CS231M - Mobile Computer Vision

Announcements
- P2 due 5/8 (this Friday!)
- Project proposals are due on 5/11 (on Monday!)

- Paper presentations will be starting next Wed (5/13)



CS231M - Mobile Computer Vision

Lecture 11

Inferring 3D geometry from images

- Cameras

- Single view metrology

- Epipolar geometry Background reading:

[HZ] Chapter 6 “Camera Models”

[HZ] Chapter 7 “Computation of Camera Matrix P”

[HZ] Chapter 2 “Projective Geometry and Transformation in 2D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 8 “More Single View Geometry”

[HZ] Chapter: 9 “Epip. Geom. and the Fundam. Matrix Transf.”
[HZ] Chapter: 18 “N view computational methods”

[FP] Chapters: 8 “Structure from Motion”

- Structure from motion

[PF] = Forsyth, Ponce “Computer vision: a modern approach”, 2011
[HZ] = R. Hartley and A. Zisserman. “Multiple View Geometry in Computer Vision”, 2003.



Pinhole camera
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f = focal length
o = center of the camera



From retina plane to images

Retina plane

Digital image
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Pixels, bottom-left coordinate systems



Coordinate systems

/ 1. Off set

(X, y,z)%(f—+c fz+cy)

[ >XC Z Z

C”=[CX’ Cy]




Converting to pixels

/ 1. Off set

y° 2. From metric to pixels
(x,y,2) = {f k=+c  f1Z+c)
o vz g
o > o
C=[c,, ¢,] Units: k,| : pixel/m  Non-square pixels

)f £ a, B :pixel




Converting to pixels

A Y
P=(x,y,z)=>P'=(a—+c,p=+c)
y© V4 <
XC
® » * We can expressed it in a matrix form?
C=[Cx’ Cy]




Homogeneous coordinates

E>H - N
(z,y) = | ¥ (z,y,2) = 4
1 z
L 1 -
homogeneous image homogeneous scene
coordinates coordinates

« Converting back from homogeneous coordinates

H>E

y | = (z/w,y/w) = (z/w,y/w, z/w)

S N e 8




Camera Matrix

] . r [x]
ax+cz| [a 0 ¢ |0
P' =M P P =|By+cz|=0 B ¢ 10|
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— (f _,f X) With zero offset and

For details see lecture 2 unitary square pixels
CS231A Z Z y q p



World reference system

*The mapping so far is defined within the camera
reference system

* What if an object is represented in the world
reference system



World reference system

In 4D homogeneous coordinates: P =

d4x4

Internal parameters

PK[IO] k[ 1 0]

M [Eq.11]



Camera Calibration
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« P,... P, with known positions in [O,,i,.j..K,]
*p4, ... P, KNOWN positions in the image



Camera Calibration

http://docs.opencv.org/_downloads/camera_calibration.cpp
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P=k[1 olp=K[R T]|P,
« P,... P, with known positions in [O,,i,.j..K,]
*p4, ... P, KNOWN positions in the image

For details see lecture 3

Goal: compute intrinsic and extrinsic parameters CS231A



Properties of Projection

 Points project to points
« Lines project to lines P,—MP,—p
* Distant objects look smaller

=
e
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Properties of Projection

*Angles are not preserved




Lecture 11

Inferring 3D geometry from images

- Single view metrology



Can we recover the structure from a single view?

@f C . ’14

Scene

Calibration rig Camera K

Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)



Can we recover the structure from a single view?

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik



Recovering structure from a single view

Line of
~ S|ght

C

1

unknown KNnown  Known/

Partially known/
unknown

Prior knowledge about the environment helps infer 3D geometry!



Properties of Projection

*Angles are not preserved




Vanishing (horizon) line

Projective
transformation M

hor

For details see lecture 4
CS231A

Image



Example: Are these two lines parallel or not?
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- Recognize the horizon line
- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are // in 3D



Vanishing points and planes

- hortz




Vanishing points and planes

For details see lecture 4

~ CS231A
T
v, wv, =0
<
w=(KK")"'
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v,wv, =0
VlTa) v, =0 - Set up a system of equations that

allows to compute K




Vanishing points and planes

For details see lecture 4
CS231A

K known — n-= KTl . = Scene plane orientation in
horiz the camera reference system

Select orientation discontinuities



Single view reconstruction - example

Recover the structure within the camera reference system

Notice: the actual scale of the scene is NOT recovered

*Recognition helps reconstruction!
Humans have learnt this




Recovering structure from a single view
ke “' _ g B .."

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl



Criminisi & Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/ merton/merton.wrl



Criminisi & Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl
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La Trinita' (1426)
Firenze, Santa Maria

Novella; by Masaccio
(1401-1428)



Single view reconstruction - drawbacks

Manually select:
 Vanishing points and lines;
* Planar surfaces;
 Occluding boundaries;
 Etc..



Automatic Photo Pop-up

Hoiem et al, 05




Automatic Photo Pop-up

Hoiem et al, 05...




Automatic Photo Pop-up

Hoiem et al, 05...

Software:

http://www.cs.uiuc.edu/homes/dhoiem/projects/software.html



Make3D

Training Prediction

Saxena, Sun, Ng, 05...

Plane Parameter MRF

Plo|X. vy, R:0) H fileg| X v, Ryt 6)
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youtube Cormectmty Co- Planarity




Single Image Depth Reconstruction
Saxena, Sun, Ng, 05...

A software: Make3D
“Convert your image into 3d model”

http://make3d.stanford.edu/
http://make3d.cs.cornell.edu/



Room layout estimation

Varsha Hedau, Derek Hoiem, David Forsyth, “Recovering the Spatial Layout of Cluttered Rooms,” in the Twelfth IEEE International
Conference on Computer Vision, 2009.

Also: Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, Raquel Urtasun:
Efficient structured prediction for 3D indoor scene understanding. CVPR 2012: 2815-2822

Efficient, suitable for real time implementation!



Lecture 11

Inferring 3D geometry from images

- Epipolar geometry



Can we recover the structure from a single view?

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik



Two eyes help!

pi
p
K, =known K, =known
R, T

01 \/ 02

This is called triangulation



Triangulation

e Find P’ that minimizes
d(p,M,P)+d(p',M,P’)




Stereo-view geometry

Correspondence: Given a point p in one image,
how can | find the corresponding point p’ in
another one?

Camera geometry: Given corresponding points
in two images, find camera matrices, position
and pose.

Scene geometry: Find coordinates of 3D point
from its projection into 2 or multiple images.



Epipolar geometry

e e
 Epipolar Plane * Epipoles e, €’
* Baseline = intersections of baseline with image planes

. i = projections of the other camera center
 Epipolar Lines
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Example of epipolar lines




Example: Parallel image planes

SR u e L —_—— - - — =0 €

O, O,
 Baseline intersects the image plane at infinity
 Epipoles are at infinity
 Epipolar lines are parallel to x axis



Example: Para

lel Image Planes
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Epipolar Constraint

For details see lecture 4
P CS231A

E = Essential matrix
(Longuet-Higgins, 1981)



Cross product as matrix multiplication

axb=| a 0 =-a_||b, |=[a]b




Epipolar Constraint
F)

p’
p )i
O,

p'Fp'=0| F=KT-|T|RK"

F = Fundamental Matrix
(Faugeras and Luong, 1992)



Epipolar Constraint

| = F p’ is the epipolar line associated with p’
I'=FTp is the epipolar line associated with p
Fe=0 and FTe=0
F is 3x3 matrix; 7 DOF
F is singular (rank two)



- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, how can | find the corresponding point on right image?




Why F is useful?

e F captures information about the epipolar geometry of
2 views + camera parameters

e MORE IMPORTANTLY: F gives constraints on how the
scene changes under view point transformation
(without reconstructing the scene!)

e Powerful tool in:
e 3D reconstruction
e Multi-view object/scene matching



The Eight-Point Algorithm for estimating F

(Longuet-Higgins, 1981)
(Hartley, 1995)




Example: Parallel image planes

P

K,=K, = known

E=" R =1 T=(7,0,0)

x parallel to O,0,




Example: Parallel image planes

P

0O -T. T
K,=K, = known E=| T 0 =T
x parallel to O,0, T T 0




Example: Parallel image planes

P

Rectification: making two images “parallel”

Why it is useful? <« Epipolar constraint — v =v’
« New views can be synthesized by linear interpolation



Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30
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Rectification










Morphing without rectifying

D 0ee o






From its reflection!




See also: Novel Multi-view Synthesis from a Stereo Image Pair for 3D Display on
Mobile Phone, Chen-Hao Wei, Chen-Kuo Chiang, Yu-Wei Sun, Mei-Huei Lin, Shang-
Hong Lai, ACCV 2012




Lecture 11

Inferring 3D geometry from images

- Structure from motion



Structure from motion problem

Given m images of n fixed 3D points

x;, =MX;,, i=1L...m j=1..n



Structure from motion problem

From the mxn correspondences x;;, can we estimate:

*m projection matrices M, motion

*n 3D points X, structure




Similarity Ambiguity

* The scene is determined by the images only up a
similarity transformation (rotation, translation and
scaling)

* This is called metric reconstruction

p ==

) Similarity

— -




Similarity Ambiguity

e |tisimpossible based on the images alone to estimate the
absolute scale of the scene (i.e. house height)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl



Camera Calibration
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This is what we do, when we calibrate the camera



Structure from Motion Ambiguities

In the general case (nothing is
known) the ambiguity is
expressed by an arbitrary affine
or projective transformation

=MX;  M=K[R, T]
B A, o



Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003



Metric reconstruction (upgrade)

 The problem of recovering the metric reconstruction from
the perspective one is called self-calibration

e Stratified reconstruction:
e from perspective to affine
e from affine to metric




Mobile SFM

* Intrinsic camera parameters are known or can be calibrated.

* For calibrated cameras, the similarity ambiguity is the only
ambiguity iLonguettiggins 1)

* No need for stratified solution or auto-calibration

) Similarity

e Metric reconstruction can be determined if a calibration pattern is used or
the absolute size of an known object is given.



Structure-from-Motion Algorithms

 Algebraic approach (by fundamental matrix)

* Factorization method (by SVD)
* Bundle adjustment



Algebraic approach (2-view case)

o*
’Q
.

Apply a projective transformation H such that:

M H" = 0] M,H"'=|A b]

Canonical perspective cameras



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views
(eg. 8 point algorithm)

2. Compute b and A from F

Compute b as least sq. solution of Fb =0, A=-[b.]F
with |b|=1 using SVD; b is an epipole "

3. Use b and A to estimate projective cameras
M, =[1 0] M,=[-[b,JF b]

4. Use these cameras to triangulate and estimate
points in 3D

For details, see CS231A, lecture 7



Structure-from-Motion Algorithms

 Algebraic approach (by fundamental matrix)

ze Factorization method (by SVD)

1 C. Tomasi and T. Kanade
° B u nd I e adJ UStment Shape and motion from image streams under
orthography: A factorization method. IJCV, 9(2):
137-154, November 1992.

For details, see CS231A, lecture 6




Structure-from-Motion Algorithms

 Algebraic approach (by fundamental matrix)
* Factorization method (by SVD)

* Bundle adjustment




Bundle adjustment

Non-linear method for refining structure and motion
Minimizing re-projection error

2

E(M,X) = i i D(Xij’ Min)
=1 =1




Bundle adjustment

Non-linear method for refining structure and motion

Minimizing re-projection error
2

E(M,X) = i i D(Xij’ Min)
=1 =1

e Advantages
e Handle large number of views
e Handle missing data
e Can leverage standard optimization packaged such as
Levenberg-Marquardt

e Limitations
® |arge minimization problem (parameters grow with number of views)
e Requires good initial condition

Used as the final step of SFM; key ingredient for VLSAM



Structure from motion problem

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman,
98

Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99

Levoy et al., 00

Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04

Brown & Lowe, 04
Schindler et al, 04
Lourakis & Argyros, 04
Colombo et al. 05

Courtesy of Oxford Visual Geometry Group

Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC , 2010
Pandey et al. ICRA 2011
Microsoft’'s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08

Agarwal et al., 09

Frahm et al., 10



SFM and Photosynth

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," ACM
Transactions on Graphics (SIGGRAPH Proceedings),2006,

N ﬁﬁétosynth‘

https://photosynth.net/preview



SFM and room layout estimation

Y. Bao, A. Furlan, L. Fei-Fei, S. Savarese, Understanding the 3D Layout of a Cluttered Room From Multiple
Images, in IEEE Winter Conference on Applications of Computer Vision (WACV), 2014.




LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schops, Prof. Dr. Daniel Cremers

LSD-SLAM: Large-Scale Direct Monocular SLAM (ECCV '14)

http://vision.in.tum.de/research/Isdslam



Recent papers for single or multi-view reconstruction on mobiles

Engel, Jakob, Thomas Schops, and Daniel Cremers. "LSD-SLAM: Large-scale direct monocular SLAM." Computer Vision—-ECCV
2014. Springer International Publishing, 2014. 834-849.
http://link.springer.com/chapter/10.1007/978-3-319-10605-2_54#page-1

Includes an optimized mobile implementation

Forster, Christian, Matia Pizzoli, and Davide Scaramuzza. "SVO: Fast semi-direct monocular visual odometry." Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906584&tag=1

Includes an optimized mobile implementation

Kolev, Kalin, et al. "Turning mobile phones into 3D scanners." Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on. IEEE, 2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909899

Yu, Fisher, and David Gallup. "3D Reconstruction from Accidental Motion." Computer Vision and Pattern Recognition (CVPR),
2014 |IEEE Conference on. IEEE, 2014.

http://yf.io/p/tiny/

A similar algorithm is implemented for lens blur in Google’s Android Camera App.

Gasparini, Simone, and Pascal Bertolino. "Stereo camera tracking for mobile devices." Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013 IEEE Conference on. IEEE, 2013.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595845

Hedborg, Johan, Andreas Robinson, and Michael Felsberg. "Robust Three-View Triangulation Done Fast." Computer Vision and
Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on. IEEE, 2014.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909973

Olmschenk, Greg, and Zhigang Zhu. "3D Hallway Modeling Using a Single Image." Computer Vision and Pattern Recognition
Workshops (CVPRW), 2014 IEEE Conference on. IEEE, 2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909974



CS231M - Mobile Computer Vision

Next lecture:

e Geotagging and Geospatial Analysis






From retina plane to images

Pixels, bottom-left coordinate systems



From retina plane to images




Converting to pixels

1. Off set

XC (X, y,z)e(f—+c fz+cy)

Z Z




Converting to pixels

XC

1. Off set
2. From metric to pixels

(x,y,2) = {f K=+c  f1Z+c))
a p

Units: k,| : pixel/m  Non-square pixels
£ a, B :pixel



Camera Matrix

X
(x,y,2) > (@ —+c_,
ye Z
XC » Matrix form?
. >
C=[Cx’ Cy]

y

Z

+c,)



Homogeneous coordinates

o
(z,y) = | ¥y
1

homogeneous image

coordinates

For details see lecture on
transformations in CS131A

(z,y,2) =

1
=N Q@ R

homogeneous scene
coordinates

» Converting from homogeneous

coordinates

y | = (z/w,y/w)

= (z/w,y/w, z/w)

S N 8



Camera Skew

A yc
XC

[ >
C’ = [CX, Cy] X
>

K has 5 degrees of freedom!

P =

‘a -—oacotld c,

0 ./5 C
sin @ Y

0 0 1

0
0
0

P =MP=K[I 0

|b_k [\] \< >‘<|

|
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Affine structure from motion
(simpler problem)
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From the mxn correspondences x;, estimate:
e m projection matrices M. (affine cameras)
* n 3D points X,



Affine structure from motion

(simpler problem)

Camera matrix M for the affine case

u
X =
Y,

)=

M

X
1

= AX +Db;

M=[A b]



Centering the data

Normalize points w.r.t. centroids of measurements from each image

X, =AX; +b =X, = A X

For details, see CS231A, lecture 6, 7



A factorization method - factorization

Let's create a 2m x n data (measurement) matrix:

X X o Xy,
D=/ 22 2n cameras
' (2m )
_Xml Xm2 o an |

points (n )



A factorization method - factorization

Let's create a 2m x n data (measurement) matrix:

f‘n &12 ﬁln Al S
X, X, - X A,
D= 21 22 2n | _ 2[‘X1 Xz Xn]
A A A points (3 x n)
X, X, X, _Am_ \
(2m % n) cameras
(2m x 3)

The measurement matrix D =M S has rank 3
(it's a product of a 2mx3 matrix and 3xn matrix)



2m

Factorizing the Measurement Matrix

Measurements

Motion

Structure 3

S
I

MS



2m

Factorizing the Measurement Matrix

e Singular value decomposition of D:

A




Factorizing the Measurement Matrix

Since rank (D)=3, there are only 3 non-zero singular values

3
<>
A
3
<>
3$ W, A 13
=
~ D = | Us X X
<€ > <€ >
N N
A\ 4
<€ > <€ >




2m

Factorizing the Measurement Matrix

S = structure

M = Motion (cameras)



Factorizing the Measurement Matrix

What is the issue here? D has rank>3 because of:

* measurement noise
« affine approximation

3 n
<
- D = Wl x| w8

Theorem: When D has a rank greater than p, UprV; is the best
possible rank- p approximation of A in the sense of the Frobenius norm.

A, =U,

D= U3W3V3T , )
Po = W3V3




Affine Ambiguity

D = M Cc | X |cCt! S
1§ J J
Y Y
M’ S’

e The decomposition is not unigue. We get the same D by using
any 3x3 matrix C and applying the transformations:

M -> MC
S >C1S

e Additional constraints must be enforced to resolve this
ambiguity



Reconstruction results

-loo.co
-120.00
-l40.o
-le0.co
-lz0.m
20000

2@ — .
K
240,00 .

=200
-220.00
-3C0.C0
32000
-340.00
-3E0.00
-380.00
000D

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.







SfM objective function

* Given point x and rotation and translation

R, t,. fx'
X u = ’ /
y’ = Rx + t ‘ [u,] — P(X) R) t)
'] , [y 4
V==
Z

e Minimiz« & & 2
9 Xekols: ‘ZZWU ‘P(Xv tf)_[ ]H

l: ] - 1 ‘—'—’
predlcted observed
image location image location




Bundle Adjustment

ﬁ’@] — f( 7Rj7tj7Xi)
@Z] — g( 7Rj7tj7Xi)

 \What makes this non-linear
minimization hard?

— many more parameters: potentially slow
— poorer conditioning (high correlation)

— potentially lots of outliers

— gauge (coordinate) freedom

CSE 576, Spring 2008 Structure from Motion 112



Levenberg-Marquardt

e |terative nnn-linear leact cniigres
. o
[Pressti = f(m,x;)+ - Am

— Linei. dg lon
evi — g(maXi)‘I‘a—mAmo S

af

(

cse sz6. Surpwtitute into leguikelivood equation:

> oy 2 —ui+ - —Am)? + -

113



Levenberg-Marquardt

* |terative non-linear least squares

[Press’92]

Hessian:

error.

CSE 576, Spring 2008

L] n
[ 7 N |

— Solve fory A

~ ' Om

S om

L, 0f

= Doy o (ui =) + -

om

| ¢

Structure from Motion
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114



Levenberg-Marquardt

 What if it doesn’t converge?

— Multiply diagonal by (1 + ), increase A until it
does

— Halve the step size Am
— Use line search
— Other ideas?

« Uncertainty analysis: covariance X = A"
* Is maximum likelihood the best idea?
* How to start in vicinity of global minimum?

CSE 576, Spring 2008 Structure from Motion 115



Lots of parameters: sparsity

ﬂ’&j — f(Kijatjaxz)
62] — g(K,R],tj,Xz)
* Only a few entries in Jacobian are non-

zero 9wy Quy  duy  Ouy
8K’ 8R37 813]" 8X,&'7

= =] .
A5 E B o
s H O [ .
o2 @ [ = N
84 . .l . .

J= a g @ 3] H=
|l @ E | m : =='.
E | @ @ :
O B | B | @ EE
O _ /| (B]m[a]]
O = | =
5 ooom

CSE 576, Spring 2008 Structure from Motion 116



Robust error models

» Qutlier rejection

— use robust penalty applied
to each set of joint
measurements

, O = N W A 00O N @

S 20 (Viws — )% + (05— )?)
— for'extremely paa aata, use random sampling
[RANSAC, Fischler & Bolles, CACM’'81]

CSE 576, Spring 2008 Structure from Motion 117



