beta f + \gamma = 0 \quad \longrightarrow \quad f \] \tag{Eq. 9}
Kruppa equations

[Faugeras et al. 92]

- Powerful if we want to self-calibrate 2 cameras with unknown focal length

- Limitations:
 - Work on a camera pair
 - Don’t work if R=0

\[[e'] \omega^{-1} [e'] = F \omega^{-1} F^T \] becomes trivial

Since: \(F = [e']_x \)
Self-calibration

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

[HZ] Chapters 19 “Auto-calibration”
Suppose we have a projective reconstruction \(\{ \tilde{M}_i, \tilde{X}_j \} \)

Let \(H \) be a homography such that:

\[
\begin{align*}
\{ & \text{First perspective camera is canonical: } \tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad \text{[Eq. 11]} \\
& \text{i}^{th} \text{ perspective reconstruction of the camera (known): } \tilde{M}_i = \begin{bmatrix} A_i & b_i \end{bmatrix} \quad \text{[Eq. 12]} \\
\end{align*}
\]

[Eq. 13] \(\begin{pmatrix} A_i - b_i p^T \end{pmatrix} K_1 K_1^T \begin{pmatrix} A_i - b_i p^T \end{pmatrix}^T = K_i K_i^T \quad i=2\ldots m \)

[Eq. 14] \(H = \begin{bmatrix} K_1 & 0 \\ -p^T & 1 \end{bmatrix} \quad p \text{ is an unknown 3x1 vector} \\
K_1\ldots K_m \text{ are unknown} \)
Algebraic approach

Suppose we have a projective reconstruction

Let H be a homography such that:

\[
\begin{aligned}
\text{First perspective camera is canonical: } & \quad \tilde{\mathbf{M}}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad \text{[Eq. 11]} \\
\text{i}^{\text{th}} \text{ perspective reconstruction of the camera (known): } & \quad \tilde{\mathbf{M}}_i = \begin{bmatrix} A_i & b_i \end{bmatrix} \quad \text{[Eq. 12]}
\end{aligned}
\]

\[
\text{[Eq. 13]} \quad \left(A_i - b_i p^T \right) K_1 K_1^T \left(A_i - b_i p^T \right)^T = K_i \quad K_i^T \quad i=2...m
\]

How many unknowns?
- 3 from p
- 5 m from $K_1...K_m$

How many equations?
5 independent equations [per view]
Algebraic approach

Suppose we have a projective reconstruction

Let H be a homography such that:

\[
\begin{align*}
\begin{cases}
\text{First perspective camera is canonical: } & \tilde{M}_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad \text{[Eq. 11]} \\
\text{i}^{\text{th}} \text{ perspective reconstruction of the camera (known): } & \tilde{M}_i = \begin{bmatrix} A_i & b_i \end{bmatrix} \quad \text{[Eq. 12]}
\end{cases}
\end{align*}
\]

Assume all camera matrices are identical: \(K_1 = K_2 \ldots = K_m \)

\[
\left(A_i - b_i p^T \right) K \ K^T \left(A_i - b_i p^T \right)^T = K \ K^T \quad \text{i=2\ldots m} \quad \text{[Eq. 15]}
\]

How many unknowns?

- 3 from \(p \)
- 5 from \(K \)

How many equations?

5 independent equations [per view]

We need at least 3 views to solve the self-calibration problem
Algebraic approach

Art of self-calibration:
Use assumptions on Ks to generate enough equations on the unknowns

<table>
<thead>
<tr>
<th>Condition</th>
<th>N. Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Constant internal parameters</td>
<td>3</td>
</tr>
<tr>
<td>• Aspect ratio and skew known</td>
<td>4</td>
</tr>
<tr>
<td>• Focal length and offset vary</td>
<td></td>
</tr>
<tr>
<td>• Skew =0, all other parameters vary</td>
<td>8</td>
</tr>
</tbody>
</table>

Issue: the larger is the number of view, the harder is the correspondence problem

Bundle adjustment helps!
SFM problem - summary

1. Estimate structure and motion up perspective transformation
 1. Algebraic
 2. factorization method
 3. bundle adjustment

2. Convert from perspective to metric (self-calibration)

3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints