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Dynamical System
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Kalman Filter
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An algorithm that uses a series of measurements observed over time, containing 
statistical noise and other inaccuracies, and produces estimates of unknown variables 
that tend to be more accurate than those based on a single measurement alone, by 
estimating a joint probability distribution over the variables for each timeframe.

Source: Wikipedia

https://en.wikipedia.org/wiki/Kalman_filter


Kalman Filter
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An algorithm that uses a series of measurements observed over time, containing 
statistical noise and other inaccuracies, and produces estimates of unknown 
variables that tend to be more accurate than those based on a single measurement 
alone, by estimating a joint probability distribution over the variables for each timeframe.

Source: Wikipedia

To make it even more illustrative ->

https://en.wikipedia.org/wiki/Kalman_filter


What does Kalman Filter do?
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Extended Kalman Filter
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● Extended Kalman filter (EKF) is heuristic for nonlinear filtering problem.
● Often works well (when tuned properly), but sometimes not.
● Widely used in practice.

Based on
- Linearizing dynamics and output functions at current estimate.
- Propagating an approximation of the conditional expectation and covariance.

Source: EE363

https://stanford.edu/class/ee363/lectures/ekf.pdf
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Implementing Extended Kalman Filter
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● Define the state, the control, and the noise

● Derive the system and the observation
● Compute the current Jacobian matrix (linearizing dynamics)

● Compute the distribution of the current state
● Iterate this process across time



Define the State

14

State: 6-dimensional vector (position, velocity)



Define the System Matrix
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Define the Observation
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Define the Observation
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Observation in Q2: 2-dimensional vector (pixel location)

Observation in Q3: 3-dimensional vector (pixel location, disparity)

can be derived using the camera model we learned from previous lectures.



Computing the Jacobian
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Source: Wikipedia

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant


The Kalman Filter
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The Kalman Filter
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If R large, then K is large. Update 
dominated by innovation.

If Q large, then K is small. Update 
dominated by prediction.
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Disparity inverse proportional to depth

23



Disparity inverse proportional to depth
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Unsupervised monocular depth estimation
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Unsupervised monocular depth estimation
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Disparity prediction:

Image prediction:



Unsupervised monocular depth estimation
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Disparity loss

Image prediction:



Thank you!
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