PSET 3 Part 1 + Neural Nets

Krishnan Srinivasan
CS231A

05/10/2024

Midterm

Will grade midterm ASAP - by mid-end of next week
Will skip lecture recap this week
Next week flipped classroom:

- Prof Bohg will record lecture for you to watch online

- In class, we will review some of the slides with PollEv questions for you to
respond to in person

- Please bring questions!

- Krishnan on Mon, Congyue on Wed

PSET 3

Space carving
Representation Learning

Supervised Monocular Depth Estimation

Space Carving

Objective:

e Implement the process of space carving.

Lectures:

e Active Stereo & Volumetric Stereo

© N & o

Review: Space Carving

Visual hull:
an upper bound estimate

'.,- ..-‘

Review: Space Carving

-
—
-
—
—
—
—
—
—
—
—
-
—
—
- =
—
-

Silhouette

Silhouette 1

s B Silhouette 2

Goal of Space Carving L

—
——_——

Silhouette 1

_] Silhouette 2

Review: Space Carvj

Silhouette 1

voxels \

I
I
\ |
I

1
I I Silhouette 2

Review: Space Carvj

Silhouette 1

voxels \
\

I
I
\ I
\ |

\ I
I | B Silhouette 2

Review: Space Carvj

Silhouette 1

voxels \

I
I
\ |
I

\ I
N B Silhouette 2

Review: Space Carvj

Silhouette 1

voxels

Review: Space Carvj

voxels

Review: Space Carvj

Silhouette 1

voxels \

I I Sihouette 2

Review: Space Carvj

Silhouette 1

voxels \

Silhouette 2

Space carving - overview

Steps:
e Estimate silhouettes of images (could be based on some heuristics, e.g. color)
e Form the initial voxels as a cuboid
e |terate over cameras and remove the voxels which project to the dark part of each silhouette

Space carving - (a) (b) (c)

Steps:
e Estimate silhouettes of images (could be based on some heuristics, e.g. color)
e Form the initial voxels as a cuboid
o You may find these functions useful: np.meshgrid, np.repeat, np.tile
o Also boolean indexing, ie keep = (x>=0) & (x<=w) & (y>=0) & (y<=h)

o keep = [idx for idx, val in enumerate(keep) if val]
o x = x[keep]
o y = ylkeep]

e |terate over cameras and remove the voxels which project to the dark part of each silhouette
o Question: What will the voxels look like after the first, second, ... iteration?

Space carving - (a) (b) (c)

Steps:
e lterate over cameras and remove the voxels which project to the dark part of each silhouette
o Question: What will the voxels look like after the first, second, ... iteration?

Visual hull:
an upper bound estimate

|::‘.::|

Space carving - (d)

What if we first find the rough size of the object instead of just looking at camera positions?

®

Coarse
Carving

Final Output

Space carving - (e)

Steps:
e Estimate silhouettes of images (could be based on some heuristics, e.g. color)
o Problem: The quality of silhouettes is not perfect.
o The silhouette from each camera is not perfect, but the result is ok. Why?
o Experiment: Use only a few of the silhouettes.

Original Image Silhouette

PSET 3 - Colab

Need colab for parts 2,3, and 4.

CS231a PSET 3 Problem 2: Representation Learning with Self-Supervised Learning

Overview
In this notebook we will be using the , a variation on the classic , to showcase how self-supervised
representation learning can be utilized for more efficient training in downstream tasks. We will do the following things:

1. Train a classifier from scratch on the Fashion MNIST dataset and observe how fast and well it learns.

2. Train useful representations via predicting image rotations, rather than classifying clothing types.

3. Transfer our rotation pretraining features to solve the classification task with much less data than in step 1.

First, you should upload the files in ‘code/p2’ directory onto a location of your choosing in Drive and run the following to have access to them.
You can also skip this step and just upload the files directly using the files tab, though any changes you make will be gone if you close the tab or
the colab runtime ends.

google.colab ort drive

drive.mount('/content/drive’, force_remount=

My Drive > c¢s231a > pset3 ~
Name

|

|

|

| o

Problem 2 - Representation Learning

In this notebook, we will be using the Fashion MNIST
dataset to showcase how self-supervised representation
learning can be utilized for more efficient training in
downstream tasks. We will do the following things:

1. Train a classifier from scratch on the Fashion MNIST
dataset and observe how fast and well it learns

2. Train useful representations via predicting image
rotations, rather than classifying images

3. Transfer our rotation pretraining features to solve the
classification task with much less data than in step 1

https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/zalando-research/fashionmnist

Unsupervised Representation Learning by Predicting
Image-Rotations (ICLR “18)

| Objectives:

ConvNet Maximize prob.
model F(.))

| Predict 0 degrees rotation (y=0)

|
ConvNet | Maximize prob.
model F(.) | F'(x")

|

|

—» g(X,y=0)

Rotate 0 degrees
Rotated image: X"

— g(X,y=1)

‘

Rotate 50 degrees Predict 90 degrees rotation (y=1)

ConvNet Maximize prob.
model F(.) F (X%

| Predict 180 degrees rotation (y=2)

Rotated image: X'

—» g(X,y=2)

-

Rotate 180 degrees
Rotated image: X

|
ConvNet Maximize prob.
model F(.) F3(X3)

|

Predict 270 degrees rotation (y=3) |

—» g(X,y=3)

I
\
1
\
\
J
l
l
l
l
]
l

:

Rotate 270 degrees

Rotated image: X°

https://arxiv.org/abs/1803.07728
https://arxiv.org/abs/1803.07728

Problem 2 - Representation Learning

PyTorch Training basics (training.py):

Use torch.DatalLoader and Dataset to load datasets and make batches
Create layers using torch.nn module
Use torch.optim to create an SGD Optimizer take gradient steps

Manipulating torch.Tensor:
o use t.cpu() to move from GPU -> CPU, use t.cuda() for CPU -> GPU

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/tensors.html

Problem 2 - Representation Learning

MNISTDatasetWrapper (Dataset)

e init_:load pct% of images from processed .pt file

e getitem__ :randomly rotate an image from self.imgs. Hint: use
PIL.Image.rotate to rotate image, and then return to torch.Tensor type

e Hint: Use torch.tensor(rotation_idx).long() to generate rotation labels

nn.Sequentialf(...)

e Creates a stack of layers that pass input data through a model
e nn.Linear(...) layers form weights and biases for a single layer

Problem 2 - Representation Learning

model = torch.nn.Sequential(

Training example (from pytorch-examples repo) Eorehonn. Lineen(_in, Hl,

torch.nn.ReLU(),

torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction="'sum')

e opt.zero_grad to zero gradients before
update | e
P Ioss_backward to backpropagate gradlents oﬁiin”i;z;ri :o?ch?;ptim.Adam(model.parameters(), r=learning_rate)

for t in range(500):

e opt.step to update model params (s

loss = loss_fn(y_pred, y)
print(t, loss.item())

optimizer.zero_grad()

loss.backward()

optimizer.step()

https://github.com/jcjohnson/pytorch-examples

Intro to Neural Networks

* Background and Applications

* Fully-connected Neural Networks (MLP)
* Convolutional Neural Networks (CNN)

* Backpropagation Algorithm

* PyTorch Example

Background

History

* 1957: Frank Rosenblatt designs the Mark | Perceptron,
an early learning-based computer

"“\ £ / /A o % N2
Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background

History

* 1957: Frank Rosenblatt designs the Mark | Perceptron,
an early learning-based computer

* 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background
History

* 1957: Frank Rosenblatt designs the Mark | Perceptron,
an early learning-based computer

* 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

* 1986: Rumelhart, Hinton, and Williams (and others)
develop the backpropagation algorithm (BP)

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background
History

* 1957: Frank Rosenblatt designs the Mark | Perceptron,
an early learning-based computer

* 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

* 1986: Rumelhart, Hinton, and Williams (and others)
develop the backpropagation algorithm (BP)

* 1989: LeCun et al. develop BP for Convolutional Neural
Networks (CNNs), and introduce MNIST dataset

Tuning hyperparameters used to take
a lot longer in Rosenblatt’s day

Background

History

* 1957: Frank Rosenblatt designs the Mark | Perceptron,
an early learning-based computer

* 1969: Multi-layer perceptron (early fully-connected
neural networks) by Minksy and Papert

* 1986: Rumelhart, Hinton, and Williams (and others)
develop the backpropagation algorithm (BP)

* 1989: LeCun et al. develop BP for Convolutional Neural
Networks (CNNs), and introduce MNIST dataset

e 2012: AlexNet uses GPUs to train CNNs fast enough Tuning hyperparameters used to take
. a lot longer in Rosenblatt’s day
to be practical

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

t | et - 341 |
P -4 \ £ y et
f A \ A | F IR
A | 3 p AR
\ ! - q N
\ \ 2 3 — \ »
\ 2 1 \\" N\ % - 143
By o S\ [- X NG . \
5 | 2 . ¥
o 1] (3 | —5[{\ [
[At L] N 3\ d "
{ \ [\ N1
Lx \ l \ \
[\ \
11 \ 19 192 1 L
2245 g:,“" Max * Ma ling 2040
Vot 4 pocling pool

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

A Brief History of Neural Nets and Deep Learning

Following slides are borrowed from CS231N Lecture 5

https://www.skynettoday.com/overviews/neural-net-history

Applications: Convolutional Networks

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with

permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Applications: Convolutional Networks

7

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with . I;igures copright Clement Farabet, 201.
permission. Reproduced with permission. [Farabet et al,, 2012]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Classification Retrieval

mushroom
rtible | agaric
grille mushroom grape
pickup jelly fungus elderberry
beach wagon gill fungus shire bullterrier
fire engine | dead-man's-fingers currant howler monkey

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

DeepFace (Face

Verification) - s 5
. ; gy
ol

o

QD

@,

: iz g

. ‘., o

=
8 |i
y \"] ' J !] j“
Originalimage = RGB channels conv0 convi conv2 conv3 conv4 --- mixed3/conv -+ mixed10/conv -+ Softmax
[T aigma n et a/. 201 4] Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma Mclintosh,

used with permission. Figure and architecture not from Taigman et al. 2014.

Two-Stream Convolutional Networks for Action Recognition in
Videos

DeepFace (Face

Verification) Score

o oAD PSSR

. . -

. . .

. . .
ﬂ I

{ ry Y BN . |

Originalimage = RGB channels conv0 convi conv2 conv3 conv4 -+ mixed3/conv -+ mixed10/conv .-+ Softmax

[Taigman et a, 2014] Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma Mclntosh,
used with permission. Figure and architecture not from Taigman et al. 2014.

Spatial stream ConvNet
convi (| conv2 || conv3 || conv4 || conv5 || fullé full? ft

7x7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 (| stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2 class
= score
Temporal stream ConvNet B
conv1 ([conv2 || conv3 || conv4 || conv5 || fullé full? |
7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048

stride 2 | stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. || pool 2x2 pool 2x2
pool 2x2

softmax

input

fel

Illustration by Lane Mcintosh, conv2

Figures copyright Simonyan et al., 2014. photos of Katie Cumnock

[Simonyan et al' 2014] Reproduced with permission. used with permission.

conv3

Two-Stream Convolutional Networks for Action Recognition in
Videos

Dense Captioning
[Johnson et al. 2016]

people are in the background

light on the wall sign on the wall

man sitting
on a table

man wearing
blue jeans

blue jeans on
the ground

man sitting on a bench
floor is brown

man wearing a white shirt

man with
black hair

white laptop
on a table

man sitting
on a table

woman
wearing a
black shirt

chair is brown

man wearing black shirt

man wearing a black shirt

red shirt on a man jelephant is standing
elephant is brown

large green

trees
roof of a

building

trunk of an §

elephant green trees

in the
background

leg of an
elephant

leg of an

ground is
3 elephant

visible

disb shadow on
ground’isiorown elephant is standing the ground

people are in the background man wearing a black shirt
red shirt on a man jelephant is standing

light on the wall sj th I : i ;
. SR S man wearing a white shirt 5,56 green elephant is brown
trees < <
man with ; ~ = roof of a
black hair s G S=Y building
man sitting trunk of an i ‘
on a table white laptop elephant _9"‘;‘?” trees
. H on atable) in the
Dense Captioning n o e background
man wearing tabl the ground e |
blue jeans oneyign e) g=~ . leg of an
[JOh nson et al . 20 1 6] woman bah',[t's A N i e+ elephant
wearing a WIS w 'y 3 3
blue jeans on black shirt o < om s - v -
the ground ground is i I . — leg of an
chairis brown icipje Tl LR et e - ! elephant
man sitting on a bench man wearing black shirt : shadow on
groundiisibrown elephant is standing the ground

floor is brown

Visualizing Circuits
[Voss et al. 2021]

I
m
N
)
o
=
o
=

-

[
-

10308)-47

Without context, these weights aren't very With context, they show us how a head
interesting. detector gets attached to a body.

FIGURE 7: NMF factorization on the weights (excitatory and |inhibitory) connecting six high-low frequency
detectors in InceptionV1 to the layer conv2d2.

FIGURE 3: Contextualizing weights.

Background

Signal Relay

Dorsal
pathway

pathway

Starting from V1 primary visual cortex, visual signal is transmitted upwards,

forming a more complex and abstract representation at every level

Foundations of Vision, Brian A. Wandell (1995)

Fully-Connected Neural Networks

impulses carried
toward cell body

branches

dendrites

axon

nucleus terminals

impulses carried
away from cell body

L0 wo

@® synapse
axon from a neuron
woTo

cell body

f (Zwi:z,- + b)
Z w;x; + b :

output axon

activation
function

Fully-Connected Neural Networks

Components

hidden layer

Image
source

Fully-Connected Neural Networks

Components

* Asingle input layer, /1,
E IRI’I hidden layer

Image
source

Fully-Connected Neural Networks

Components
* Asingle input layer, 1, € R
* k- hidden layers, a, € RY

* Weight matrices, Wl S

_1Xd: input layer
[Rdi-1%d; Ju e

* Bias vectors, bl. e RY

hidden layer

AIAREL L

Fully-Connected Neural Networks

Components
* Asingle input layer, 1, € R
* k- hidden layers, a, € RY

* Weight matrices, Wl S

_1Xd: input layer
[Rdi-1%d; Ju e

* Bias vectors, bl. e RY

* Output layer, y € R"™

hidden layer

AIAREL L

Fully-Connected Neural Networks

Components
* A single input layer, ho e R"
* k- hidden layers, a, € R4
* Weight matrices, W, € RA-1%d;
* Bias vectors, b, € P&
* Output layer, y € R"™

* For each Igygr, a = fz)=fIWh.+b), where
f'is an activation function

hidden layer

AIAREL L

Fully-Connected Neural Networks

Components
* Asingle input layer, 1, € R"
* k- hidden layers, a, € RY

* Weight matrices, Wl S
[Rdi-1%d;

* Bias vectors, bl. e RY

* Output layer, y € R"™
* For each .Iaygr, a = f(zi) = fU/Vihi + bi)’ where
f isan activation function

* Series of stacked layers compose multiple function
together (e.g. (f° g)(x))

hidden layer

AIAREX L

Fully-Connected Neural Networks

Cost Function

Fully-Connected Neural Networks

Cost Function

* To train parameters, compute a cost associated with every predicted/labeled
output pair, y, y.

Fully-Connected Neural Networks

Cost Function
* To train parameters, compute a cost associated with every predicted/labeled
output pair, y, y.

* Requirements: can be averaged over a batch, can be computed with outputs
from network

Fully-Connected Neural Networks

Cost Function

* To train parameters, compute a cost associated with every predicted/labeled
output pair, y, y.

* Requirements: can be averaged over a batch, can be computed with outputs
from network

. Cchm n loss functions: 1 m .
* Least squares —s My

gquadraticg: 2m
* Binary Cross-Entropy: ylog(yy + (1 - »)log(1 - y)

* Cross entropy (classification,yj is one-hot encoding at j): 5 ; v.log(¥7)
i=1

Fully-Connected Neural
Network

= f(Wx, + Wiox, + Wiax; + b))
= f(W,x;, +W,x, +W,.x, + b,)
=fIW x + W x, + Wox, +

311
h)
a, Sigmoid (loglt) transform. O'() 1_|_e
Hyperbolic tangent (tanh). tanh(z) = £=¢—
a
’ Rectified Linear Unit (ReLU). ReLU(z) = max(0, 2)

RelLU

. R(z) =maz(0, z)‘

Convolutional Neural Networks

Introduction

* For computer vision applications,
convolutional networks are used to learn
feature detectors from images

* Advantages:

* Images are high-dimensional data, fully
connected layers would require too many
parameters to tune

* Convolution operations preserve spatial
structure of data

* Convolution operation can be computed
efficiently on GPUs (using CUDA)

* Analogues:

* Inputs/activations are “what” the
network “sees”

* Weights are “how” the network

computes one layer from the
previous one (feature-detection)

* As architectures become more
complex, interpretability of these
learned features becomes more
difficult

Convolutional Neural Networks

Components

Convolutional Neural Networks
Components

* Each convolutional “layer” is represented by a 3D tensor of shape

[AxXwXn]
channels

Convolutional Neural Networks
Components

* Each convolutional “layer” is represented by a 3D tensor of shape
[AxXwXn]
channels

* Between two convolutional layers, the weights are of the shape

[relative x-position, relative y-position, input channels, output channéls

Convolutional Neural Networks
Components

* Each convolutional “layer” is represented by a 3D tensor of shape

[AxXwXn]
channels

* Between two convolutional layers, the weights are of the shape

[relative x-position, relative y-position, input channels, output channéls

* “Convolve” operation consists of 4 hyperparameters:

Convolutional Neural Networks
Components

* Each convolutional “layer” is represented by a 3D tensor of shape

[AXwXn]
channels

* Between two convolutional layers, the weights are of the shape

[relative x-position, relative y-position, input channels, output chann%ls

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth (each channel also called
an “activation map”)

Convolutional Neural Networks
Components

* Each convolutional “layer” is represented by a 3D tensor of shape

[AXwXn]
channels

* Between two convolutional layers, the weights are of the shape

[relative x-position, relative y-position, input channels, output chann%ls

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth (each channel also called
an “activation map”)

Convolutional Neural Networks

Components

* Each convolutional “layer” is represented by a 3D tensor of
shape
[AXwXn

channels

* Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output

channels]

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth (each channel also
called an “activation map”)

* Spatial extent, or receptive field

Convolutional
Neural Networks

Components

* Each convolutional “layer” is represented by a 3D tensor of
shape
[AXwXn

]

channels

* Between two convolutional layers, the weights are of the
Shape [relative x-position, relative y-position, input channels,

output channels]

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth (each channel
also called an “activation map”)

* Spatial extent, or receptive field

* The stride

Convolutional Neural Networks

Components

* Each convolutional “layer” is represented by a 3D tensor of shape
[AXxwXn

channels

* Between two convolutional layers, the weights are of the shape
[relative x-position, relative y-position, input channels, output

channels]

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth (each channel also called
an “activation map”)

* Spatial extent, or receptive field
® The stride

* Amount of zero-padding

Convolutional Neural Networks

Components

* Each convolutional “layer” is represented by a 3D tensor of

shape

[AXwXn

* Between two convolutional layers, the weights are of the

shape [relative x-position, relative y-position, input channels,

channels

output channelg

* “Convolve” operation consists of 4 hyperparameters:

Number of filters, or depth
also called an “activation map”)

Spatial extent, or receptive field
The stride

Amount of zero-padding

(each channel

Input Volume (+pad 1) (7x7x3)
X[z,

Filter WO (3x3x3)
WO s,5,0

£3,0]

ofofoJo 0 o o T[]
oftfz]o o 1 o 1o o
ofzfz]o 1t o o T[]0
o2 2 1210 WO[:,:,1
o8 G [N i O3 E3 O S0
ol 23 [l O 2 0 Ljo jo
00 0 0 0 4] [[
5,1] wo[s, 772
ofofolo o =
o [0 |2 G [0 0 o
0 T]o 2 =B
O (71 I8 1O 9 Bias o(Ix1x1)
8 [23 62 23 O3 [0 bO*,:,0]
00 270 1 1

0 0 o 6 o

2,2,2]

0 [[o [0 0 00
o2z]t o0 o

2 1 01 0

i &1 3 B2 A N G

58 i 23 N CR BB G

o8 22 0 N N E G
0000000

Filter W1 (3x3x3)
WL %4y 84010
ON (O3 B

i i@
0N (0N (0]

wlfs,:
i ©

’
0
I3 e
-1 0 0

wil[s, 8,2]
1N WA (O

O =14 1
18 (0N =T

Bias bl (1x1x1)
Bl[s;2;0]
0

Output Volume (3x3x2)
o[:,:,0]

77 5

9 -6 9
3 -5 -8

$pl]
2

of:
2
7

v s W

1
5 i

Convolutional Neural Networks

Components

* Each convolutional “layer” is represented by a 3D tensor of shape

[AXwXn]
channels

* Between two convolutional layers, the weights are of the shape

[relative x-position, relative y-position, input channels, output channéls

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth
an “activation map”)

(each channel also called

* Spatial extent, or receptive field
* The stride

* Amount of zero-padding

* With this, the shape of layer convolved from layer — 1is:

s [((W-F+2P)/S+1,(H- F+2P)/S+1,K]

Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)

x[:,:,0] w0[:,:,0
ofofoJo 0 0 o N EE
ofif2lo o 1 o 1o [[o
o220 1 0 o a0
ozl WOz, :,1
o8 G [N i O3 E3 O S0
ol 23 [l O 2 0 SUJCAI0
00 0 0 0 = P
eTt,1] wo[s, 772
ofoJoJo o il
o [0 |2 G [0 0 o
0 T]o 2 =B
O (71 I8 1O 9 Bias b (1x1x1)
ol [23 02 23 03 bO*,:,0]
00 270 1 1
0 0 0 6 o
2,2,2]
0][0 [0 0 00
o221t o0 o
2 1 01 0
ol o0 23 21 23 [[©
o2 [0|7 [0
o8 23 [N EN N
0000000

Filter W1 (3x3x3)

Bias bl (1x1x1)
Bl[s;2;0]
0

Output Volume (3x3x2)
of :728,0]

Convolutional Neural Networks

Components

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
. . x[2,:,0] wo[:,:,0 wl[z:,:,0] o[:,:,0]
* Each convolutional “layer” is represented by a 3D tensor of shape 0 o [0JoJoTo o IEE G CIE 6 [7] -5
h X X 0 1 |20 (o1 O 1110 o i 9 -6 9
[w nchannels] 0 2 |20 ff1 |0 O 1)-1}0 0N [0 (O] 3 5 -8
O 2 |28 NISN 23 BN 1O wWOLt,2,1 wi[z,2,1] o[z,2,1]
5N [0N Fl il Gl BR [6 1)10 o 28 Al =2
* Between two convolutional layers, the weights are of the shape [re1ative 53 B3 8 63 R o [0 111 AL
cos . cos . 1f-1]-1 A0 @ SN 5 [
x-position, relative y-position, input channels, output channels] 00 00 0 0
X[:,:, wO[:,+72 WIls:58:2]0
.) . . o o [ofo]o]o ML il L G
* “Convolve” operation consists of 4 hyperparameters: o8 (o8 Ealloaluetal 0 [[of0 D) EN
o 1 htolzlz2 14-1|-1 i e =i
- DN (0N P18 PISY [ON 12570 . .
* Number of filters, or depth (each channel also called an Bias b0(1x1x1) Bias bl (1x1x1)
PR " 0120 2 0 b0[¢;:,0] bl[:,:,0]
activation map”) o (78 8 6044 68 6 0
0 0 0 0 0
* Spatial extent, or receptive field 8l o (o Yk
ON 23 [2! /l/ 0|0
* The stride o |7 AR EpE
ON (O |25 28 I3 B8N [6)
O FISN 28 RIS [ON (28 [6)
* Amount of zero-padding ol 23 N 0 i L
0N (03 [ON (0N [ON (08 |0

* With this, the shape of layer convolved from layer - 1lis:

c[(W-F+2P)/S+1,(H- F+2P)/S+1,K]

Convolutional Neural Networks

Components

* Each convolutional “layer” is represented by a 3D tensor of shape

[AXwXn]
channels

* Between two convolutional layers, the weights are of the shape [re1ative

x-position, relative y-position, input channels, output channels]

* “Convolve” operation consists of 4 hyperparameters:

* Number of filters, or depth (each channel also called an
“activation map”)

* Spatial extent, or receptive field
* The stride
* Amount of zero-padding

* With this, the shape of layer convolved from layer - 1lis:

c[(W-F+2P)/S+1,(H- F+2P)/S+1,K]

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3)
x[:,:,0] w0[:,:,0
00 0 ofofofo T[-1]1
01 2 ofo]1lo 1o [[o
0 2 2 oft]olo T[]0
G2z |l e wo[:,:,1
o8 [3 N 50 23 G =]

ol 23 3 52 B3 [B Lo ©
0000 0 0% = IE
.. wl[:,:
):)["o'lt)] o [oJo o LAY
00 2 ofofilo [0 Jlo jo
01 1 0 2 [0 1A

O O 1 A 2 O 1as b0 (Ix1x1)
0N FISN F28 (O B2 (O] bO[:,2,0]

0 |02 [0 [1 0 1
0000 0/0 0

x[278+2])

0o 0 0 o fo]o/fo

02 2 1[0Jofo]

v |2 | [o 1[0

8 58 22 3 23 [B

o} [23 2 G A [©

ol Bl N N N B
0000000

Filter W1 (3x3x3)
wl[:,:,0]
W jo i

il @
0N 10N [0}

wlf[s:,:,1]
18 0 (0]

=g
-1 0 0

wlfe;2;2]
=L |©

O S8]
(1 (0N El

Bias bl (1x1x1)
bl[s,2,0]
0

Output Volume (3x3x2)
o[:,:,0]

6 -7

9 -6 9

Convolutional Neural Networks

GINEESDNIITN ENESEORAETSESRAERG
“ one filter => _
one activation map example 5x5 filters

(32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

feyleglenl = 3 S flnml glx—n.y—n,]

e ‘ T
elementwise multiplication and sum of
a filter and the signal (image)
Figure copyright Andrej Karpathy.

Slide borrowed from CS231N Lecture 5

ny=—eo f,=—o0

Convolutional Neural Networks

Pooling and FC layers

* Max and Average (L2-norm) pooling:

* Downsampling operation to reduce width x
height (but not depth) of a layer

* Fully-connected (FC) layers:

* Flattens entire input volume to a vector, and
treats like a normal FC network layer

224x224x64

112x112x64

pool

—_—

l l

> e 112
224 downsampling
112

224
Single depth slice
Jl1[1]2]4
max pool with 2x2 filters
S N6N 7 | 8 and stride 2
3 | 2 NS
1| 2 PS4

Fin

Questions?

