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Will grade midterm ASAP - by mid-end of next week

Will skip lecture recap this week

Next week flipped classroom: 

- Prof Bohg will record lecture for you to watch online
- In class, we will review some of the slides with PollEv questions for you to 

respond to in person
- Please bring questions!
- Krishnan on Mon, Congyue on Wed

Midterm



PSET 3

Space carving

Representation Learning

Supervised Monocular Depth Estimation



Space Carving
Objective:

● Implement the process of space carving.

Lectures:

● Active Stereo & Volumetric Stereo



Review: Space Carving
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Space carving - overview
Steps:

● Estimate silhouettes of images (could be based on some heuristics, e.g. color)
● Form the initial voxels as a cuboid
● Iterate over cameras and remove the voxels which project to the dark part of each silhouette



Space carving - (a) (b) (c)
Steps:

● Estimate silhouettes of images (could be based on some heuristics, e.g. color)
● Form the initial voxels as a cuboid

○ You may find these functions useful: np.meshgrid, np.repeat, np.tile
○ Also boolean indexing, ie keep = (x>=0) & (x<=w) & (y>=0) & (y<=h)
○                                          keep = [idx for idx, val in enumerate(keep) if val]
○                                x = x[keep]
○                                y = y[keep]

● Iterate over cameras and remove the voxels which project to the dark part of each silhouette
○ Question: What will the voxels look like after the first, second, …  iteration?



Space carving - (a) (b) (c)
Steps:

● Iterate over cameras and remove the voxels which project to the dark part of each silhouette
○ Question: What will the voxels look like after the first, second, …  iteration?



Space carving - (d)
What if we first find the rough size of the object instead of just looking at camera positions?

Final Output

Coarse 
Carving



Space carving - (e)
Steps:

● Estimate silhouettes of images (could be based on some heuristics, e.g. color)
○ Problem: The quality of silhouettes is not perfect.
○ The silhouette from each camera is not perfect, but the result is ok. Why?
○ Experiment: Use only a few of the silhouettes.



PSET 3 - Colab
Need colab for parts 2,3, and 4.



In this notebook, we will be using the Fashion MNIST 
dataset to showcase how self-supervised representation 
learning can be utilized for more efficient training in 
downstream tasks. We will do the following things:

1. Train a classifier from scratch on the Fashion MNIST 
dataset and observe how fast and well it learns

2. Train useful representations via predicting image 
rotations, rather than classifying images

3. Transfer our rotation pretraining features to solve the 
classification task with much less data than in step 1

Problem 2 - Representation Learning

https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/zalando-research/fashionmnist


Unsupervised Representation Learning by Predicting 
Image-Rotations (ICLR ‘18)

https://arxiv.org/abs/1803.07728
https://arxiv.org/abs/1803.07728


PyTorch Training basics (training.py):

● Use torch.DataLoader and Dataset to load datasets and make batches
● Create layers using torch.nn module
● Use torch.optim to create an SGD Optimizer take gradient steps
● Manipulating torch.Tensor: 

○ use t.cpu() to move from GPU -> CPU, use t.cuda() for CPU -> GPU

Problem 2 - Representation Learning 

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/tensors.html


MNISTDatasetWrapper(Dataset)

● __init__: load pct% of images from processed .pt file
● __getitem__: randomly rotate an image from self.imgs. Hint: use 

PIL.Image.rotate to rotate image, and then return to torch.Tensor type
● Hint: Use torch.tensor(rotation_idx).long() to generate rotation labels

nn.Sequential(...)

● Creates a stack of layers that pass input data through a model
● nn.Linear(...) layers form weights and biases for a single layer

Problem 2 - Representation Learning 



Problem 2 - Representation Learning

Training example (from pytorch-examples repo)

● opt.zero_grad to zero gradients before 
update

● loss.backward to backpropagate gradients
● opt.step to update model params

https://github.com/jcjohnson/pytorch-examples


Intro to Neural Networks

• Background and Applications

• Fully-connected Neural Networks (MLP)

• Convolutional Neural Networks (CNN)

• Backpropagation Algorithm

• PyTorch Example



Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron, 
an early learning-based computer

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day
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Background
History

• 1957: Frank Rosenblatt designs the Mark I Perceptron, 
an early learning-based computer

• 1969: Multi-layer perceptron (early fully-connected 
neural networks) by Minksy and Papert

• 1986: Rumelhart, Hinton, and Williams (and others) 
develop the backpropagation algorithm (BP)

• 1989: LeCun et al. develop BP for Convolutional Neural 
Networks (CNNs), and introduce MNIST dataset

• 2012: AlexNet uses GPUs to train CNNs fast enough 
to be practical

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day



Following slides are borrowed from CS231N Lecture 5

A Brief History of Neural Nets and Deep Learning

https://www.skynettoday.com/overviews/neural-net-history


Applications: Convolutional Networks
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DeepFace (Face 
Verification)

Two-Stream Convolutional Networks for Action Recognition in 
Videos



DeepFace (Face 
Verification)

Two-Stream Convolutional Networks for Action Recognition in 
Videos



Dense Captioning 
[Johnson et al. 2016]



Dense Captioning 
[Johnson et al. 2016]

Visualizing Circuits
[Voss et al. 2021]



Background
Signal Relay

Starting from V1 primary visual cortex, visual signal is transmitted upwards,

forming a more complex and abstract representation at every level
Foundations of Vision, Brian A. Wandell (1995)



Fully-Connected Neural Networks
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Fully-Connected Neural Networks
Components

• A single input layer, h
0

∈ ℝn

• k- hidden layers, ai ∈ ℝdi

• Weight matrices, Wi ∈ 
ℝdi−1×di

• Bias vectors, bi ∈ ℝdi

• Output layer, y ̂ ∈ ℝm

• For each layer, ai = f(zi) = f(Wihi + bi), where 
f isan activation function

• Series of stacked layers compose multiple function 
together (e.g. ( f ∘ g)(x))

Image 
source
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Fully-Connected Neural Networks
Cost Function

• To train parameters, compute a cost associated with every predicted/labeled 
output pair, y, y.

• Requirements: can be averaged over a batch, can be computed with outputs 
from network

• Common loss functions:• Least squares 
(quadratic):• Binary Cross-Entropy: y log(y) ̂ + (1 − y)log(1 − y)

• Cross entropy (classification, yj is one-hot encoding at j):

1

2m 
∑

i=1

m
∥yi − yi ̂ 
∥2

∑
i=1

m
yi log(yi ̂ )



Fully-Connected Neural 
Network
Example
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Convolutional Neural Networks
Introduction

• For computer vision applications, 
convolutional networks are used to learn 
feature detectors from images

• Advantages:

• Images are high-dimensional data, fully 
connected layers would require too many 
parameters to tune

• Convolution operations preserve spatial 
structure of data

• Convolution operation can be computed 
efficiently on GPUs (using CUDA)

• Analogues:

• Inputs/activations are “what” the 
network “sees”

• Weights are “how” the network 
computes one layer from the 
previous one (feature-detection)

• As architectures become more 
complex, interpretability of these 
learned features becomes more 
difficult



Convolutional Neural Networks
Components
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Convolutional Neural Networks
Components

• Each convolutional “layer” is represented by a 3D tensor of shape
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Convolutional Neural Networks

Slide borrowed from CS231N Lecture 5



Convolutional Neural Networks
Pooling and FC layers

• Max and Average (L2-norm) pooling:

• Downsampling operation to reduce width x 
height (but not depth) of a layer

• Fully-connected (FC) layers:

• Flattens entire input volume to a vector, and 
treats like a normal FC network layer



Fin
Questions?


