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PASCAL VOC Challenge
Dataset:   22k images,   50k objects,   20 classes

Detect: people, horses, sofas, bicycles, pottedplants, ...
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Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

Deformable part models

Felzenszwalb et al, 
PAMI 2010
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1.  A hierarchy of models defined by a part ordering

2.  A sequence of thresholds:
 → prune

 → prune

 → prune

!

�1

�2

 → prune !

t = ((t01, t1), . . . , (t
0
n, tn))

m0(⇥)
?
 t1

8�1 : m0(⇥)� d1(a1(⇥)� �1)
?
 t01

m0(⇥)� d1(a1(⇥)� �⇤1) +m1(a1(⇥)� �⇤1)
?
 t2

8�2 : m0(⇥)� d1(a1(⇥)� �⇤1) +m1(a1(⇥)� �⇤1)� d2(a2(⇥)� �2)
?
 t02
...

Star cascade ingredients
slide credit: Girshick et al



test image object model
+ part ordering

+ thresholds

Star cascade algorithm
slide credit: Girshick et al



HOG pyramid
from test image

object model
+ part ordering

+ thresholds

Star cascade algorithm
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HOG pyramid
from test image

object model
+ part order
+ thresholds

Star cascade algorithm
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filter score tables
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filter score tables
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Star cascade algorithm
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We want safe and effective thresholds

don’t prune many true positives

but do prune lots of true negatives

Threshold selection
slide credit: Girshick et al



Probably Approximately Admissible thresholds

P (error(t) > ⇥)  �

error(t) = P
x⇠D

(cascade-score(t,�) 6= score(�))

min of partial scores over examples in X

provably safe empirically effective

Theorem: |X| ⇥ 2n/⇥ ln(2n/�) =⇤ (⇥, �)�PAA thresholds

X = IID set of positive examples ⇠ D

PAA threshold
slide credit: Girshick et al



high recall less recall ⇒ faster

23.2x faster
(618ms per/image)

31.6x faster
(454ms per/image)
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Generalized Sparselet Models 
for Real-Time Multiclass 
Object Recognition

Hyun Oh Song, Ross Girshick, Stefan Zickler, Christopher Geyer,
Pedro Felzenszwalb, Trevor Darrell

ECCV12,  ICML13,  TPAMI14



Goal 

• Shared predictive model with sparse activation 
vectors

• Efficient inference for linear structured output 
predictors

• Example application: realtime object recognition in 
CV, faster retrieval in IR, etc.



Related works

• Learning shared low dimensional predictive 
structure (e.g., Ando and Zhang, JMLR05)

• Shared part models (Steerable part models, 
Pirsiavash et al)
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Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

Deformable part models

Felzenszwalb et al, 
PAMI 2010



Sparselet review

July 12, 2011 Hyun Oh Song

Pose estimation result

1. test

W = {w1, ...,wK}
S = {s1, ..., sd}

min
�ij ,sj

KX

i=1

||wi �
dX

j=1

�ijsj||22

subject to ||↵i||0 ⇤ ⇤ ⌅i = 1, ..., K

||sj||22 ⇤ 1 ⌅j = 1, ..., d

(1)

score(⌅) = m0(⌅) +
NX

i=1

max
⇥

mi(⌅ + ⇥)� di(⇥)

where mi(⌅) =
|S|X

j=1
⇤�ij ⇥=0

�ij (� (⌅) ⇥ Sj) .

(2)

Here di are quadratic deformation costs, ⇥ is a displacement and ⌅ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⌅), simplifies to

si(⌅) =

|D|X

j=1
⇤�ij ⇥=0

�ijMj(⌅). (3)

2. Known object location and category label

* Indicates angle is wrapped at 180�

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

1

July 12, 2011 Hyun Oh Song

Pose estimation result

1. test

W = {w1, ...,wK}
S = {s1, ..., sd}

min
�ij ,sj

KX

i=1

||wi �
dX

j=1

�ijsj||22

subject to ||↵i||0 ⇤ ⇤ ⌅i = 1, ..., K

||sj||22 ⇤ 1 ⌅j = 1, ..., d

(1)

score(⌅) = m0(⌅) +
NX

i=1

max
⇥

mi(⌅ + ⇥)� di(⇥)

where mi(⌅) =
|S|X

j=1
⇤�ij ⇥=0

�ij (� (⌅) ⇥ Sj) .

(2)

Here di are quadratic deformation costs, ⇥ is a displacement and ⌅ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⌅), simplifies to

si(⌅) =
|D|X

j=1
⇤�ij ⇥=0

�ijMj(⌅). (3)

2. Known object location and category label

* Indicates angle is wrapped at 180�

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

1
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Set of sparselet filters



Sparse reconstruction of filter response

Cached

Sparsity

min
↵ij ,sj

KX

i=1

||wi �
dX

j=1

↵ijsj||2
2

subject to ||↵i||0  ✏ 8i = 1, ..., K

||sj||2
2

 1 8j = 1, ..., d

(5)

score(!) = m

0

(!) +
NX

i=1

max
�

mi(! + �)� di(�)

where mi(!) =
|S|X

j=1

8↵ij 6=0

↵ij ( (!) ⇤ Sj) .

(6)

Here di are quadratic deformation costs, � is a displacement and ! is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (!), simplifies to

si(!) =
|D|X

j=1

8↵ij 6=0

↵ijMj(!). (7)

 ⇤wi ⇡  ⇤

0

BB@
dX

j=1

8↵ij 6=0

↵ijsj

1

CCA =
dX

j=1

8↵ij 6=0

↵ij ( ⇤ sj) . (8)

Concretely, we can recover individual part filter responses via sparse matrix multiplica-
tion (or lookups) with the activation vector replacing the heavy convolution operation
as shown in Eqn Eq. ??:

2

666666666664

� ⇤w
1

�
� ⇤w

2

�
...
...
...
...

� ⇤wK�

3

777777777775

=

2

666666666664

↵
1

↵
2

...

...

...

...
↵K

3

777777777775

2

666664

� ⇤ s
1

�
� ⇤ s

2

�
...
...

� ⇤ sd�

3

777775
= A M, (9)

2



Matrix factorization point of view

80 ~ 99 % Sparse

2
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–—  ⇤wN —–
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⇡
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3

7775
(15)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(16)

=
Nm

|S|m+NE[||↵i||0]
(17)

m : Convolution filter size (18)

As N grows to a large number, (19)

Speedup =
m

E[||↵i||0]
(20)

w⇤ = argmin
w

�

2
kwk2

2

+
1

M

MX

i=1

max
ŷ2Y

(w|�(xi, ŷ) +�(yi, ŷ))�w|�(xi, yi), (21)

2. Known object location and category label

* Indicates angle is wrapped at 180�

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a↵ordance prediction

4



System concept
2

input 
image

*

intermediate
representation

DPM_bicycledecompose

Bicycle
detections

reconstructDPM_car

DPM_horse

Sparselet

dictionary...

pre-processing reconstructionoffline

dictionary learning

Fig. 1. System concept.

2 RELATED WORK
Our work is related to three strands of active research:
(1) part sharing with compositional models [11], [12],
[5], [6], [7], (2) sparse coding and dictionary learn-
ing [13], [14], [15], and (3) modeling and learning
with low-rank approximations [3], [16], [17]. None
of these methods, however, simultaneously exploit
shared interclass information and discriminative spar-
sity learning to speed up inference while maintaining
task performance.
A preliminary version of our system was described in
[8]. The system described here differs from the one in
[8] in several ways. First we introduce the notion of
generalized sparselets in structured output prediction
problem [18], [19] and analyze the computational
gains in efficiency. Also, we formulate a discrimi-
native sparselet activation training framework and
several regularization schemes that lead to improved
sparsity and task performance. We experimentally
demonstrate that the proposed sparselet activation
learning algorithm substantially outperforms recon-
structive sparselets [8] and generalizes to previously
unseen object categories.

The paper is structured as follows. In Sec. 3, we
start with a brief overview of sparselets [8] and for-
mulate structured output prediction with generalized
sparselets. In Sec. 4, we describe how discriminative
sparselet activation training fits into the framework
and discuss several regularization methods for sparse
activation learning. In Sec. 5, we discuss important
applications of the proposed approach to multiclass
object detection with mixtures of deformable part
models [1] and to multiclass image classification. Be-
fore we conclude in Sec. 7, we provide experimental
results on multiclass object detection and multiclass
image classification problems in Sec. 6.

3 SPARSELETS
In general, convolution of a feature pyramid with
thousands of object model filters becomes the major
computational bottleneck in multiclass object detec-
tion tasks. Sparselet model tackles this problem by
learning a dictionary of “universal” object models that
generalizes to previously unseen classes and express-
ing filter convolutions stage as sparse linear combi-
nations of sparselet convolutions. Fig. 1 illustrates the

concept in three stages. Also, the sparselet dictionary
size is independent on number of classes and the
speedup offered by the method approaches the ratio
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Although the above optimization is NP-hard,
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Concretely, we can recover individual part filter
responses via sparse matrix multiplication (or
lookups) with the activation vector replacing the
heavy convolution operation as shown in Eqn. 3:
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• Empirically, filter reconstruction error always decreases as 
we decrease sparselet size (@ fixed computation time)

• However, the space required to store the intermediate 
representation is proportional to the sparselet dictionary 
size    .  This means we have computation time VS memory 
bandwidth tradeoff.

as shown in Eqn (5):
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Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(6)

=
Nm

|S|m+NE[||↵0||]
(7)

As N grows to a large number, (8)

Speedup =
m

E[||↵0||]
(9)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2



Visualized sparselet blocks on HOG

(Left) Sparselet dictionary of size 128

(Right) Top 16 activated sparselets for PASCAL motorcycle class
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experiments demonstrate that sparselets are highly ef-
fective when applied to o↵-the-shelf image classifiers.

Our work is related to three strands of active research:
(1) part sharing with compositional models (Torralba
et al., 2007; Fidler et al., 2009; Zhu et al., 2010; Ott
& Everingham, 2011; Girshick et al., 2011), (2) sparse
coding and dictionary learning (Kreutz-Delgado et al.,
2003; Mairal et al., 2009; 2012), and (3) modeling
and learning with low-rank approximations (Freeman
& Adelson, 1991; Manduchi et al., 1998; Wolf et al.,
2007). None of these methods, however, simultane-
ously exploit shared interclass information and dis-
criminative sparsity learning to speed up inference
while maintaining task performance.

This paper also helps unify sparselets with the steer-
able part models of (Pirsiavash & Ramanan, 2012).
These closely related approaches were both applied to
DPMs and resulted in the same 3x speedup factor.
The fundamental di↵erences between the two meth-
ods lies in how they accelerate inference and how they
are trained. Steerable part models use a small part
dictionary with dense linear combinations and discrim-
inative training, whereas sparselets use a larger dictio-
nary with sparse linear combination, and a reconstruc-
tive error training paradigm. With regard to dictio-
nary size and linear combination density, the two ap-
proaches can be viewed as operating at di↵erent points
within the same algorithm design space. The remain-
ing di↵erence, then, lies in the training method. This
paper unifies the two approaches by showing how to
train sparselet activations discriminatively, or alter-
nately, how to train steering coe�cients sparsely.

The paper is structured as follows. In Sec. 2, we start
with a brief overview of sparselets (Song et al., 2012)
and formulate structured output prediction with gen-
eralized sparselets. In Sec. 3, we describe how dis-
criminative sparselet activation training fits into the
framework and discuss several regularization methods
for sparse activation learning. In Sec. 4, we discuss im-
portant applications of the proposed approach to mul-
ticlass object detection with mixtures of deformable
part models (Felzenszwalb et al., 2010a) and to multi-
class image classification. Before we conclude in Sec. 6,
we provide experimental results on multiclass object
detection and multiclass image classification problems
in Sec. 5.

2. Generalized sparselets

In this section we introduce generalized sparselets —
a general approach for speeding up inference in any
linear structured output prediction model.

2.1. Sparselets reviewed

Sparselets were introduced in (Song et al., 2012) for
the purpose of accelerating object detection with de-
formable part models (DPMs) (Felzenszwalb et al.,
2010a). In brief, a sparselet model is completely spec-
ified by a dictionary S = [s

1

, . . . , s
d

] in Rm⇥d, where
each column s

j

in Rm is called a sparselet. Noting that
the computational bottleneck of detection is convolu-
tion of a feature pyramid with a set of DPM part fil-
ters, {f

i

}, (Song et al., 2012) proposed to approximate
each filter f

i

as a sparse linear combination of sparse-
lets, yielding:  ⇤f
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are independent of any
filter, and thus their cost can be amortized over all fil-
ters from all object models. In the remainder of this
section we present a novel generalization of this tech-
nique. First, we illustrate how to generalize sparselets
for simple multiclass linear classifiers, and then for any
linear structured output prediction model.

2.2. Multiclass classification with generalized
sparselets

Consider a set of K linear classifiers parameterized by
the weight vectors w

1

, . . . ,w
K

each in Rn. An input
feature vector x 2 Rn is assigned to a class fw(x) 2
{1, . . . ,K} according to the rule

fw(x) = argmax
k2{1,...,K}

w|
k

x. (1)

Our objective is to reduce the computational cost of
computing Eq. 1.

We begin by partitioning each parameter vector w
k

into several m-dimensional blocks. A block is a sub-
vector of parameters chosen so that the set of all blocks
from all w

k

admits a sparse representation over S.
Concretely, in the examples that follow, blocks will be
chosen to be fragments of part filters in a deformable
part model (see Fig. 1), or simply contiguous subvec-
tors of the parameters in a bag-of-visual-words clas-
sifier. For clarity, we will assume that n = pm for
some positive integer p. We can rewrite each linear
classifier in terms of its blocks, b

ki

in Rm, such that
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kp

)|. Similarly, we can partition an
input feature vector into p subvectors, c
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in Rm, such
that x = (c|

1

, . . . , c|
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)|.

Given a sparselet model S, we can approximate any
vector b 2 Rm as a sparse linear combination of the
sparselets in S
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portant applications of the proposed approach to mul-
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2010a). In brief, a sparselet model is completely spec-
ified by a dictionary S = [s

1

, . . . , s
d

] in Rm⇥d, where
each column s

j

in Rm is called a sparselet. Noting that
the computational bottleneck of detection is convolu-
tion of a feature pyramid with a set of DPM part fil-
ters, {f
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}, (Song et al., 2012) proposed to approximate
each filter f
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as a sparse linear combination of sparse-
lets, yielding:  ⇤f
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The sparselet responses  ⇤ s
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are independent of any
filter, and thus their cost can be amortized over all fil-
ters from all object models. In the remainder of this
section we present a novel generalization of this tech-
nique. First, we illustrate how to generalize sparselets
for simple multiclass linear classifiers, and then for any
linear structured output prediction model.

2.2. Multiclass classification with generalized
sparselets

Consider a set of K linear classifiers parameterized by
the weight vectors w
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, . . . ,w
K

each in Rn. An input
feature vector x 2 Rn is assigned to a class fw(x) 2
{1, . . . ,K} according to the rule
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x. (1)

Our objective is to reduce the computational cost of
computing Eq. 1.

We begin by partitioning each parameter vector w
k

into several m-dimensional blocks. A block is a sub-
vector of parameters chosen so that the set of all blocks
from all w

k

admits a sparse representation over S.
Concretely, in the examples that follow, blocks will be
chosen to be fragments of part filters in a deformable
part model (see Fig. 1), or simply contiguous subvec-
tors of the parameters in a bag-of-visual-words clas-
sifier. For clarity, we will assume that n = pm for
some positive integer p. We can rewrite each linear
classifier in terms of its blocks, b
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in Rm, such that
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)|. Similarly, we can partition an
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experiments demonstrate that sparselets are highly ef-
fective when applied to o↵-the-shelf image classifiers.

Our work is related to three strands of active research:
(1) part sharing with compositional models (Torralba
et al., 2007; Fidler et al., 2009; Zhu et al., 2010; Ott
& Everingham, 2011; Girshick et al., 2011), (2) sparse
coding and dictionary learning (Kreutz-Delgado et al.,
2003; Mairal et al., 2009; 2012), and (3) modeling
and learning with low-rank approximations (Freeman
& Adelson, 1991; Manduchi et al., 1998; Wolf et al.,
2007). None of these methods, however, simultane-
ously exploit shared interclass information and dis-
criminative sparsity learning to speed up inference
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able part models of (Pirsiavash & Ramanan, 2012).
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DPMs and resulted in the same 3x speedup factor.
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The paper is structured as follows. In Sec. 2, we start
with a brief overview of sparselets (Song et al., 2012)
and formulate structured output prediction with gen-
eralized sparselets. In Sec. 3, we describe how dis-
criminative sparselet activation training fits into the
framework and discuss several regularization methods
for sparse activation learning. In Sec. 4, we discuss im-
portant applications of the proposed approach to mul-
ticlass object detection with mixtures of deformable
part models (Felzenszwalb et al., 2010a) and to multi-
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we provide experimental results on multiclass object
detection and multiclass image classification problems
in Sec. 5.
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the purpose of accelerating object detection with de-
formable part models (DPMs) (Felzenszwalb et al.,
2010a). In brief, a sparselet model is completely spec-
ified by a dictionary S = [s

1

, . . . , s
d

] in Rm⇥d, where
each column s

j

in Rm is called a sparselet. Noting that
the computational bottleneck of detection is convolu-
tion of a feature pyramid with a set of DPM part fil-
ters, {f

i

}, (Song et al., 2012) proposed to approximate
each filter f

i

as a sparse linear combination of sparse-
lets, yielding:  ⇤f

i

⇡  ⇤
P

j

↵

ij

s
j

=
P

j

↵

ij

( ⇤ s
j

).
The sparselet responses  ⇤ s

j

are independent of any
filter, and thus their cost can be amortized over all fil-
ters from all object models. In the remainder of this
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linear structured output prediction model.
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computing Eq. 1.
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into several m-dimensional blocks. A block is a sub-
vector of parameters chosen so that the set of all blocks
from all w
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admits a sparse representation over S.
Concretely, in the examples that follow, blocks will be
chosen to be fragments of part filters in a deformable
part model (see Fig. 1), or simply contiguous subvec-
tors of the parameters in a bag-of-visual-words clas-
sifier. For clarity, we will assume that n = pm for
some positive integer p. We can rewrite each linear
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Figure 1. (Left) 128 of the 256 sparselets learned from 20 DPMs trained on the PASCAL VOC 2007 dataset. (Right) The
top 16 sparselets activated for the motorbike category.

where ↵ = (↵
1

, . . . ,↵

d

)| 2 Rd is a sparselet activa-
tion vector for b. The quality of the approximation
depends on the fixed dictionary and the chosen acti-
vation vector. Now, the dot product in Eq. 1 can be
approximated as

w|
k

x = (b|
k1

, . . . ,b|
kp

)(c|
1

, . . . , c|
p

)|

=
pX

i=1

b|
ki

c
i

⇡
pX

i=1

(S↵
ki

)|c
i

=
pX

i=1

↵|
ki

(S|c
i

). (3)

We note two important properties of Eq. 3: (1) the
sparselet responses S|c

i

are independent of any par-
ticular classifier, and (2) the subsequent product with
↵

ki

can be computed e�ciently by accessing only the
nonzero elements of ↵

ki

. In the following, let �

0

be
the average number of nonzero elements in each ↵

ki

.

Computational costs. We can analyze generalized
sparselets for multiclass classification by looking at the
cost of computing b|

ki

c
i

for a single block i and for all
classes k. The original classifiers require Km addi-
tions and multiplications. The generalized sparselet
approach has a shared cost of dm operations for com-
puting the sparselet responses, r

i

= S|c
i

, and a cost
of K�

0

operations for computing ↵|
ki

r
i

for all classes.
The overall speedup is thusKm/(dm+K�

0

). To make
this value large, the dictionary size d should be much
smaller than the number of classes K, and the aver-
age number of nonzero coe�cients in the activation
vectors should be much less than the sparselet size
m. As the number of classes becomes large, the cost
of computing sparselet responses becomes fully amor-
tized which leads to a maximum theoretical speedup
of m/�

0

(Song et al., 2012). This emphasizes the im-
portance of a sparse representation, in contrast, for
example, to the dense steering coe�cients in (Pirsi-
avash & Ramanan, 2012). This analysis shows that

generalized sparselets are most applicable to multi-
class problems with a large number of classes. This
is a regime of growing interest, especially in com-
puter vision as exemplified by datasets such as Ima-
geNet (Deng et al., 2009), which includes more than
10,000 categories (Deng et al., 2010). In Sec. 5.3 we
show results on the Caltech-{101,256} (Fei-Fei et al.,
2006; Gri�n et al., 2007) datasets demonstrating that
even with only one or two hundred classes generalized
sparselets can accelerate simple linear classifiers.

2.3. Structured output prediction with
generalized sparselets

Multiclass classification is a special case of structured
output prediction. To complete the description of gen-
eralized sparselets for structured output prediction,
consider the linear discriminant function

fw(x) = argmax
y2Y

w|�(x, y) (4)

where the input x comes from an arbitrary input space
X , and fw outputs an element from the label space Y.
As in the previous discussion, w is partitioned into
blocks in a problem specific manner. The partition
used in the multiclass setup is one concrete example.
Given the partition, sparselets can be applied to each
block in a straightforward extension of the multiclass
case.

Computational costs. To generalize the analysis
to the structured prediction setting, we rewrite the
speedup as Qm/(dm+Q�

0

), where Q is defined to be
the number of unique parameter blocks that are multi-
plied with a distinct subvector of feature values. Intu-
itively, Q counts the number of times the intermediate

Feature: sparselet response

Model parameter: sparse activation vector
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
For each slot wk = (b|

k1, . . . ,b
|
kpk

)| that is represented by sparselets, we define a corresponding
activation parameter vector �k = (�|

k1, . . . ,�
|
kpk

)| ⇤ Rpkd. Let � = (�|
1 , . . . ,�

|
s )

| and w̃ =
(w|

s+1, . . . ,w
|
K)|, and define the new model parameter vector ⇥ = (�|, w̃|)|.

We transform the feature vector in a similar manner. For a feature vector slot �k(x, y) =
(c|1 , . . . , c

|
pk
)| that will be represented by sparselets, we transform the features into sparselet

responses: �̃k(x, y) = (c|1S, . . . , c|pk
S)| ⇤ Rpkd. The fully transformed feature vector is

�̃(x, y) = (�̃
|
1(x, y), . . . , �̃

|
s (x, y),�

|
s+1(x, y), . . . ,�

|
K(x, y))|. The resulting objective is

⇥� = argmin
⇥

R(�) +
�

2
⌃w̃⌃22 +

1

M

M⇤

i=1

max
ŷ⇤Y

�
⇥|�̃(xi, ŷ) +�(yi, ŷ)

⇥
� ⇥|�̃(xi, yi), (6)

where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
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where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
For each slot wk = (b|

k1, . . . ,b
|
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)| that is represented by sparselets, we define a corresponding
activation parameter vector �k = (�|
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)| ⇤ Rpkd. Let � = (�|
1 , . . . ,�

|
s )
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K)|, and define the new model parameter vector ⇥ = (�|, w̃|)|.

We transform the feature vector in a similar manner. For a feature vector slot �k(x, y) =
(c|1 , . . . , c
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)| that will be represented by sparselets, we transform the features into sparselet

responses: �̃k(x, y) = (c|1S, . . . , c|pk
S)| ⇤ Rpkd. The fully transformed feature vector is
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⇥
� ⇥|�̃(xi, yi), (6)

where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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Experiment 1 - Run Time 10

the precomputation budget h
s

w

s

d = 4608.
For fixed reconstruction and precomputation bud-

gets B

R

and B

P

, we studied the effect of varying
sparselet size. Empirically, filter reconstruction error
always decreases as we decrease sparselet size. When
there are not too many classes, the precomputation
time is not fully amortized and we would like to
make B

P

small. For a fixed, small B

P

we minimize
reconstruction error by setting h

s

and w

s

to small
values as shown is Fig. 5 (top). However, as we make
the sparselets smaller, d grows, possibly making the
representation space budget B

S

too large. In our ex-
periments, we balance memory usage with sparselet
size by setting h

s

and w

s

to 3.
When precomputation is amortized, minimizing

precomputation time is less important. However, in
this case we are still concerned with keeping the
intermediate representation reasonably small. Fig. 5
(bottom) shows the results as the subfilter sizes vary
while both the representation space and reconstruc-
tion time budget is fixed. We fixed the dictionary size
d = 512 for this experiment. By fixing the response
and representation space budgets, we observe that us-
ing more, larger sparselets minimizes reconstruction
error (at the expense of requiring a larger precompu-
tation budget) as shown in Fig. 5 (bottom).

6.3 Comparison of regularization methods
We evaluated the baseline reconstructive sparselets [8]
and our discriminatively trained activation vectors on
the PASCAL VOC 2007 dataset [29]. Fig. 6 (left) shows
the mean average precision (mAP) at various activa-
tion vector sparsity levels. We set the sparsity regu-
larization constant �1 to {0.010, 0.015, 0.020} for the
lasso penalty (“R-Lasso”) and to {0.025, 0.030, 0.035}
for the elastic net penalty (“R-EN”). For the combined
`0 and `2 penalty, �0 was set to {48, 32, 16, 8, 4, 2}.

The `1-based regularization methods were very dif-
ficult to tune. Adjusting �1 to hit a desired sparsity
level requires an expensive grid search. Additionally,
the ratio between hinge-loss and the regularization
term varied significantly between different classes,
leading to a wide range of sparsity levels. Ultimately,
these methods also underperformed in terms of mAP.
Combined `0 and `2 regularization (“R–0,2 ORT” and
“R–0,2 OMP”), in contrast, produces exactly the de-
sired sparsity level and outperforms all other methods
by a large margin. One interesting observation is
that the mAP margin grows as the activation vectors
become increasingly sparse.

6.4 Universality and generalization to previously
unseen categories
To test the hypothesis that our learned dictionary of
sparselets, in conjunction with the proposed discrim-
inative activation training, are “universal” and gener-
alize well, we used the sparselet dictionary learned
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Fig. 8. Run time comparison for DPM implementation
on GPU, reconstructive sparselets and discriminatively
activated sparselets in contrast to CPU cascade.

from 20 PASCAL classes and evaluated detection
performance on novel classes from the ImageNet [21]
dataset. We selected 9 categories (sailboat, bread, cake,
candle, fish, goat, jeep, scissors and tire) that have sub-
stantial appearance changes from the PASCAL classes.
Fig. 6 (right) shows that our method generalizes well
to novel classes and maintains competitive detection
performance even in the high sparsity regime.

6.5 Image classification with generalized sparse-
lets
Fig. 7 compares classification accuracy versus
speedup factor (averaged over 6 machines with
different CPU types). Generalized sparselets
consistently provide a good speedup, however
only the discriminatively trained sparselet activation
models provide high accuracy, occasionally besting
the original classifiers. In these experiments, we used
a fixed dictionary size d = 40. We explored two block
sizes m = 100 or 200. Each curve shows results at
three sparsity levels: 0.6, 0.8, and 0.9. We trained and
tested with 15 images per class on both datasets. As
predicted by our cost analysis, increasing the class
count (from 102 to 257) magnifies the speedup factor.

6.6 Run time experiments
We performed two sets of experiments to measure
the wall clock runtime performance with and without
GPU.

GPU experiment Fig. 8 shows the relative compar-
isons for DPM implementation on GPU, reconstruc-
tive sparselets and discriminatively activated sparse-
lets. For sparselets, dictionary size K was set to 256

and the sparsity parameter �0 was varied in the



Experiment 2 - PASCAL detection
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Experiment 3 - ImageNet detection
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Experiment 4 - Caltech 101Classification
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Experiment 5 - Caltech 256Classification
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Discussion
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• Sliding window object detection

• Deformable part models

• Cascade DPM

• Sparselets 

• Hashing based



Hashing part filtersSummary of Approach

Training

learn part filters using latent SVM

compute WTA code of each filter
and split into M keys

store index of each filter in M hash
tables

Detection

compute WTA for filter-sized
windows in image

lookup in hash tables to retrieve
matching filters

detect objects using sparse filter
scores

13

Fast, Accurate Detection of 100k object classes on a single machine, Dean et al, CVPR13



Conclusion

• Surveyed sliding window object detection

• Various methods exist for speeding up the 
inference time (not training time)

• For fast training, LDA HOG (Hariharan, ECCV12) 
works well.


