
Lecture 7 -Silvio Savarese & Jeanette Bohg 31-Jan-23

• The SFM problem
• Affine SFM
• Perspective SFM
• Self-calibration
• Applications

Lecture 7
Multi-view geometry

Reading:  
[HZ]         Chapter 10 “3D reconstruction of cameras and structure”

Chapter 18 “N-view computational methods”
Chapter 19 “Auto-calibration”

[FP] Chapter  13 “projective structure from motion”
[Szelisky] Chapter  7 “Structure from motion”



Structure from motion problem
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Given m images of n fixed 3D points 

•xij = Mi Xj , i = 1, … , m,    j = 1, … , n  



From the mxn observations xij, estimate: 
•m projection matrices Mi

•n 3D points Xj
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Structure from motion problem



Affine structure from motion
(simpler problem)

Image 1

World point Xj

Image i

From the mxn observations xij, estimate: 
•m projection matrices Mi (affine cameras)
•n 3D points Xj

…. xij
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Xj

xij =AiX j +bi

Affine cameras

For the affine case (in Euclidean space)

xi j

x1j

Image i

Image 1

….

[Eq. 4]

2x1 2x3 2x13x1



for i = 1, …,m   and j = 1, … ,n

The Affine Structure-from-Motion Problem

Given m images of n fixed points Xj we can write

Problem: estimate m matrices Ai, m matrices bi
and the n positions Xj from the m´n observations xij .

2m ´ n equations in 8m + 3n

How many equations and how many unknown?

N. of cameras N. of points
xij =AiX j +bi

- 8 unknowns



The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method



The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method



A factorization method –
Tomasi & Kanade algorithm

C. Tomasi and T. KanadeShape and motion from image streams under orthography:  A factorization 
method. IJCV, 9(2):137-154, November 1992. 

• Data centering
• Factorization 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Centering: subtract the centroid of the image points

A factorization method  - Centering the data
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Centering: subtract the centroid of the image points

A factorization method  - Centering the data

ikiik bXAx +=

å
=

-=
n

k
ikijij n 1

1ˆ xxx

xik

[Eq. 4]
Xk

=AiX j +bi −
1
n

AiXk −
1
n

bi
k=1

n

∑
k=1

n

∑

xi =
1
n

xik
k=1

n

∑

xi

[Eq. 6]

[Eq. 5]



Centering: subtract the centroid of the image points

A factorization method  - Centering the data
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A factorization method  - Centering the data
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Thus, after centering, each normalized observed point is related to the 3D point 
by

[Eq. 8]

[Eq. 7]



A factorization method  - Centering the data
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[Eq. 7]
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A factorization method  - factorization
Let’s create a 2m ´ n data (measurement) matrix:

Each        entry is a 2x1 vector!x̂ij



Let’s create a 2m ´ n data (measurement) matrix:
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The measurement matrix D = M S has rank 3
(it’s a product of  a 2mx3 matrix and 3xn matrix)

A factorization method  - factorization

(2m × n) M
S

Each        entry is a 2x1 vector!x̂ij

[Eq. 10]

Ai is 2x3 and Xj is 3x1



Factorizing the Measurement Matrix

= ×

2m

n 3

n

3Measurements 
D

Motion
M

Structure
S

D =MS

How to factorize D? 



• By computing the Singular value decomposition of D!

=2m

n n

n n

× × n

D U W VT

Factorizing the Measurement Matrix



Since rank (D)=3, there are only 3 non-zero singular values  s1 , s2 and s3

Factorizing the Measurement Matrix

Where W3 =

σ1 0 0
0 σ 2 0
0 0 σ 3
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[Eq. 11]



Factorizing the Measurement Matrix



M = Motion (cameras) 

S = structure

Factorizing the Measurement Matrix

D = U3 W3 V3
T = U3 (W3 V3

T) = M S [Eq. 12]



Theorem: When       has a rank greater than                          is the best 
possible rank- approximation of D in the sense of the Frobenius norm.

D 3,  U3W3V3
T

3

3 3 3
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What is the issue here? 

Factorizing the Measurement Matrix

• measurement noise 
• affine approximation

D has rank>3 because of: 

D = U3 W3 V3
T = U3 (W3 V3

T) = M S [Eq. 12]



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Affine Ambiguity

=D M S



Affine Ambiguity

• The decomposition is not unique. We get the same D by applying 
the transformations:

M* = M H
S* = H-1S

where H is an arbitrary 3x3 matrix describing an affine transformation

• Additional constraints must be enforced to resolve this ambiguity

= ×D M SH H-1

M* S*



Affine Ambiguity

S* = H-1S
A* = A H

A’* = A’ H

A
A’

S



The Affine Structure-from-Motion Problem

Given m images of n fixed points Xj we can write

Problem: estimate m matrices Ai, m matrices bi
and the n positions Xj from the m´n observations xij .

2m ´ n equations in 8m + 3n - 8 unknowns

How many equations and how many unknown?

N. of cameras N. of points
xij =AiX j +bi for i = 1, …,m   and j = 1, … ,n



Similarity Ambiguity

• The ambiguity exists even for (intrinsically) calibrated cameras
• For calibrated cameras, the similarity ambiguity is the only ambiguity

[Longuet-Higgins ’81]

• The scene is determined by the images only up a similarity
transformation (rotation, translation and scaling)

• This is called metric reconstruction

Similarity



• It is impossible, based on the images alone, to estimate the 
absolute scale of the scene

Similarity Ambiguity
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Structure from motion problem

x1j

x2j

xmj
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From the mxn observations xij, estimate: 
•m projection matrices Mi

•n 3D points Xj

= motion
= structure



Structure from motion problem
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Structure from Motion Ambiguities

• In the general case (nothing is 
known) the ambiguity is 
expressed by an arbitrary 4X4 
projective transformation

[ ]iiii TRKM =jij XMx =

jXH 1
j HM -

( )( )jijij XHHMXMx  
-1
 ==

Projective

x j

x j



The Structure-from-Motion Problem

Given m images of n fixed points Xj we can write

Problem: estimate m 3´4 matrices Mi and n positions 
Xj from m´n obvesrvations xij .

• If the cameras are not calibrated, cameras and points 
can only be recovered up to a 4x4 projective (where the 
4x4 projective  is defined up to scale)

jiij XMx =

2m ´ n equations in 11m+3n – 15 unknowns

• How many equations and how many unknown?

N. of cameras N. of points

for i = 1, …,m   and j = 1, … ,n



Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

S =



Metric reconstruction (upgrade)

• The problem of recovering the metric reconstruction from 
the perspective one is called self-calibration



• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion methods

1. Recovering structure and motion up to 
perspective ambiguity

2. Resolving the perspective ambiguity



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two 
views

2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate 

points in 3D



x1 j

x2 j

M1

M2

Algebraic approach (2-view case)

x1 j =M1 Xj

From at least 8 point correspondences, compute F 
associated to camera 1 and 2

Xj

x2 j =M2 Xj

N. of points

For  j = 1, … ,n



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two 
views (eg. 8 point algorithm)

2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate 

points in 3D



x1j

x2j

M1

M2

Algebraic approach (2-view case)

Because of the projective ambiguity, we can always apply a projective 
transformation H such that:

[ ]0IHM 1
1 =- [ ]bAHM 1

2 =-

Canonical perspective 
camera[Eq. 3] [Eq. 4]

x1 j =M1 Xj

x2 j =M2 Xj

N. of points

For  j = 1, … ,n

Xj



x =M1 X =M1 H
−1 H X = [I | 0] !X

Algebraic approach (2-view case)
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[Eq. 10]

• Call X a generic 3D point Xij
• Call x and x’ the corresponding observations to camera 1 and respectively
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0][ =¢ ´ xAbx T AbF ][ ´= 0FT =¢ xxis this familiar?

Algebraic approach (2-view case)
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F = [b× ]A = b×A

Compute cameras

• Since F is singular, we can compute b as least sq. solution 
of F b = 0, with |b|=1 using SVD

0FT =¢ xx

0][ =×´=×=× ´ bAbbAbbF

Compute b:

[Eq. 11]

• Let’s consider the product F b

• Using a similar derivation, we have that bT F = 0

[Eq. 12]

[Eq. 12-bis]

= 0



Compute cameras

A’ = –[b×] F 
Compute A:

!M1 = I 0!
"

#
$

!M2 = − [bx ]F b"
#

$
%

• Let’s verify that '][ Ab´ is equal to F :

Indeed: [b× ]A ' = −[b× ][b× ]F = −(b b
T − b 2 I) F = −b bTF+ b 2 F = 0+1⋅F = F

• Define:

AbF ][ ´=0FT =¢ xx
[Eq. 11]

• Thus, A = A’ = –[b×] F 
[Eq. 13]

[Eqs. 14]

F b = 0 
bT F = 0

[Eq. 12]

[Eq. 12-bis]



Interpretation of b

AbF ][ ´=0FT =¢ xx
[Eq. 11]

F b = 0 
bT F = 0

What’s b??

[Eq. 12]

[Eq. 12-bis]



Epipolar Constraint [lecture 5]

O1 O2

x2

X

x1

e1
e2

F x2 is the epipolar line associated with x2 (l1 = F x2)
FT x1 is the epipolar line associated with x1 (l2 = FT x1)
F is singular (rank two)
F e2 = 0   and   FT e1 = 0
F is 3x3 matrix; 7 DOF 



b is an epipole!

HZ, page 254
PF, page 288

Interpretation of b

[Eq. 15] [Eq. 16]

AbF ][ ´=0FT =¢ xx
[Eq. 11]
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Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two 
views (eg. 8 point algorithm)

2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate 

points in 3D



x1j

x2j

Triangulation

x1 j =

x2 j =

!M1 = I 0!
"
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$
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#
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%

à For  j = 1, … ,n!X j

!M1
!X j

!M2
!X j

!M1

!M2

!X j

3D points can be computed from camera matrices via 
SVD  (see page 312 of HZ for details)



Algebraic approach: the N-views case

x1j

xkj

xhj

- From Ik and Ih à !Mk , !Mh, !X[k,h]
3D points associated to point 
correspondences available 
between Ik and Ih

!M1

!Mk

!Mh

!X j

- Pairwise solutions may be combined together using bundle 
adjustment



• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion Algorithms



• Factorization methods assume all points are visible. 
This not true if:

• occlusions occur
• failure in establishing correspondences

• Algebraic methods work with 2 views 

Limitations of the approaches so far

The bundle adjustment approach addresses some of 
these limitations



• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion Algorithms



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimizes re-projection error

( )
2m

1i

n

1j
jiij M,D),M(E åå

= =

= XxX

x1j

x2j

xmj

Reconstructed Xj

O1

O2

Om

M1Xj

M2Xj
MmXj

ground truth Xj



measurements
parameters

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm

• Iterative, starts from initial solution 
• May be slow if initial solution far from real solution 
• Estimated solution may be function of the initial solution
• Newton requires the computation of J, H
• Levenberg-Marquardt doesn’t require the computation of H

General Calibration Problem

( )
2m

1i

n

1j
jiij M,D),M(E åå

= =

= XxX



• Advantages
• Handle large number of views
• Handle missing data

• Limitations
• Large minimization problem (parameters grow with number of views)

• Requires good initial condition

• Used as the final step of SFM (i.e., after the 
factorization or algebraic approach) 

• Factorization or algebraic approaches provide a
initial solution for optimization problem

Bundle adjustment
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• Self-calibration is the problem of recovering the 
metric reconstruction from the perspective (or 
affine) reconstruction

• We can self-calibrate the camera by making some 
assumptions about the cameras

Self-calibration



Self-calibration

Several approaches:
- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

[HZ]  Chapters 19  “Auto-calibration”



Inject information about the camera 
during the bundle adjustment optimization

For calibrated cameras, the similarity ambiguity is the
only ambiguity [Longuet-Higgins ’81]
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Courtesy of Oxford Visual Geometry Group

Structure from motion 
problem

Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér,  04
Brown & Lowe, 04
Schindler et al, 04
Lourakis & Argyros, 04
Colombo et al. 05

Golparvar-Fard, et al.  JAEI 
10
Pandey et al. IFAC , 2010
Pandey et al.  ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 
98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99



M. Pollefeys et al 98---

Reconstruction and texture mapping



Incremental reconstruction of construction sites
Initial pair – 2168  & Complete Set 62,323 points, 160 images

69

Golparvar-Fard. Pena-Mora, Savarese 2008



Reconstructed scene + Site photos

70 The registration of images (08.27.08) within the reconstructed scene 
Student Dining and Residence Hall project in Champaign, IL. Images courtesy of Turner Construction.



71

Reconstructed scene + Site photos



Results and applications
Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," ACM 
Transactions on Graphics (SIGGRAPH Proceedings),2006,

http://phototour.cs.washington.edu/Photo_Tourism.pdf


Next lecture

• Active Stereo & Volumetric Stereo









Appendix



Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations



Projections of conics across views

XTCw X = 0
X =

X1
X2
X3
1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

O’O

[ ] [ ] TFCFeCe 11' '' -
´

-
´ =

wC

C 'C

wP
Ow

3x3 
matrix

[Eq. 1]

[Eq. 2]

I
I’



Projection of absolute conics across views
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Kruppa equations
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[Faugeras et al. 92]

where ui , vi and si are the columns and singular values of SVD of F

These give us two independent constraints in the elements of K and K’

[Eq. 6]

From [HZ] page 471 



Kruppa equations
[Faugeras et al. 92]

• Let’s make the following assumption:
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Kruppa equations
[Faugeras et al. 92]

• Powerful if we want to self-calibrate 2 cameras with 
unknown focal length

• Limitations:
• Work on a camera pair
• Don’t work if R=0  

[ ] [ ] TFFee 11 '' -
´

-
´ = ww

[ ]´= 'eF

becomes trivial

Since:

[Eq. 10]



Self-calibration

Several approaches:
- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

[HZ]  Chapters 19  “Auto-calibration”



Algebraic approach Multi-view approach

Suppose we have a projective reconstruction { !Mi, !Xj}
Let H be a homography such that:

First perspective camera is canonical: !M1 = [ I 0 ]
!Mi = [ Ai bi ]ith perspective reconstruction of the camera (known):

K1
T Ai − bi p

T( )
T
= Ki Ki

TAi − bi p
T( ) K1 i=2…m

[Eq. 11]

[Eq. 12]

[Eq. 13]

H =
K1 0

−pT K1 1
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$
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'

p is an unknown 3x1 vector[Eq. 14]
K1…Km are unknown  



K1
T Ai − bi p

T( )
T
= Ki Ki

TAi − bi p
T( ) K1

How many unknowns? • 3 from
• 5 m from K1…Km

How many equations? 5 independent equations [per view]

p

i=2…m
[Eq. 13]

Algebraic approach Multi-view approach

Suppose we have a projective reconstruction

Let H be a homography such that:

First perspective camera is canonical: !M1 = [ I 0 ]
!Mi = [ Ai bi ]ith perspective reconstruction of the camera (known):

[Eq. 11]

[Eq. 12]



KT Ai − bi p
T( )

T
= K KTAi − bi p

T( ) K
How many unknowns? • 3 from

• 5 from K
How many equations? 5 independent equations [per view]

p

i=2…m[Eq. 15]

Algebraic approach Multi-view approach

Assume all camera matrices are identical:  K1 = K2 … = Km

We need at least 3 views to solve the self-calibration problem

Suppose we have a projective reconstruction

Let H be a homography such that:

First perspective camera is canonical: !M1 = [ I 0 ]
!Mi = [ Ai bi ]ith perspective reconstruction of the camera (known):

[Eq. 11]

[Eq. 12]



Algebraic approach
Art of self-calibration: 
Use assumptions on Ks to generate enough equations on the unknowns

Condition N. Views

• Constant internal parameters 3

• Aspect ratio and skew known
• Focal length and offset vary

4

• Skew =0, all other parameters vary 8

Issue: the larger is the number of view, 
the harder is the correspondence problem Bundle adjustment helps!



SFM problem - summary

1. Estimate structure and motion up perspective 
transformation 

1. Algebraic
2. factorization method
3. bundle adjustment

2. Convert from perspective to metric (self-calibration)

3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints


