Lecture /
Multi-view geometry

e The SFM problem

e Affine SFM

e Perspective SFM

e Self-calibration

e Applications Reading:

[HZ] Chapter 10 “3D reconstruction of cameras and structure”
Chapter 18 “N-view computational methods”
Chapter 19 “Auto-calibration”

[FP] Chapter 13 “projective structure from motion”

[Szelisky] Chapter 7 “Structure from motion”

Silvio Savarese & Jeanette Bohg Lecture 7 - 31-Jan-23



Structure from motion problem

Given m images of n fixed 3D points

M, X,

.Xl'j



ructure from motion problem

rom the mxn observations x;, estimate:

*m projection matrices M, | ..

*n 3D points Xj structure




Affine structure from motion
(simpler problem)

Image 1

From the mxn observations x

Ij?

World point X:

Image i

estimate:

* m projection matrices M, (affine cameras)
*n 3D points X,



Perspective 7 i
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magnification [Eq. 3]
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Affine cameras
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For the affine case (in Euclidean space)

l] AX +b [Eq. 4]
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The Affine Structure-from-Motion Problem

Given m images of n fixed points X; we can write

X, = Ain +bi fori=1,.[,m]andj=1, ..[n

N. of cameras N. of points

Problem: estimate m matrices A, m matrices b,

and the n positions X from the mxn observations x; .

How many equations and how many unknown?

2m « n equations in 8m + 3n - 8 unknowns



The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic CIppI'OCICh (affine epipolar geometry; estimate F; cameras; points)

- Factorization method




The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic CIppI'OCICh (affine epipolar geometry; estimate F; cameras; points)

- Factorization method




A factorization method -
Tomasi & Kanade algorithm

C. Tomasi and T. KanadeShape and motion from image streams under orthography: A factorization

method. IJCV, 9(2):137-154, November 1992.

* Data centering
* Factorization


http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

A factorization method - Centering the data

Centering: subtract the centroid of the image points




A factorization method - Centering the data

Centering: subtract the centroid of the image points

n

[Eq. 6] ’A‘yzxzj_lixik =Ain+bi_lEAiXk_lzbi

N = n

x, =A X, +Db,
[Eq. 4]




A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 6] ’A‘yzxzj_lixik =Ain+bi_lEAiXk_lzbi

N = n

X X
g E ik °' Centroid of 3D points




A factorization method - Centering the data

Thus, after centering, each normalized observed point is related to the 3D point

by
v — 4 XA . 8
Xij — ; ; [Eq. 8]

l' l l. n
I3 ‘ > 1
X,/ — Eq.
// i/ Xlk X__EXk [ q 7]
e

X, = —EX. !
i ik é Centroid of 3D points




A factorization method - Centering the data

If the centroid of points in 3D = center of the world reference system

X, =AZ.X]. =Al.X]. [Eq. 9]

: X.
g E ik °' Centroid of 3D points




A factorization method - factorization

Let’s create a 2m x n data (measurement) matrix:

_ﬁn ﬁlz &ln )
D = &21 &22 ﬁ2" cameras
' (2m )
_ﬁml ﬁmz ‘e ﬁmn I
points (n )

Each ﬁij entry is a 2x1 vector!



A factorization method - factorization

Let’s create a 2m x n data (measurement) matrix:

&11 &12 ﬁln Al [Eq. 10]
ﬁzl ﬁzz &271 Az
D = = - [Xl X, - Xn]
i i i points (3 x n )
_Xml Xm2 T an | _Am_ S
(2m % n) cameras
(2m x 3) M

Each ﬁij entry is a 2x1 vector!

A; is 2x3 and X is 3x]1

The measurement matrix D = M S has rank 3
(it's a product of a 2mx3 matrix and 3xn matrix)



Factorizing the Measurement Matrix

How to factorize D?

2m

A

Measurements
D

Motion
M

Structure 3

S
I

MS



2m

Factorizing the Measurement Matrix

e By computing the Singular value decomposition of D!

VT




Factorizing the Measurement Matrix

Since rank (D)=3, there are only 3 non-zero singular values &, , o, and o3

3
<——>
A
3
<>
31\ VV3 V3T 13
S = |U
N D = 3 X X
<€ > <€ >
n n
v
< > < > o 0 0
n n 1
Where W,;=| 0 o, 0 |[Eq. 11]
0 0 o,




2m

Factorizing the Measurement Matrix

3 n
<——>
D : U3 x 31 VV3 x V3T




2m

Factorizing the Measurement Matrix

S = structure

M = Motion (cameras)

D= U3 W3 V3T = U3 (W3 V3T) =MS [Eq. 12]



Factorizing the Measurement Matrix
D= U3 W3 V3T = U3 (W3 V3T) =M S [EOI- 12]

What is the issue here? D has rank>3 because of:

* measurement noise
» affine approximation

Theorem: When D has a rank greater than 3, U3W3V3T is the best
possible rank- 3 approximation of D in the sense of the Frobenius norm.

M=~ U,

. T m n min{m, n}
D=U,W,V; . . 1Al = ([ D) layl? = \j Y o
S = W3V3 i=1 ]:l i=1




Reconstruction results
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. /IJCV, 9(2):137-154, November 1992.



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Affine Ambiguity

I
=
7




Affine Ambiguity

D — M H X H? S
N\ J \ J
Y Y
M* S*

e The decomposition is not unique. We get the same D by applying
the transformations:

M* =M H
S* =H1S
where H is an arbitrary 3x3 matrix describing an affine transformation

e Additional constraints must be enforced to resolve this ambiguity



Affine Ambiguity
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The Affine Structure-from-Motion Problem

Given m images of n fixed points X; we can write

X, = Ain +b, fori=1,.[,m] andj=1, j

N. of cameras N. of points

Problem: estimate m matrices A, m matrices b,

and the n positions X from the mxn observations x; .

How many equations and how many unknown?

2m « n equations in 8m + 3n - 8 unknowns



Similarity Ambiguity

* The scene is determined by the images only up a similarity
transformation (rotation, translation and scaling)

 This is called metric reconstruction

) Similarity

e The ambiguity exists even for (intrinsically) calibrated cameras

e For calibrated cameras, the similarity ambiguity is the only ambiguity
[Longuet-Higgins ‘81]



Similarity Ambiguity

e |tisimpossible, based on the images alone, to estimate the
absolute scale of the scene




Lecture /
Multi-view geometry |

e Perspective SFM

Silvio Savarese & Jeanette Bohg Lecture 7 - 31-Jan-23



ructure from motion problem

rom the mxn observations x;, estimate:

* m projection matrices M~ motion
*n 3D points X;= structure
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Structure from Motion Ambiguities

In the general case (nothing is
known) the ambiguity is
expressed by an arbitrary 4X4
projective transformation




The Structure-from-Motion Problem

Given m images of n fixed points X; we can write

Xij — Mi XJ fori=1,.[,m] andj=1, j

N. of cameras N. of points

Problem: estimate m 3x4 matrices M; and n positions
X; from mxn obvesrvations x; .

* If the cameras are not calibrated, cameras and points
can only be recovered up to a 4x4 projective (where the
4x4 projective is defined up to scale)

 How many equations and how many unknown?

2m x n equations in 11m+3n - 15 unknowns




Projective Ambiguity

. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003



Metric reconstruction (upgrade)

* The problem of recovering the metric reconstruction from
the perspective one is called self-calibration




Structure-from-Motion methods

1. Recovering structure and motion up to
perspective ambiguity

® Algebraic approach (by fundamental matrix)

e Factorization method (by svD)

e Bundle adjustment

2. Resolving the perspective ambiguity



Algebraic approach (2-view case)

. Compute the fundamental matrix F from two

ENE
. Use F to estimate projective cameras

. Use these cameras to triangulate and estimate
points in 3D



Algebraic approach (2-view case)

A s
-
X, =M, X
X, =M, X,
For =1, ..{,n
N. of points

From at least 8 point correspondences, compute F
associated to camera 1 and 2



Algebraic approach (2-view case)

. Compute the fundamental matrix F from two
views (eg. 8 point algorithm)

. Use F to estimate projective cameras

. Use these cameras to triangulate and estimate
points in 3D



Algebraic approach (2-view case)

e
X, =M, X
M, X
; Xopj =My A
For =1, ..{,n
N. of points

Because of the projective ambiguity, we can always apply a projective
transformation H such that:

M,H'=[I 0] M,H'=[A b]
[Eq. 3] E:r:::;cal perspective [Eq. 4]



Algebraic approach (2-view case)

* Call X a generic 3D point X;;

» Call x and x> the corresponding observations to camera 1 and respectively

)
Eq4M,=M,H"'=
 X=HX i i
1 1
x' =[AIb]X =[AIb]| *2 |=A[mio]| *2
X3 X3
1 1
x xb =(Ax+b)xb =Axxb Eq. 8]
X" - (xX'xb)=x"-(Axxb)=0 [Eq. 9]

x"(bxAx)=0 [Eq. 10]

(M, =M H'=| I 0] x=M X=M, H"' HX=[I10]X [Eq.¢]
A b] x'=M,X=M, H' HX=[Ab]X

[Eq. 7]



Cross product as matrix multiplication

axb=| a 0 —a_|b, |=]a,]b




[Egs. 5]

X

X"

Algebraic approach (2-view case)

(M =MET=[ 10| x= M HTH X =[1]0]X o
<M2=M2H‘1=[A b] X=M,H' HX=[A|b]X
 X=HX

(b xAx)=0 [Eq. 10]

A | X'Fx=0

fundamental matrix!



Compute cameras

X"Fx=0  F=[b]JA=bxA [l

Compute b:

* Let’s consider the product F b

F-b=[b_|A-b =0 [Eq. 12]

« Since F is singular, we can compute b as least sq. solution
of F b = 0, with |b|=1 using SVD

« Using a similar derivation, we have that bT F = Q[Eq. 12-bis]



Compute cameras

T —
xX ' Fx=0 F=[b A Fb=0 [Eq. 12]
bTF =0 [Eq. 12-bis]
[Eq. 11]

Compute A:
 Define:A’ =—[b,] F
« Let's verify that[b_]A' is equal to F:
Indeed: [b,JA'=—[b_ ][b,JF=—(bb" b HF =-bb'F+b F=0+1-F=F

[Eq. 13]
e Thus, A=A’=—[by] F

[Eqs. 14] Ml =[ I O :| M2=|:— [bx]F b ]




Interpretation of b

X,TFX:O F:[bX]A Fb=0 [Eqg. 12]
bTF =0 [Eq. 12-bis]
[Eq. 11]

What's b??



Epipolar Constraint pecture 5]

X

O] e V 02

F x, is the epipolar line associated with x, (I; = F x,)
FTx, is the epipolar line associated with x, (I, = F" x,)
F is singular (rank two)

|[Fe,=0 and FTe; =0 |
F is 3x3 matrix; 7 DOF




Interpretation of b
xX"TFx=0 F=[b]A {Fb=0

T —
[Eq. 11] D

b is an epipole!

M, [1 0] M2=[- b |F b]

J J
M, =[ I 0 ] M2=[— e [F e ]
[Eq. 15] [Eq. 16]

HZ, page 254
PF, page 288



Algebraic approach (2-view case)

. Compute the fundamental matrix F from two
views (eg. 8 point algorithm)

. Use F to estimate projective cameras

. Use these cameras to triangulate and estimate
points in 3D




Triangulation

M, =[ I 0 ] )
- Xj For =1, ...,n

[_ [ex ]F ¢ ] 3D points can be computed from camera matrices via
SVD (see page 312 of HZ for details)

~

M, =



Algebraic approach: the N-views case
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3D points associated to point

- From Ik Clnd Ih éMk . Mh . X[k h correspondences available

between I, and I,

- Pairwise solutions may be combined together using bundle
adjustment



Structure-from-Motion Algorithms

¢ Algebraic CIppI'OCICh (by fundamental matrix)

* Factorization method (by SvD)

* Bundle adjustment



Limitations of the approaches so far

e Factorization methods assume all points are visible.
This not true if:

e occlusions occur

e failure in establishing correspondences

e Algebraic methods work with 2 views

The bundle adjustment approach addresses some of
these limitations



Structure-from-Motion Algorithms

* Algebraic CIppI'OCICh (by fundamental matrix)
* Factorization method (by SvD)

* Bundle adjustment




Bundle adjustment

« Non-linear method for refining structure and motion

 Minimizes re-projection error
2

E(M, X) = iZH:D(xij, M,X)

i=1 j=I

Reconstructed X;

@. @ ground truth X




General Calibration Problem

m n 2
E(M,X) =) Dlx;,MX))
o \ \ parameters

measurements

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm

* |lterative, starts from initial solution

* May be slow if initial solution far from real solution

* Estimated solution may be function of the initial solution
* Newton requires the computation of J, H

* Levenberg-Marquardt doesn’t require the computation of H



Bundle adjustment

* Advantages
e Handle large number of views
* Handle missing data

* Limitations
* Large minimization problem (parameters grow with number of views)
* Requires good initial condition

« Used as the final step of SFM (i.e., after the
factorization or algebraic approach)

* Factorization or algebraic approaches provide a
initial solution for optimization problem



Lecture /
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e The SFM problem
e Affine SFM

e Perspective SFM
e Self-calibration

e Applications
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Self-calibration

» Self-calibration is the problem of recovering the
metric reconstruction from the perspective (or
affine) reconstruction

*  We can self-calibrate the camera by making some
assumptions about the cameras




Self-calibration

[HZ] Chapters 19 “Auto-calibration”

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqgs) for 2 views

- Algebraic approach
- Stratified approach



Inject information about the camera
during the bundle adjustment optimization

For calibrated cameras, the similarity ambiguity is the
only ambiguity ionguertiggins 811



Lecture /
Multi-view geometry

e Applications



Structure from motion
problem

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman,
98

Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99

Levoy et al., 00

Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04

Brown & Lowe, 04
Schindler et al, 04
Lourakis & Argyros, 04
Colombo et al. 05

Courtesy of Oxford Visual Geometry Group

Golparvar-Fard, et al. JAEI
10

Pandey et al. IFAC, 2010
Pandey et al. ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09

Frahm et al., 10



Reconstruction and texture mapping

M. Pollefeys et al 98—




Incremental reconstruction of construction sites

Initial pair — 2168 & Complete Set 62,323 points, 160 images

ss | University of Illinois,

Golparvar-Fard. Pena-Mora, Savarese 2008

WASD: Move

QE: Ebb and Flow i

Click and drag the r{muse to Iook around

"L: Onset Position” % 4
[ Walkthrogﬂw w.een cameras I
GH: Camera@otmnf ",
OP: Recoﬁstructwn Set

8J9 Togge (famera Frusta'Esc: Quit
F5: Toggle fullscreen

Fé: Toggle iref rame .

© Feb 2009, D44R-System
Mani Golparvar-Fard
Feniosky Pefia-Mora. ...~

;.‘** f:* > vﬁ*ﬁ

~wmm \\m




Reconstructed scene + Site photos

# | D4AR System | Visualization of Construction Progress | University of Illinois, Urbana-Champai
WASD: Move
QE: Ebb and Flow

Click and drag the mouse to look around
L: Onset Position

[1: Walkthrough between cameras
GH: Camera Motions
Esc: Quit
F5: Toggle fullscreen
‘F&: Toggle wireframe;
B/ Toggle AsPlannedmodel

S

© Apr 2009, D4AR Sy




Reconstructed scene + Site photos

of Construction Progress | University of lllinois, Urbana-Ck

WASD fArrow Keys: Move
Q/E: Ebb and Flow
Click and drag the mouse to look around
Esc: Quit
[]: Walk through between images
3 gera Motion

<{EHWEG s



Results and applications

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," AC
Transactions on Graphics (SIGGRAPH Proceedings),2006,

h ” ﬁﬁétosynth‘



http://phototour.cs.washington.edu/Photo_Tourism.pdf

Next lecture

e Active Stereo & Volumetric Stereo












Appendix




Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations



Projections of conics across views
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Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1

—
—~_
—
—
—

le].o™ [e].=F o' F"
[Eq. 3]

o=(KK")" [Eq. 4]
o'=(K'K'")" [Eq. 5]




Kruppa equations

[Faugeras et al. 92] From [HZ] page 471

( u, K'K''u, Y[ o’ v K K'v, )
~u K'K'"'u, |x| 0,0,v/ K K'v, |=0  [Eq. 6]
L u K'K'"u, ) oiviK K'v, )

\

where u;, v; and c;are the columns and singular values of SVD of F

These give us two independent constraints in the elements of K and K’



\

Kruppa equations

[Faugeras et al. 92]

TK'K'Tu2 Y ( o, leKTv1
—ulK K'Tu2 X crlcrzleKTv2

T ' T T T
u, K'K u o.viK K'v,

\

TKKTu2 . —u/KK'u,

\
=0

Y

u K K 'u,

T T - T
o’ vKK"v, o,0,v/KK'v, szzKK v,

Let’s make the following assumption: K'= K =

[

Eq.9l af*+pf+y=0 — f

f 0
0 7
0 0

_—0 O

[Eq. 7]

[Eq. 8]



Kruppa equations

[Faugeras et al. 92]

Powerful if we want to self-calibrate 2 cameras with
unknown focal length

Limitations:
* Work on a camera pair
e Don’t work if R=0

[Eq. 10] [e']xa)_l [e'] ><:F o 'F!' becomes trivial
Since: [ = [e']x



Self-calibration

[HZ] Chapters 19 “Auto-calibration”

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqgs) for 2 views

‘- Algebraic approach

- Stratified approach



Algebraic approach wmuitiview approach

Suppose we have a projective reconstruction {Mi,)zj}

Let H be a homography such that:

First perspective camera is canonical: Ml =] I O ]IEqg.11]
ith perspective reconstruction of the camera (known): Mi — [ Ai bi ]

[Eq. 12]

[Eq. 13] (Al. —bl.pT) K, KlT (Al. —bl.pT )T =K, K,-T i=2..m

[Eq. 14] H = P is an unknown 3x1 vector
T
-p K, 1

K;...K,are unknown



Algebraic approach wmuitiview approach

Suppose we have a projective reconstruction

Let H be a homography such that:

{ First perspective camera is canonical: Ml =] I O ]IEqg.11]

ith perspective reconstruction of the camera (known): Mi — [ Ai bi ]

[Eq. 12]

[Eq. 13] (Al. —bl.pT) K, KlT (Al. —bl.pT )T =K, K,-T i=2..m

How many unknowns? e 3 from p
e 5m from K;...K,

How many equations? 5 independent equations [per view]



Algebraic approach wmuitiview approach

Suppose we have a projective reconstruction

Let H be a homography such that:

First perspective camera is canonical: Ml =] I O ]IEqg.11]
ith perspective reconstruction of the camera (known): Mi — [ Ai bi ]

[Eq. 12]
Assume all camera matrices are identical: K, =K, ... =K,

[Eq. 15] (Ai—bl.pT)K KT(Ai—bipT)T=K K" i2m

How many unknowns? e 3 from p
* 5 fromK

How many equations? 5 independent equations [per view]

We need at least 3 views to solve the self-calibration problem



Algebraic approach

Art of self-calibration:
Use assumptions on Ks to generate enough equations on the unknowns

Condition N. Views
e Constant internal parameters 3
e Aspect ratio and skew known 4

e Focal length and offset vary

e Skew =0, all other parameters vary 8

Issue: the larger is the number of view,

i |
the harder is the correspondence problem Bundle adjustment helps!



SFM problem - summary

1. Estimate structure and motion up perspective

transformation

1. Algebraic
2. factorization method
3. bundle adjustment

2. Convert from perspective to metric (self-calibration)
3. Bundle adjustment
* % * %

or

1. Bundle adjustment with self-calibration constraints



